Parallel wind turbine powertrains and their design for high availability

Research output: Contribution to journalArticle

Conventional wind turbine powertrains tend to use single-input-single-output topologies (i.e. one gearbox coupled to a generator with a power converter). Here powertrains with single-input-multiple-output subsystems are analyzed with Markov state space models in order to quantify any improvements in availability. A baseline powertrain's availability and that of different parallel powertrains are evaluated using wind turbine powertrain failure and repair rate data. The results show that an increase in the number of parallel systems, N, does not automatically lead to a higher availability for a wind turbine powertrain; however when failure and repair rates scale with module power ratings then there is an improvement. The designer can further improve availability by over-rating each parallel module. The net benefit of parallel powertrains depends both on the turbine and the type of powertrain technology.
Original languageEnglish
Number of pages11
JournalIEEE Transactions on Sustainable Energy
StateAccepted/In press - 3 Nov 2016

    Research areas

  • availability, Markov state space model, parallel subsystems, powertrain, wind turbine

Bibliographical note

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

View graph of relations