Algorithmic bias: do good systems make relevant documents more retrievable?

Research output: ResearchConference contribution

Algorithmic bias presents a dificult challenge within Information Retrieval. Long has it been known that certain algorithms favour particular documents due to attributes of these documents that are not directly related to relevance. The evaluation of bias has recently been made possible through the use of retrievability, a quanti .able measure of bias. While evaluating bias is relatively novel, the evaluation of performance has been common since the dawn of the Cran.eld approach and TREC. To evaluate performance, a pool of documents to be judged by human assessors is created from the collection.is pooling approach has faced accusations of bias due to the fact that the state of the art algorithms were used to create it, thus the inclusion of biases associated with these algorithms may be included in the pool.e introduction of retrievability has provided a mechanism to evaluate the bias of these pools. This work evaluates the varying degrees of bias present in the groups of relevant and non-relevant documents for topics. The differentiating power of a system is also evaluated by examining the documents from the pool that are retrieved for each topic. The analysis .nds that the systems that perform better, tend to have a higher chance of retrieving a relevant document rather than a non-relevant document for a topic prior to retrieval, indicating that retrieval systems which perform better at TREC are already predisposed to agree with the judgements regardless of the query posed.

Original languageEnglish
Title of host publicationCIKM 2017 - Proceedings of the 2017 ACM Conference on Information and Knowledge Management
Place of PublicationNew York
Pages2375-2378
Number of pages4
DOIs
StatePublished - 6 Nov 2017
Event26th ACM International Conference on Information and Knowledge Management, CIKM 2017 - Singapore, Singapore
Duration: 6 Nov 201710 Nov 2017

Conference

Conference26th ACM International Conference on Information and Knowledge Management, CIKM 2017
CountrySingapore
CitySingapore
Period6/11/1710/11/17

    Research areas

  • algorithmic bias, information retieval, retrieval systems, relevance assessment
  1. The impact of fielding on retrieval performance and bias

    Research output: Research - peer-reviewPaper

View all »

View graph of relations