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Abstract

With the active large-scale roll-out of smart metering worldwide, details about

the type of smart meter data that will be available for analysis are emerging.

Consequently, focus has steadily been shifting from analysis of high-rate power

readings (usually in kHz to MHz) to low-rate power readings (sampled at 1 to 60

sec) and very low-rate meter readings of the order of 15-60 minutes. This has

triggered renewed research into practical non-intrusive load disaggregation of

low- to very-low granularity meter readings to address challenges not addressed

by existing disaggregation approaches, namely, indistinct appliance ON/OFF

transitions, increased likelihood of overlapping appliance usage within a sample

and noise due to unknown appliances. In this paper, focusing on smart meter

readings at hourly resolution, three load disaggregation solutions are proposed

based on: (i) optimisation (minimisation of error between aggregate and dis-

aggregated loads), (ii) graph signal processing and (iii) convolutional neural

network. These are benchmarked with state-of-the-art approaches, based on

factorial hidden Markov model and combinatorial optimisation implemented in

the NILMTK toolbox, and discriminative disaggregation sparse coding. The

hourly electricity profile data is obtained from real-world active power readings

from the REFIT dataset1 over a period of longer than one year. All proposed

1The REFIT dataset (cleaned version) used for validation in this paper can be accessed
via DOI 10.15129/9ab14b0e-19ac-4279-938f-27f643078cec.
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disaggregation approaches outperform benchmarking methods for labelled ap-

pliances in terms of both energy performance metrics and faster execution time.

The proposed approaches succeed in disaggregating, at very low resolutions, a

wide range of loads including white goods even when there are unlabelled loads

contributing to the meter readings.

Keywords: Non-intrusive load monitoring, hourly load disaggregation,

optimisation process, graph signal processing, convolutional neural network.

1. Introduction

With the goal of rolling out 780 million smart electricity meters worldwide

[1] and 200 million in Europe [2] by the end of 2020, it is emerging that, mainly

due to storage, data management, and potential privacy preservation [3], the

resolution of load measurements available from national smart meters is much

lower than the recently assumed 1-60sec. Technical specifications, including type

and resolution of smart meter data available for analysis, differ from country

to country, but are generally in the range between 15minutes and 1hour. For

example, meter data is available at resolutions of 15 minutes in Italy [4], 1 hour

in Spain [5], 15 minutes or 1 hour in the US [6], 30 minutes in the UK [7], 1

hour in British Columbia and Ontario, Canada [3].

Smart meter readings provide opportunities for many exciting applications

that go beyond accurate and remote billing. One of the enablers of such appli-

cations, is Non-Intrusive Load Monitoring (NILM), defined as estimating algo-

rithmically appliance-level energy consumption from aggregate meter readings.

NILM has the potential to provide low-cost, efficient and fine-grained energy

feedback that can potentially reduce domestic electricity consumption by 0.7%-

4.5% compared to only aggregate consumption feedback [8]. However, the ap-

plications of NILM go beyond supporting energy-efficient behaviour [9, 10], as

NILM has already been shown to support national surveys on energy intensity

of domestic activities [11], scalable appliance modelling [12], accurate estimation

of the residential consumption phase of food life-cycle assessments [13], house
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maintenance and retrofit [14], and detection of anomalous appliances [15].

In general, NILM approaches can be categorized as supervised or unsuper-

vised, depending on whether a labelled dataset is used to train the models or

not. Supervised learning performs classification, where detected events (appli-

ances being switched on or off) are assigned to appliance categories by matching

extracted features and using pre-trained appliance models (e.g., [16, 17]). In un-

supervised NILM methods, on the other hand, detected events are grouped into

various categories through analysis of feature similarities or correlation (see,

e.g., [18]).

Numerous machine learning and signal processing methods have been inves-

tigated to solve the NILM problem, including stochastic finite state machines

(Hidden Markov Model and its variants) [19, 20], support vector machine (SVM)

[21], decision tree [21, 22], dynamic time warping [22], k-nearest neighbours (K-

NN) [16, 21, 23–25], sparse coding [26, 27], neural networks [9, 28–30], graph sig-

nal processing (GSP) [18, 31], and optimisation via learning of appliance models

and occupancy information [32–36]. Furthermore, advanced hybrid approaches

have been proposed for improving core NILM performance, e.g., k-means clus-

tering based training followed by disaggregation using SVM [37], GSP with

result refinement using simulated annealing [17], deep neural network utilised

to learn deeper and multiple layers of sparse signal representation [38].

Motivated by national smart meter roll-outs at scale, in this paper, we focus

on solving the challenging very low-rate NILM problem, where the sampling

period is at most 15 minutes. Prior work in this area is limited and is reviewed

in Section 2. In summary, current very low-rate disaggregation methods have

several limitations, including predicting appliance-cluster consumption instead

of individual appliance consumption (e.g., white goods, instead of refrigerator,

washing machine, etc.), a large amount of prior information is required, e.g.,

dwelling and occupancy information from surveys, outdoor weather, etc. Fur-

thermore, validation experiments tend to be limited to aggregated and labelled

appliance load profiles instead of true smart meter measurements containing

many loads which are unknown.
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In this paper, three very low-rate (hourly) NILM approaches are proposed

that utilise only smart meter power measurements and appliance manufacturer

information, that can be obtained from an appliance survey. It is common prac-

tice now by utilities and energy management systems, aiming to provide energy

consumption feedback, to ask customers to fill a one-off appliance survey, which

includes types of appliances present in the household, make/model/wattage, and

sometimes the frequency of use. Customers are informed that the more informa-

tion they provide, the more accurate their energy efficiency recommendations

can be. Only appliances whose metadata has been included in the appliance

survey is considered known and can potentially be disaggregated. In this pa-

per, we refer to these known appliances as labelled appliances, and remaining

appliances for which we have no metadata (in the form of wattage information)

are considered unlabelled appliances.

The proposed methods are evaluated on real aggregate measurements against

three state-of-the-art energy disaggregation methods, namely the widely used

Factorial Hidden Markov Model (FHMM) and Combinatorial Optimisation (CO),

implemented within the publicly available NILM Toolkit [19], and Discrimina-

tive Disaggregation Sparse Coding (DDSC) [26], proposed for hourly data. Both

FHMM (and its variants) and CO are popular NILM solutions for disaggregation

of low-rate active power (1Hz or less), see, e.g., [25, 29, 39, 40].

The key contributions of this paper are:

• A detailed review of the NILM approaches shown to work for very low-rate

load disaggregation and the types of loads that have been disaggregated.

• An unsupervised optimisation-based (OPT) NILM approach that aims to

estimate appliance-level consumption by finding the combination of appli-

ance models generated from manufacturer information, that minimises a

cost function, after estimating and removing the baseload.

• An unsupervised GSP-based NILM approach, adapted from the higher

resolution GSP-based approach of [18], where an additional graph for time-

of-day feature is added.
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• A supervised convolution neural network (CNN)-based approach, which

is trained only on a small set of aggregate profile data, where time infor-

mation is considered as a feature.

• Validation and benchmarking on the REFIT dataset [41], known to be

‘noisier’ than other publicly available datasets due to many unlabelled

appliances running simultaneously with labelled appliances.

• Benchmarking with three popular NILM approaches, Factorial Hidden

Markov Model (FHMM), CO implemented in NILMTK [19] and DDSC

proposed in [26].

• Presentation and discussion of disaggregation results comparing commonly

used metrics: Total Energy Correctly Assigned (TECA or Acc.) and best-

performing match rate, and direct comparison of energy consumption of

each appliance disaggregated w.r.t ground truth.

• Presentation and discussion of disaggregation results in terms of execution

time for all proposed schemes w.r.t benchmarked methods.

The rest of this paper is organized as follows: Section 2 provides an in-

depth review of very low-rate (15-60 minutes) NILM solutions; the problem of

energy profile disaggregation and all proposed and benchmarked very low-rate

NILM approaches are described in Section 3; the experimental setup including

electricity profile extraction from existing high granularity datasets is presented

in Section 4; the results are demonstrated and discussed in Section 5; Section 6

summarises our findings and future work.

2. Prior work on very low-rate NILM

An hourly energy disaggregator is proposed in [42], based on a multi-objective

genetic algorithm with pre-learnt appliance inferences, updated weekly. Appli-

ance inferences are generated based on prior knowledge of real and reactive

consumed energy, weather information, appliance ownership data, etc. The
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appliance ownership data includes both unit energy consumption of typical ap-

pliance types in Canada and corresponding statistical knowledge, such as own-

ership and usage frequency by house type. The method is validated on hourly

profile data from BC Hydro utility, resulting in more than 50% of the aggregate

energy consumption disaggregated into 12 appliance categories for both real

and reactive energy. The same authors proposed an optimisation method for

hourly disaggregation via a study of power factors [3], which is validated on the

same dataset used in [42]. Unlike [42], disaggregation results for three clusters

grouped by power factor are provided in [3], achieving F -measure classification

metric of 59%-81% for all clusters. Another disaggregation method carried out

on energy profile readings collected from Canadian houses is presented in [36],

based on modelling piece-wise functions of hourly real energy versus external

temperature for baseload, heating and cooling devices. A model-based regres-

sion method is proposed in [35] for isolating space heating energy consumption

from hourly energy profile data and tested on 470 Norwegian houses, where

models are established based on hourly and daily load profile, weather data and

response data from a household survey. The approach relies on the assumption

that space heating consumption is weather-dependent and related to household

size, number of residents, etc.

An unsupervised approach based on semi-binary non-negative matrix fac-

torization (SBNMF) is proposed in [43] for the 30-min NILM problem, where

SBNMF and its variants are used for dictionary learning. Dictionaries are la-

belled by a random forest classifier utilizing a pre-learnt descriptive database on

the cloud. Consumer feedback for improving dictionary learning is also explored.

The proposed SBNMF performs the best among all benchmarks, achieving av-

erage disaggregation match rate of 60% across four commonly used appliances:

fridge, washing machine, TV and air conditioner.

Three multi-label classification algorithms, based on Decision Tree (DT),

SVM and k-nearest neighbours (K-NN), are proposed in [21] and validated on

energy profile data from a subset called IRISE within the REMODECE dataset

[44] at sampling rates of 10 min and 1 hour. Three appliance categories, defined
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based on clusters obtained using principal component analysis, contain domestic

appliance types showed in Table 1. All algorithms generally achieve much lower

appliance-level classification accuracy during hourly disaggregation compared

to 10-min disaggregation, based on F -measure and area under curve (AUC)

metrics. On average, various methods score 68% on 10-min and 50% on hourly

data.

K-NN classification is also utilised in [23], [24] and [25]. In [23], the K-NN

approach is tested for 15-min load profiles from smart metering of 187 houses

in East Anglia, UK. Features are derived from both magnitude and time for

modelling 10 appliances. Only classification results in the form of a confusion

matrix with classification accuracy are presented, showing that their proposed

K-NN and random forest for benchmarking can achieve at least 60% classifica-

tion accuracy on both daily and weekly data sets. Additional optional features,

extracted from reactive power and active-reactive power correlation, and core

features are adaptively selected and weighted for each appliance during training

in the supervised K-NN approach [24]. Results are presented for 15-min and

hourly electricity profiles from REDD [45], REFIT [41] and AMPds [46] datasets,

showing that up to 62% of the daily energy consumption can be disaggregated

from the total noisy electricity usage profile with 15-min and 60-min granularity.

Monthly electricity bills and household characteristics such as house size and

occupancy are required for a transfer learning based K-NN classifier [25], where

a target house is matched to similar houses in the database via K-NN and the

corresponding monthly appliance-level energy consumption then estimated. 57

houses from Dataport dataset are used for evaluation demonstrating consump-

tion accuracy around 52%, with up to 5% improvement if 15-min smart meter

readings are available for feature extraction.

A supervised GSP-based power disaggregation method, based on the ap-

proach of [47], is applied to aggregated power measurements of labelled appli-

ances downsampled to 15 minutes in [48], through iteratively identifying samples

of power level similar to the labelled measurements for a particular appliance

via graph total variation minimisation. Consumption accuracy of 80%-95% is
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shown using aggregated data from 4 labelled appliances and a small amount of

added noise to simulate energy consumed by unlabelled appliances for only 18

days. An unsupervised hybrid approach is proposed in [49] for disaggregation of

activities (not loads), where Markov models are built from a time-of-use survey,

requiring knowledge of appliance list and usage frequency, number of inhabi-

tants, their age and employment status, type of heating used, nominal power

per appliance and probability of an activity. FHMM and CO from NILMTK,

DDSC from [26] and GSP are used for benchmarking. Note that the aggregate

power signal used in [49] is not whole-house smart metering measurements like

in this paper, but defined as the sum of sub-measurements. Hence, the influence

of noise due to unlabelled loads is ignored in disaggregation. The conclusion

is that while the performance of supervised GSP [47], implemented using the

GSP Toolbox of Matlab [50], is comparable with other supervised benchmarking

approaches and better than the proposed unsupervised method, the execution

time for the implemented GSP is of the order of a few hours.

In the DDSC approach of [26], the hourly load profile for each appliance in

unseen houses is predicted using sparse coding relying on pre-trained appliance

models. The approach comprises three steps: 1) sparse coding pre-training; 2)

discriminative disaggregation training; and 3) testing (see [26, 27] for details).

Results are provided only for aggregated sub-metered readings of 10 labelled

appliances, again not representative of real aggregate smart metering power

consumption readings that include noise due to unlabelled appliances. A variant

of DDSC obtains up to 55% for consumption accuracy.

Table 1 summarises the list of appliances that were disaggregated in the

aforementioned review of low (1-60sec sampling interval) to very low-rate (10-

60min) NILM. An important observation is that the range of disaggregated

appliances decreases as the sampling interval increases from 1 sec to 1 hour.

The main reason is that it becomes harder to disaggregate appliances with

short operation time, such as Hair dryer, Microwave, Kettle, Toaster, as gran-

ularity decreases. We also note that the REDD dataset is used to demonstrate

disaggregation of most appliances in the literature, which implies that, while
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reproducible, the algorithms have been tested in a relatively low-noise (few un-

labelled appliances operating simultaneously) dataset which is not the case in

actual smart meter measurements, made up of 40+ appliances present in an

average household. Furthermore, the table (first column) also indicates that

the data for many appliances originates from non-public datasets (indicated by

+), which implies that results are not reproducible and amenable for further

analysis by others.

Unlike the previously discussed NILM approaches tackling very low-rate

NILM, our proposed approach differs in the following ways. OPT, like CO, also

minimises the tolerance between aggregate measurements and sum of appliance-

level measurements. However, the difference lies in the measurements: in CO,

optimisation is made on a sample-by-sample basis independently, whereas in

OPT optimisation is made over a load sequence or small window of adjacent

samples of aggregate and appliance-level power consumption to allow for de-

pendency between adjacent samples and multiple same-appliance runs within

a sample. Furthermore, CO appliance models are built from sub-metered ap-

pliance instantaneous power for each operational state, whilst OPT appliance

models avoid difficult-to-obtain sub-metering information and rely on manufac-

turers wattage or energy-consumption-per-run information.

The GSP-based approach proposed in [31] is supervised and comprises a

single graph based on meter readings, whereas the GSP approach proposed in

this paper is unsupervised and two graphs are built for energy profile and time,

respectively. Unlike [48] and [49], our proposed unsupervised GSP algorithm

has a Matlab execution time of around 7 minutes to disaggregate an hourly

profile of 78 weeks. We also note that the baseload removal pre-processing step

proposed in [48] fails to separate baseload from noisy hourly energy profile signal

and makes no improvement to disaggregation.

Additionally, unlike the majority of the aforementioned literature, we do not

resort to additional environmental data. We evaluate our proposed approaches

on public datasets that closely resemble real-life ‘noisy’ smart meter measure-

ments that include many unlabelled appliances. Besides detecting appliance use
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(classification only) we also estimate or disaggregate energy consumed and pro-

vide results for a testing period of over a year instead of a very short period, in

order to capture a large range of appliance usage patterns.
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Table 1: A summary of appliances disaggregated in literature at low to very low sampling

rates. Each appliance is linked to the corresponding datasets, including REDD [45], REFIT

[41], GREEND [51], AMPds [46], UK-DALE [52], Dataport [53], REMODECE [44] and others

not publicly available (from manufacturer, supplier, self-monitoring, etc.), denoted using “+”.

Appliance
Aggregate signal granularity

1 hour 10-30 min 1-60 sec

Bathroom GFI [45] [16, 18]

Clothes dryer [44, 45, 53]+ [21, 26, 42] [21, 25, 48] [16, 18, 20, 22, 27]

Clothes washer [41, 44, 46]
[21, 24, 26, 42] [21, 23, 25, 43]

[9, 16, 22, 28–30]

[45, 51–53]+ [17, 18, 37]

Dishwasher [41, 44–46]
[21, 24, 26, 42] [21, 23, 25, 48]

[9, 20, 22, 27–29]

[51, 52] [17]

Electronics [45, 46, 53]+ [24, 26] [25] [16–18, 27, 30, 37]

Fridge/freezer/
[24, 26, 42]

[23–25] [9, 16, 22, 27–29]

fridge-freezer [41, 45, 52, 53]+ [43, 48, 49] [17, 18, 30, 37, 48]

Geyser + [48] [48]

Hair dryer [41] [22]

Heat pump [45, 46] [24] [20]

Hot water unit/
[21, 24, 42] [21, 23] [17, 22, 27]

furnaces [41, 44–46]+

HVAC [41, 45, 46]+ [24, 26, 35, 42] [23, 24, 43, 49] [16–18, 20, 27]

Kettle [41, 52]+ [23] [9, 17, 22, 28, 29]

Kitchen outlets [41, 44, 45]+ [24, 26, 42] [21, 24] [16–18, 22, 27]

Lighting [45]+ [26, 42] [49] [16, 18]

Microwave [41, 44, 45, 52]+ [21] [21, 23]
[9, 16, 22, 27–29]

[17, 18, 30, 37, 48]

Oven [41, 44, 45]+ [21] [21, 23] [16, 18, 20, 22]

PC/ICT + [26] [23, 49]

Stove [45]+ [42] [17, 18, 27, 37]

Toaster [41, 45] [22, 37, 48]

TV [41, 51]+ [26] [23, 43] [17, 18, 22, 37]
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3. Very low-rate load disaggregation

In this section, we first introduce our notation and set the problem of very

low-rate NILM. Then, we present three proposed solutions that will be evaluated

in the next section.

3.1. Notation and Problem Formulation

Vectors and matrices are denoted by bold letters, e.g., E, and their entries

by single-value variables with italic letters, e.g., Ei. For an n-length vector E,

Ep:q, 1 ≤ p ≤ q ≤ n, denotes a vector [Ep, . . . , Eq]. Similarly, for an n × m

matrix P, Pa:b,c:d is a submatrix containing Rows a to b and Columns c to d

of P. For a matrix A, A# denote pseudo inverse of A. The sets are denoted

using calligraphy fonts, e.g., N , and their cardinality is |N |. ∅ is an empty set.

Let Ei ≥ 0 be the aggregate consumed energy at time instance i. It can be

expressed as

Ei =
∑
m

Emi + ni, (1)

where Emi ≥ 0 is the energy consumed by Appliance m at time instance i and

ni is measurement noise. The very low-rate disaggregation task is to estimate

Emi given Ei.

We next describe, one by one, the three proposed approaches to solve the

above very low-rate load profile disaggregation problem.

3.2. Proposed optimisation-based approach (OPT)

Our proposed OPT approach does not require any training of the model. It

requires no other information besides smart meter consumption readings, i.e.,

Ei, and the appliance manufacturer information, i.e., typical energy consump-

tion per operation cycle, or alternatively, rated power and operation duration

of the appliance.

The very low-rate NILM problem can be reformulated by splitting it into

two steps: 1) estimating the consumption of always-on appliances and removing
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their contribution from the aggregate; 2) estimating the consumption of other

appliances. To proceed in this way, we rewrite (1) as

Ei =
∑
m∈M

Emi +
∑
m∈N

Emi + ni, (2)

whereM refers to the set of appliances that are always on (including baseload,

stand-by, and appliances with short operation cycles, such as refrigerators) and

N is the set of all other appliances. Then, the very low-rate NILM problem can

be formulated as:

arg min
{Em

i },m∈N

N∑
i=1

∣∣∣∣∣Êi − ∑
m∈N

Emi

∣∣∣∣∣ , (3)

where N is the total number of samples to be disaggregated, and Êi is obtained

by removing the estimated always-on load profile, that is:

Êi = Ei −
∑
m∈M

Emi . (4)

OPT directly solves the optimisation problem in Eq. (3), after the always-on

load profile is estimated and removed from aggregate profile signal as in Eq. (4).

The algorithm consists of three steps: removal of always-on loads (Alg. 1);

appliance modelling based on appliance power rating; and solving the optimisa-

tion problem in Eq. (3) (Alg. 2), which are discussed in the following subsections.

3.2.1. Always-on load estimation and removal

The first task is to estimate the always-on loads and remove them from

the aggregate signal. The proposed steps are shown in Alg. 1. Similarly to

[54], we estimate always-on loads by assuming that the electricity consumption

between 12AM and 5AM is mainly due to the always-on appliances. Let ω be

the number of days considered for disaggregation and τ the number of samples

collected in a single day during the period between 12AM and 5AM. E.g., for

hourly sampling rate, τ is 5, as it corresponds to the 12AM-5AM period of a

day. Let ri,j ∈ R be the aggregate measurement during sampling period j of

Day i, where i = 1, . . . , ω and j = 1, . . . , τ , and R is a ω × τ matrix containing

all such measurements.
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Algorithm 1: Proposed always-on load estimation.

Input: Measurements E for ω days;

Output:
∑
m∈MEm; Ê;

1 Form ω × τ matrix R by extracting daily 12AM-5AM usage from E;

2 Initialise ∆R ← {∅}; Rmax ← {∅}; Rmin ← {∅};

3 for i = 1 to ω do

4 for j = 1 to τ − 1 do

5 |∆Ri,j | ← |Ri,j+1 −Ri,j |; ∆R ← ∆R∪ {|∆Ri,j |};

6 for j = 2 to τ − 1 do

7 if Ri,j > Ri,j+1 and Ri,j > Ri,j−1 then

8 Rmax ← Rmax ∪ {|∆Ri,j |};

9 else if Ri,j < Ri,j+1 and Ri,j < Ri,j−1 then

10 Rmin ← Rmin ∪ {|∆Ri,j |};

11 T← median (∆R); Lmax ← median (Rmax); Lmin ← median (Rmin);

foreach Ei ∈ E do

12 if Ei − Lmax ≤ γ then

13 set
∑
m∈MEmi to Ei;

14 if |Ei − Lmax| ≤ |Ei − Lmin| then

15 set
∑
m∈MEmi to Lmax;

16 else

17 set
∑
m∈MEmi to Lmin;

18 else if
∑
m∈MEmi−1 is set above to Lmin then

19 set
∑
m∈MEmi to Lmax;

20 else

21
∑
m∈MEmi ← Lmin;

22 calculate Ê using Eq. (4);

23 return
∑
m∈MEm, Ê;
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Note that always-on load is not constant as it fluctuates over time (e.g.,

refrigerator has cooling and stand-by stages, whose duration depends on its

usage) containing local minima and maxima. Therefore we attempt to mitigate

the influence of rare appliance usage by residents during 12AM-5AM on always-

on load removal. To do that, we set a threshold γ, as the median of all elements

in ∆R, where ∆R is a set of differences between consecutive samples in the

same row in R (signal fluctuations), defined in Lines 4− 5 in Alg. 1.

We define Lmax and Lmin, as median values of all local maxima and minima

of R calculated as shown in Lines 6 − 11, where Rmax and Rmin are the sets

containing all local maxima and minima, respectively. For each element in E, if

Ei−Lmax ≤ γ, we estimate that only always-on appliances were operating dur-

ing the sampling period i. Thus we estimate such load for always-on appliances,∑
m∈MEmi , as Ei, and therefore, from Eq. (4), Êi = 0. Based on this assump-

tion, if |Ei − Lmax| ≤ |Ei − Lmin|, we define always-on load during sampling

period i as a local maximum, otherwise, it is identified as a local minimum.

For the case Ei − Lmax > γ, namely, Ei is already higher than usual maxi-

mum, it is likely loads other than always-on appliances were in operation. Thus,

always-on appliance load
∑
m∈MEmi will be estimated as Lmax if the always-on

load during last sampling period i− 1 is estimated as a local minimum. Other-

wise, if the last always-on load estimation is a local maximum,
∑
m∈MEmi will

be set to Lmin. Hence, Êi = Ei − Lmax or Êi = Ei − Lmin.

For a particular case when the initial l samples in E all comply with Ei −

Lmax > γ for i = 1, 2, . . . , l, while there is no previous sample for determining∑
m∈MEm1:l, the always-on load estimation for such period remains blank pend-

ing the identification of the next El+1 ≤ Lmax + γ. Then, based on whether∑
m∈MEml+1 is a local maximum or a local minimum, we set

∑
m∈MEml to Lmin

or Lmax, respectively. Similarly, each value in
∑
m∈MEm1:l−1 can be estimated

based on the estimation of the next sampling period.
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3.2.2. Appliance modelling

We build a model of each appliance m ∈ N using manufacturer information

on appliance power rating. We split these appliances into two categories: The

first category N1 ⊆ N contains appliances whose energy consumption per use

does not fluctuate much. Such appliances either have pre-set running mode

options, such as washing machines, or consume a more or less constant amount

of energy per use, such as kettles. For each m ∈ N1, W̄m represents the total

energy consumption during its typical use. The corresponding T̄m ∈ Z+ is the

estimated maximum duration, in units of samples, for each run of Appliance

m. E.g., for an appliance with typical use less than one hour, such as kettle,

T̄m = 2 (the kettle might have started during the previous sampling period and

continued during the current period); while for a washing machine which is on

for more than one hour but less than two, T̄m = 3.

The second appliance category N2 ⊆ N refers to a group of appliances with

constant rated power but variable usage duration, e.g., computer and television.

For m ∈ N2, since no specific T̄m is defined, W̄m is set to the product of rated

power and sampling period. Thus, for hourly load profile, W̄m for m ∈ N2 refers

to the total energy consumed by Appliance m running for the whole hour.

The consumed energy Êm is represented by:

Êm =

α
mW̄m, for m ∈ N1,

βmW̄m, for m ∈ N2,

(5)

where the j-th element in N -length vector αm is within [0, 1] representing the

percentage of energy consumed during sampling period j, relative to W̄m; j-

th element of a vector βm, on the other hand, is 0 or 1 depending whether

Appliance m was on or off during the sampling period j.

To clarify the definition of Êm for m ∈ N1 in (5), we give the following

example:

Êm =

αm1 , αm2 , αm3︸ ︷︷ ︸
Run1

, αm4 , α
m
5 , α

m
6 , α

m
7︸ ︷︷ ︸

Run2

, ...

× W̄m. (6)

Eq. (6) indicates Appliance m runs two times within the selected period. Hence,
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based on the rules we defined, αm1 + αm2 + αm3 = 1; αm6 + αm7 = 1 and αm4 =

αm5 = 0. Then,

Êm =

αm1 W̄m, αm2 W̄
m, αm3 W̄

m︸ ︷︷ ︸
Run1

, 0, 0, αm6 W̄
m, αm7 W̄

m︸ ︷︷ ︸
Run2

, ...

 , (7)

where Êm1 + Êm2 + Êm3 = W̄m and Êm6 + Êm7 = W̄m.

3.2.3. Disaggregation via optimisation

The OPT disaggregation algorithm is given in Alg. 2. The optimisation prob-

lem in (3) is NP-complete [34]. We find an approximate solution using CVX [55]

in Matlab, where the infeasible path-following algorithm, as a solver for semidef-

inite quadratic linear programming, is used for searching a non-negative solution

based on two Newton steps per iteration [56]. Constraints are heuristically set

to reduce the number of candidates and optimisation complexity.

We split the entire sequence to be disaggregated into windows, where each

window contains a consecutive non-zero profile segment Êseq, shown in Line 1 of

Alg. 2. Alg. 2 relies on the assumption that each appliance m ∈ N1 runs for up

to k̂m times within the window, where k̂m is heuristically set based on expected

appliance usage patterns, as shown in Lines 4 − 7, to reduce the number of

candidates and trade-off algorithm performance and complexity. That is, in our

implementation, we fix
∑n
i=1 α

m
i , i.e., the number of runs of Appliance m, to

an integer number between 0 and k̂m, for m ∈ N1, and repeat the optimisation

steps for all possible values. This is achieved by iterating through a set F , that

contains all possible combinations of the values of
∑n
i=1 α

m
i ,m ∈ N1, where

each
∑n
i=1 α

m
i can take an integer value between 0 and k̂m. Note that each

vector in the set F , F, is of length N0 and contains as its m-th element the

value of
∑n
i=1 α

m
i .

Then, Line 11, corresponding to Eq. (3), solves the optimisation problem

with the solution denoted by αm∗ and βm∗. In Lines 12 − 16, the constraints

are set based on the definition of the variables presented in Subsection 3.2.2,

where each
∑n
i=1 α

m
i for m ∈ N1 is a fixed integer and αmi ∈ [0, 1]. Finally, the
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Algorithm 2: Proposed OPT load profile disaggregation.

Input: Ê; k; Model parameters W̄m for each appliance m ∈ N where

N = N1 ∪N2; Model parameters T̄m for each appliance m ∈ N1;

Output: Disaggregated load profile Êm for all appliances in N ;

1 Split Ê into sequences of consecutive non-zero profile samples Êseq;

2 foreach n-length sequence Êseq do

3 Topt ← +∞;

4 foreach m ∈ N1 do

5 k̂m ← k;

6 if n/T̄m ≤ k then

7 k̂m ← n/T̄m;

8 N0 ← |N1|

9 F ← [{0, . . . , 0}, {0, . . . , 0, 1}, . . . , {k̂1, . . . , k̂N0
}];

10 foreach F ∈ F do

11 solve {αm∗,βm∗} =

arg min
αm,βm

∥∥∥Êseq −∑m∈N1
αmW̄m −

∑
m∈N2

βmW̄m
∥∥∥;

12 subject to

13 {
∑n
i=1 α

m
i } = Fm; 0 ≤ αmi ≤ 1;

14 foreach m ∈ N2 do

15 βmi ∈ {0, 1};

16 T ∗opt ←
∥∥∥Êseq −∑m∈N1

αm∗W̄m −
∑
m∈N2

βm∗W̄m
∥∥∥;

17 if T ∗opt < Topt then

18 Topt ← T ∗opt; α
m
opt ← αm∗; βmopt ← βm∗;

19 calculate Êmseq using Eq. (5) with αmopt and βmopt;

20 return Êm

solution with the lowest optimisation loss, denoted by αmopt and βmopt, among

all the solutions for various values of
∑n
i=1 α

m
i ∈ [0, k̂m], is used to calculate
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appliance load profile by Eq. (5).

3.3. Approach based on Graph signal processing

We build on the GSP-based unsupervised approach of [18] by generating an

additional graph for the time-of-day feature, motivated by NILM approaches

[24, 48, 57], where time-of-day usage pattern is exploited.

Using notation of [18, 31], G = (V,A) is used to denote an undirected graph.

V = {v0, . . . , vN−1} is a set of vertices and A ∈ CN×N represents a weighted

N × N adjacency matrix, where Ai,j corresponds to the weighted edge from

Vertex vi to Vertex vj and weight depends on the relationship between vertices

vi and vj . A vector s ∈ RN is then defined as the graph signal that maps V → R

[58], where each element si represents a signal value at Vertex vi.

The proposed GSP clustering steps are shown in Alg. 3. Two graphs are

generated, namely, the energy profile graph GE , where adjacency matrix AE is

defined by the Gaussian kernel weighting function in Line 8 and the time-of-day

graph GT , defined in Lines 9−12, which is used to capture routine or correlation

in appliance patterns of use at similar times across different days. ρE and ρT

are scaling factors. The combined adjacency matrix is then defined in Line 13,

where λ is a trade-off factor. The remaining steps are the same as the clustering

algorithm proposed in [18], based on total variation regularization upon graphs,

where _ denotes the concatenation of two vectors.

The overall disaggregation algorithm is shown in Alg. 4, and consists of

repeating the clustering steps until all samples are grouped into clusters, and

then labelling the clusters and calculating disaggregated load profile. RSDf in

Line 9 is defined as relative standard deviation for quality evaluation of Cluster

Cf :

RSDf =
∣∣∣σf

µf

∣∣∣ , (8)

where σf and µf refer to standard deviation and mean values of all elements in

Cluster Cf , respectively. For the rejected clusters with RSDf greater than a

heuristically set threshold TRSD, we enhance clustering by halving ρE as in [18].

Once ρE is halved, we repeat clustering until ρE becomes very small (regulated
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Algorithm 3: GSP-based clustering

Input: l-length aggregate profile measurements E; ρE ; ρT ; q; λ

Output: Cluster set C of all qualified samples; updated aggregate profile

measurements E;

1 Initialize C← [ ]; s∗1 ← 1;

2 Split E into (n− 1)-length sequences Ẽ;

3 foreach Ẽ do

4 Initialize n× 1 graph signal vector s, with s1 ← 1 and

si ← 0,∀i ∈ [2 : n]

5 for i = 1 to n do

6 for j = 1 to n do

7 AEi,j ← exp

(
−

∥∥∥∥Ẽi − Ẽj
∥∥∥∥2

2

ρ2E

)
;

8 if |i− j| mod 24 ≤ 12 then

9 ATi,j ← exp
(
− |||i−j| mod 24||22

ρ2T

)
;

10 else

11 ATi,j ← exp
(
− ||24−(|i−j| mod 24)||22

ρ2T

)
;

12 Ai,j ← λAEi,j + (1− λ)ATi,j ;

13 Di,i ←
∑n
j=1Ai,j ;

14 L← D−A;

15 s∗ ← L#
2:n,2:n(−s1)LT1,2:n _ s∗;

16 for i = 1 to l do

17 if s∗i ≥ q then

18 C← C_Ei;

19 remove Ei from E;

20 return C, E

by a parameter κ close to zero). In [18], feature matching is required for pairing

positive and negative resulting clusters and ON/OFF transition events in paired
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Algorithm 4: The proposed GSP load profile disaggregation

Input: Aggregate profile measurements E; ρE ; ρT ; q; TRSD; κ

Output: Disaggregated load profile Êm

1 Initialize f ← 1; g ← 1; C∗ = ∅

2 while ρE > κ do

3 while E 6= [ ] do

4 generate Cluster Cf and update E by calling Alg. 3 with inputs

E, ρE , ρT and q;

5 f ← f + 1;

6 foreach Cf do

7 calculate RSDf using Eq. (8);

8 if RSDf ≤ TRSD then

9 C∗g ← Cf ; g ← g + 1;

10 C∗ = C∗ ∪ {C∗g}

11 else

12 E← E_Cf ;

13 ρE ← ρE/2; f ← 1;

14 foreach C∗h ∈ C∗ do

15 label C∗h as in [18], by comparing its signature with an existing

database of appliance signatures;

16 calculate Êm for all disaggregated appliances using appliance power

ratings as in [18];

17 return Êm

clusters since signal changes are used to build the graph. However, since we

use hourly aggregate profile E ∈ R+ ∪ {0} to build the graph in this paper,

feature matching is not needed. Finally, as in [18], each disaggregated cluster is

labelled as one category by comparing with appliance profile, and corresponding

appliance-level load is estimated. Note that time (not time-of-day) is used as a

21



feature in [18], firstly for pairing ON/OFF events in feature matching, but not

for clustering, and secondly, edges of the graph in [18] represent the correlation

of duration among ON/OFF candidates, while in this paper each edge in graph

GT represents time-of-day difference of two corresponding samples.

3.4. Convolution neural network approach

Motivated by recent deep neural network architectures [9], [28] and [30] for

low-rate power disaggregation, we implement a CNN architecture for estimating

appliance hourly profile after training on very low-rate aggregate profile data.

To enhance disaggregation performance on hourly profile, we explicitly use time-

of-day information as an additional feature.

As shown in Fig. 1, our proposed CNN architecture aims to disaggregate

the hourly power consumption per appliance per sample. The proposed net-

work takes two inputs: (1) hourly aggregate power consumption in a Q-hour

sliding window; (2) encoded cyclical continuous absolute time features of the

fourth hour in the window. In this paper, we heuristically set window length

Q = 7 hours to cover at least two working periods of washing machine. Given

a sequence of 7 hours aggregate power consumption, we employ 3 CNN blocks

to extract the spatial features correlated with the target hour (the fourth hour

in the sliding window). To explore the non-uniform distribution of appliance

usage, we encode the hour of the day (H = [0, 23], H ∈ R+∪{0}) into two cycli-

cal continuous variables sin(2πH/24) and cos(2πH/24) as the additional time

features (encoded hour). Instead of feeding two time features into the network

at the first layer, we merge the target hour time features with the corresponding

spatial features extracted by the 3 CNN blocks by downsampling in the time do-

main. To effectively train the network, we adopt ‘skip connection’ to merge the

outputs of the 3 CNN blocks with the time features that accelerates the training,

enabling an ensemble of 7, 5, 3- hour profile feature maps with increasing CNN

filters. The overall merged features are fed into the last four fully connected

layers (128-256-64-1 neurons) to estimate the power consumption of the target

hour. Moreover, we also adopt batch normalization [59], dropout [61], leaky
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Figure 1: Proposed CNN architecture for very low-rate disaggregation. Both windows of

7-hour long aggregate data and the fourth hour’s encoded time information are fed into the

proposed network. ‘Conv x@y’ refers to a 2D convolutional layer with x filters each with kernel

size y and fixed stride size=1x1. ‘FC x’ means the fully connected layer with x=number of

neurons. ‘Concatenation x’ refers to a flattening operation that reshapes a matrix into a

vector array with x values. ‘Batch Norm’ is a batch normalisation layer [59]. ‘LeakyReLU’

refers to a leaky version of a rectified linear unit activation function [60], with a fixed slope

coefficient=0.3. ‘Dropout x’ means that the dropout layer [61] randomly sets a fraction rate=x

of input units to zero at each update during the training phase.

ReLU [60] and l2-norm penalty on weights [62] to obtain better regularization

performance regardless of weight initialization.

4. Experimental Setup

4.1. Hourly energy presentation calculation

Due to the difference in the literature in the way downsampling is imple-

mented on higher rate datasets to obtain a lower rate sample, first we clarify
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how hourly energy profile data can be obtained from existing public datasets of

power measurements with resolution of higher than 1 minute.

For a daily window, we denote E1:24 to represent 24 hourly load profile

samples, e.g., E10 denotes total power consumption from 9:00AM to 10:00AM.

Thus, the load profile is the integral of power over time.

4.1.1. Downsampling assuming fixed sampling intervals

In [48] and [49], very low-rate power consumption, in Watts, is calculated as

the average of mean power values over N samples:

ET =
1

N − 1

N∑
i=2

Pi. (9)

Note that we start at t2, i.e., i = 2, because t1 is outside the sampling period,

as shown in Fig. 2.

4.1.2. Downsampling allowing variable sampling intervals

𝑡𝑖𝑚𝑒

𝑃 𝑡𝑏𝑒𝑔𝑖𝑛

……

𝑡1

𝑡𝑒𝑛𝑑

𝑡𝑁

Figure 2: Hourly profile generation example.

Downsampling by averaging, however, assumes that the sampling rate is al-

ways fixed. However, smart meters, in practice, do not always sample at fixed

intervals and vary slightly, e.g., within a range of 6-8 seconds [41]. Therefore,

in order to account for variability in sampling rates and ensuring accurate esti-

mation of power consumption over a period comprising non-uniform sampling

rates, we calculate hourly consumption as follows. Referring to Fig. 2, the aim

is to calculate the hourly profile ET between tbegin and tend, as shown in Eq.

(10).
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ET = P1 × (t2 − tbegin) +

N−1∑
i=2

Pi × (ti+1 − ti)

+PN × (tend − tN ).

(10)

The load profile unit is empirically chosen as Watt · hour (Wh) instead of

kW · h or J . The appliance-level load profile is calculated in the same way as

in Eq. (10) for validation purposes.
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Figure 3: Hourly profile of House 4 from REFIT dataset calculated for a typical week.

Fig. 3 demonstrates that there is a difference between hourly electricity

profile signals ET calculated using the two downsampling approaches over one

week (30/01/2014−05/02/2014) of smart meter readings from REFIT House 4.

4.2. Metrics

Since our NILM problem here is how reliably we can estimate the relative

contribution of individual loads contributing to the aggregate consumption, we

use consumption accuracy, as used in [18], [28] and [40], and calculated as in

Eq. (11), where Êmd is defined as Eq. (12).

Accm = 1−

∑N
d=1

∣∣∣Êmd − Emd ∣∣∣
2
∑N
d=1E

m
d

, (11)

25



Êmd =

24∑
h=1

Êm(d−1)∗24+h, (12)

where Accm, also referred to as TECA (Total Energy Correctly Assigned) in

the NILM literature, is the total error in assigned energy, normalized by the

actual energy consumption in each time slice averaged over all appliances, that

is, Accm demonstrates the error between actual daily load profile for Appliance

m, Emd , and its disaggregated estimate Êmd , for d ∈ Z and d ∈ [1, N ], where N

is the total number of days of testing data.

We also utilise match rate, a metric where the evaluation is based on the

overlapping rate of true and estimated energy, and stated to have the best

overall performance in [63] and references therein. It was also used in [43] for

very low-rate disaggregation. We denote our daily disaggregation match rate as

MRm, defined in Eq. (13), which shows the overall matching accuracy between

actual and estimated daily energy consumption for Appliance m.

MRm =

∑N
d=1 min{Êmd , Emd }∑N
d=1 max{Êmd , Emd }

. (13)

Solutions for the very low-rate disaggregation problem are unlikely to iden-

tify sample-by-sample load as easily and accurately as those at higher granular-

ity, due to unavailability of sharp power change features, numerous simultaneous

operation of multiple loads, significant negative influence of noise, etc. Based

on the definition of metrics and the nature of this problem, MRm is regarded

as a better metric than Accm [63]. From [18, 28, 40], Accm is a good metric for

demonstrating the error between estimation and actual measurements when the

error is generally small. For very low-rate disaggregation where overestimation

is common, especially for real-world noisy datasets, Accm could be negative.

E.g., assume that there exist two disaggregators: Disaggregator 1 estimates

total load consumption for Appliance m close to the actual consumption but

not correctly assigned sample-by-sample in each time instance, with Accm < 0;

Disaggregator 2 fails to disaggregate Appliance m and returns nothing, but the

resulting Accm = 0.5 by Eq. (11). Such Accm results intuitively mean Disaggre-
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gator 1 performs much worse than Disaggregator 2 on Appliance m. However, at

least Disaggregator 1 is able to offer appliance-level total energy usage feedback,

while Disaggregator 2 feedback is meaningless. On the contrary, MRm ∈ [0, 1]

acts as a better overall evaluation presentation, where this value tending to 0

indicates a poor match between estimated and actual energy consumed.

4.3. Experimental data

The REFIT dataset [41] is used for evaluation. This dataset was chosen for

the following reasons: (i) supported by NILMTK and used in recent literature,

[18, 39, 40, 64], to facilitate benchmarking with other NILM solutions; (ii) large

dataset with aggregate and sub-metering data from 20 houses over a continuous

period of 2 years; (iii) this dataset was collected in multiple households with

numerous unlabelled appliances, while inhabitants carried out their daily rou-

tines under no test conditions, and is therefore more challenging but also more

representative of the average household.

The hourly experimental load profile data is generated using Eq. (10). For

all results presented, experiments were carried out for REFIT Houses 4 and

8, with a low-level and a higher-level of unlabelled appliance noise [20], 0.02

and 0.24, respectively. The experimental period of testing and training (where

applicable) is presented in Table 2.

Table 2: Experimental data selection for training and testing

House 4 House 8

Training period
12/10/2013 − 03/01/2014 02/11/2013 − 25/01/2014

(12 weeks) (12 weeks)

Testing period
04/01/2014 − 03/07/2015 26/01/2014 − 09/05/2015

(78 weeks) (67 weeks)

4.4. Benchmark Setup

While the NILMTK toolbox [19] has an embedded resampling tool to gener-

ate hourly power samples by picking the last sample in each hour, this does not
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result in a true hourly load profile and aggregated hourly consumption is lost.

Instead, we import our hourly profile with corresponding timestamps into the

NILMTK for benchmarking against FHMM and CO. All parameters in DDSC

implementation in this paper are chosen as per [27].

4.5. Appliances disaggregated

The following domestic loads are disaggregated and denoted in abbreviated

form in the rest of this paper: F for Fridge; FZ for Freezer; FFZ for Fridge-

freezer; WM for Washing machine; M for Microwave; K for Kettle; WD for

Washer dryer; T for Toaster.

5. Experimental results

In this section, experimental results of all proposed and benchmarked hourly

NILM approaches are presented for REFIT Houses 4 and 8, for periods shown

in Table 2, and using the following evaluation metrics: daily Accm and daily

MRm.

5.1. OPT Parameters

For OPT, we split the sequence into 17-hour windows, that is, Êseq ≤ 17,

and set k = 4 for all appliances in the experiments below, i.e., OPT will assume

that each appliance will not run more than four times in each 17-hour window

to trade-off complexity and performance.

In terms of metadata required for OPT, only wattage or energy-per-use-per-

run is needed. Make and model are only used if wattage and energy-per-use-

per-run are unknown. For appliances with more or less constant operational

power range, such as M and K, the energy-consumption-per-run, W̄m, can be

estimated as the product of wattage and average duration per use. Otherwise,

for multi-state appliances with preset programmes, such as WM, the energy-

consumption-per-run is usually available from the manufacturer. If the wattage

of an appliance is not available or the energy-consumption-per-run cannot be

estimated for an older model with varying operational power, the wattage and
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Table 3: Example of metadata needed for OPT disaggregation, obtained from manufacturer

or user manual for REFIT House 4. Note that make and model are only needed to determine

Wattage or Energy per use, if they are not known to the user.

Appliance type WM TV M K

Make Servis Zanussi Sony Matsui Swan

Model 6065 Z917 KDL-32W706B 170TC Unknown

Average duration 2-3hours - 280sec 130sec

Wattage: 2200W 2730W 39W/80W 650W 2000W

Energy-consumption-per-run 760Wh - - - -

W̄m can be estimated according to the manufacturer information from make

and model information. For example, the metadata obtained via an appliance

survey for the appliances being disaggregated in House 4 are shown in Table 3.

The parameters for the appliance models, defined in Section 3.2.2, are shown

in Tables 4 and 5. As discussed in Section 3.2.2, PC and TV belong to appli-

ance category N2, where W̄m for PC or TV refers to the average total energy

consumption over a period of one hour.

Table 4: Appliance models for REFIT House 4.

Appliance WM PC TV M K

W̄m (Wh/cycle) 766 76 69 51 73

T̄m 3 n/a n/a 2 2

Table 5: Appliance models for REFIT House 8.

Appliance WD WM T PC TV M K

W̄m (Wh/cycle) 521 874 61 55 132 97 111

T̄m 3 3 2 n/a n/a 2 2

For each appliance m ∈ N1, T̄m represents the maximum duration in sam-

ples. E.g., WM and DW last 1-2 hours during one operation, and thus T̄m is

set to 3, as shown in Tables 4 and 5.

29



As explained in Section 3.2.1, OPT estimates energy consumed by F, FZ,

FFZ and baseload via always-on consumption estimation steps and therefore

results show always-on load performance. Results for GSP are also presented

by grouping F, FZ and FFZ due to similarity of F, FZ and FFZ profile values

obtained during GSP clustering.

5.2. GSP parameters

The scaling factors for weighting graph edges: ρE is initialised to 10 and ρT

is fixed to 0.005. We set κ to ρE/2
10. Trade-off factor λ is empirically set to

0.5. We define TRSD = 10% and q = 0.98 as in [18], for maintaining high cluster

quality. In order to mitigate long execution time, as reported in [49], we set the

upper limit of window size in GSP clustering to 1344, which is equivalent to a

period of 8 weeks for hourly profile measurements.

5.3. CNN parameters

The proposed CNN network is trained by Adam optimiser via mean square

error (MSE) loss for up to 60 epochs with a learning rate of 0.0001. The hourly

power consumption and individual measurements are standardized by subtract-

ing the mean, then dividing by the standard deviation. During each epoch, all

training data are fed into the network with a batch size of 128. Each training

batch is sampled with a distribution of 50/50 ON/OFF states for each appliance

to reduce the effect of biased predictions made for infrequently used appliances.

5.4. Daily consumption accuracy and match rate performance

Daily disaggregation accuracy Accm performance for Houses 4 and 8 are

presented in Tables 6 and 7, respectively. Daily match rate MRm results can

be observed in Tables 8 and 9 for Houses 4 and 8, respectively.

DDSC performance is slightly worse than reported results in [26] but this

is expected as results in Tables 6 to 9 were tested on houses containing many

unlabelled appliances as opposed to aggregate of labelled appliances in [26].

Since DDSC attempts to learn appliance dictionaries by mitigating the difference
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Table 6: Daily Accm results for REFIT House 4.

App. F FZ FFZ WM PC TV M K

FHMM 0.91 0.91 0.86 0.2 - 0.48 0.17 -

CO 0.92 0.87 0.88 - 0.27 0.59 - -

DDSC 0.33 0.3 - 0.39 - - 0.1 0.08

GSP 0.87 0.63 0.5 - 0.59 0.65

OPT 0.94 0.41 0.66 0.68 0.67 0.68

CNN 0.93 0.94 0.93 0.43 0.71 0.73 0.55 0.67

Table 7: Daily Accm results for REFIT House 8.

App. F FZ WD WM T PC TV M K

FHMM 0.72 0.54 0.17 - - 0.65 - - -

CO 0.51 0.69 0.5 - - 0.56 0.24 - -

DDSC - - 0.46 0.5 0.5 - 0.42 0.5 -

GSP 0.85 0.27 0.59 0.56 0.54 0.52 0.75 0.54

OPT 0.73 0.4 0.57 0.28 0.56 0.81 0.72 0.81

CNN 0.88 0.85 - 0.58 0.46 0.92 0.85 0.51 0.87

between the weekly profile and the production of dictionaries and appliance-level

weekly activation, it is sensitive to noise caused by unlabelled appliances. The

results explain why the sum of sub-metering measurements is used instead of

real aggregate readings in [26], as discussed in Section 2. DDSC is also observed

to have the worst performance of all benchmarks and proposed algorithms.

Table 6 shows that FHMM performs well in estimating consumption accu-

racy for F, FZ and FFZ, which is in line with NILM results reported previously

[17], [18] and [19]. However, in noisier House 8, as shown in Table 7, FHMM is

not so robust. A similar observation is made for CO. However, GSP is the most

robust algorithm against noise for these always-on appliances. OPT and CNN

perform as well as FHMM and CO on average for these always-on appliances.

However, as observed in Tables 6 and 7, FHMM and CO cannot disaggregate
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all appliances compared to OPT and CNN.

GSP is also good at disaggregating all appliances, except TV in House 4

because TV has far higher usage frequency than other appliances. Clusters la-

belled as TV contain a large amount of unclassified or unlabelled loads, resulting

in overestimation for TV but underestimation for other appliances, as shown in

Fig. 6. However, in House 8, the usage frequencies for different appliances are

more balanced. Hence, fewer events are falsely clustered as TV and more loads

can be correctly identified in House 8 than in House 4, such as M. As PCs are

always-on for both houses with low hourly consumption values, GSP fails dis-

aggregating such small loads, also shown in Figs. 6 and 7. However, FHMM

and CO achieve good performance for PC in both houses as expected, in both

metrics and Figs. 6 and 7.

As shown in Tables 6 and 7, CNN outperforms others in estimating daily

consumption accuracy for always-on and long-lasting appliances (F, FZ, FFZ,

TV, PC) in both houses. CNN is especially good at estimating consumption of

PC and TV, that operate in a house-dependant hourly usage pattern, because

it incorporates time-of-day information.

We observe that WM and WD Accm performance is relatively poorer than

for other appliances. Similarly, daily match rate MRm results can be observed

from Tables 8 and 9, respectively. As defined in Subsection 3.2.2, the load

profile of such appliances m ∈ N1 varies based on sampling instances and is

split into consecutive aggregate samples. WM and WD have operation cycles

longer than one sampling period. As loads are identified per non-zero sequence

in OPT instead of per sample as in other benchmarking methods, although OPT

does not perform so well with Accm and MRm for WM in House 4, its energy

consumption estimation is the closest to the energy actually consumed.

For most appliances, MRm results are inline with Accm results. Both Accm

and MRm results show the reliability of disaggregation for always-on appli-

ances such as F, FZ and FFZ compared to other appliances. Recall that Accm

focuses on estimation tolerance per sample or per window defined as per day in

this paper, whereas MRm focuses on overall estimation tolerance. The latter
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Table 8: Disaggregation daily MRm results (%) for REFIT House 4.

App. F FZ FFZ WM PC TV M K

FHMM 85 84 76 7 21 44 34 13

CO 85 74 76 26 38 54 13 12

DDSC 3 24 16 1 6 6 5 3

GSP 80 36 0 29 21 34

OPT 87 26 49 56 49 54

CNN 86 90 87 41 55 64 50 55

Table 9: Disaggregation daily MRm results (%) for REFIT House 8.

App. F FZ WD WM T PC TV M K

FHMM 63 52 12 13 16 58 24 24 18

CO 50 61 0 12 6 53 40 12 29

DDSC 3 5 5 9 0 5 9 0 5

GSP 72 15 47 18 8 5 56 7

OPT 65 9 30 38 11 64 61 63

CNN 79 70 17 46 43 85 75 49 79

demonstrates a better metric to assess disaggregation performance as shown by

Figs. 4 to 7, which show estimated energy consumed vs ground truth. E.g.,

for House 4, MRm of GSP for PC is 0, inline with Fig. 6 - these indicate that

GSP fails to disaggregate PC. However, if considering only Accm: GSP for PC in

House 4 is similar to those of OPT or CNN. However, the total PC consumption

estimation from OPT and CNN is close to the actual ground truth.

5.5. Analysis of estimated vs. actual energy consumption to explain metrics

First, we look at always-on appliances, as shown in Figs. 4 and 5, which

illustrate the estimated disaggregated energy with respect to the ground truth.

Note that OPT grouped disaggregation of refrigeration appliances with baseload

(BL) as always-on loads; GSP clustered refrigeration appliances during disag-
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gregation due to similarity in energy signature. The purpose of these figures,

together with Figs. 6 and 7 which show energy estimated w.r.t ground truth

for all other appliances, is to better understand overestimation and underesti-

mation of consumption during disaggregation because this is not fully captured

by the performance metrics.
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Figure 4: Always-on appliance disaggregation for REFIT House 4.
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Figure 5: Always-on appliance disaggregation for REFIT House 8.

DDSC performance is poor because it significantly overestimates freezer con-

sumption as shown in Figs. 4 and 5. FHMM and CO generally slightly overesti-
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mate F, FZ and FFZ consumption for both houses (except CO which underesti-

mates F, FZ and FFZ for House 4). Both GSP and CNN consistently correctly

estimate F, FZ and FFZ for both houses. While OPT reasonably estimates F,

FZ, FFZ and BL, OPT overestimates always-on loads for House 8 due to ’noise’

from unlabelled appliances contributing significantly to BL at odd hours.

Next, we discuss relative performance of all algorithms in terms of energy

consumption of other appliances, namely washing machine, washer dryer, PC,

TV, microwave, toaster and kettle, as shown in Figs. 6 and 7. In both houses,

all benchmarking algorithms significantly overestimate or underestimate energy

consumption with respect to the ground truth for the majority of appliances

m ∈ N1. This is in agreement with the Accm and MRm results, which have

generally poorer performance compared to proposed algorithms. Although these

approaches have sufficient sub-metering data for training, the lack of unlabelled

appliance models or a noise model results in overestimation. This weakness

is not obvious when the data is clean, i.e., where unlabelled loads are non-

existent as in [26, 49]. In particular, overestimation is the most significant in CO

performance of all approaches used, as its basis is ideal disaggregation as Eq.(1)

with generally small measurement noise and all appliance being labelled. Inline

with Accm and MRm, the bar charts indicate DDSC is the most susceptible to

the influence of unlabelled loads among all benchmarks for both houses. DDSC

estimates the energy consumption of M and K which is close to the ground

truth for House 4, while for ’noiser’ House 8 containing more unlabelled loads,

it suffers from overestimation of K.

While GSP performs well for both houses for high consuming and long du-

ration appliances such as WM and WD, at very low-rate, GSP suffers from

underestimation of PC and M and overestimation for TV, as shown in Fig. 6.

This is observed with Accm almost 0.5 and MRm < 30 for PC and M. GSP is

also unreliable for PC, TV and K for House 8, with significant underestimation.

Proposed OPT and CNN both generally perform best for all appliances.

From Figs. 6 and 7, OPT performs better for House 4 while CNN performs

better for House 8. For both houses, supervised CNN slightly outperforms
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Figure 6: Disaggregation performance for other appliances in REFIT House 4.
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Figure 7: Disaggregation performance for other appliances in REFIT House 8.

unsupervised OPT for most appliances apart from M. Although in CNN the

training set for M is sufficient due to availability of many M activations, the

periodicity is overly learnt, resulting in overestimation for M. Indeed, Êm ob-

tained by CNN for each appliance contains more or less periodic components,

thus underestimation is not observed in the CNN results.

The energy contributed by unlabelled always-on appliances is expected to

be disaggregated in the always-on load estimation step of the proposed OPT

algorithm, which can sometimes be overestimated as for the case of House 8. The
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remaining appliances which are unlabelled might be falsely detected as labelled

appliances with similar wattage/energy-consumption-per-run. However, the use

of model parameter T̄m reduces the likelihood of such false assignments.

5.6. Experimental execution time

The experiments were performed on an Intel i7-4710HQ CPU 2.5GHz ma-

chine, running Windows10. OPT, GSP and DDSC are implemented in Mat-

lab2016a. CNN, as well as FHMM and CO, embedded in NILMTK toolkit, are

implemented in Python.

Table 10: Execution time

FHMM CO DDSC GSP OPT CNN

House 4
Training(12 weeks) 4s 1s 4hours - - 48s

Testing(78 weeks) 36min <1s 3hours 7min 2min 1s

House 8
Training(12 weeks) 12s <1s 5hours - - 47s

Testing(67 weeks) 6hours <1s 4hours 7min 2min 1s

The execution time is shown in Table 10 for all methods, where the runtime

for FHMM and CO is inline with those reported in [49]. The CO approach,

with the lowest complexity, is always the fastest. DDSC takes the longest time,

mainly due to the complexity of its iterative optimization for dictionary and

activation matrices. Note that in [49], DDSC is implemented in a more efficient

Python implementation, hence a difference in execution times. Note that the

proposed unsupervised GSP-based approach takes a few minutes to execute,

which is in contrast to the long execution time reported in [49]. Moreover, both

OPT and CNN trade-off efficacy and efficiency, and execute within short periods

of time.

6. Conclusion

This paper addresses the gap in load disaggregation at very low-rates, par-

ticularly without resorting to extensive metadata (i.e., only using smart meter
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data at hourly granularity as input to our proposed algorithms, and wattage in-

formation of appliances obtained from an appliance survey). This is especially

critical now as it is emerging that nationwide smart meter roll-outs worldwide

will provide 15min-1hour measurements and not at higher resolution as previ-

ously thought. Consequently, we demonstrate, on realistic datasets, that very

low-rate load disaggregation is possible for a range of appliances. The contribu-

tions of this paper are a detailed review of the current-state-of-the-art in very

low-rate load disaggregation or non-intrusive load monitoring, two proposed

unsupervised algorithms and one proposed supervised NILM approach, testing

on 2 years of real-world noisy REFIT dataset and benchmarked on three com-

monly used load disaggregation methods, use of different metrics to evaluate

disaggregation performance. Results for all proposed and benchmark methods

are provided using energy consumption accuracy and match rate metrics, as

well as showing estimated vs actual energy consumption per appliance disag-

gregated, in order to better understand overestimation or underestimation of

energy consumption for particular appliances. Execution time is also included

as a metric to assess practicality of the methods. Compared to benchmark

algorithms (FHMM, CO and DDSC), GSP, OPT and CNN provide better dis-

aggregation performance for all appliances. Although time-of-day (extracted

from aggregate data) is utilised as a feature for both CNN and GSP, CNN out-

performs GSP through deep learning of features. OPT benefits from modelling

and removal of permanent consumption in advance, and has similar performance

to CNN. Note, however, that unsupervised OPT only requires manufacturer’s

wattage information whereas supervised CNN requires sub-metering data for

training, which is not always available, Therefore the proposed approaches have

been shown to disaggregate effectively a wide range of loads using true aggre-

gate smart meter measurements containing many unlabelled appliances. White

goods such as refrigeration appliances, washing machine and washer dryer and

a few other household appliances can be reliably disaggregated at very low-rate

smart meter data, with no additional metadata besides appliance wattage in-

formation. Additionally, the low complexity and short execution time of the
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proposed energy disaggregation solutions would result in a low implementation

investment for energy disaggregation solution providers and their customers.

Therefore, while return on investment is a separate study in its own right, we

are confident that the benefits outweigh the investments costs in the medium

to long term.

Future work will investigate more scalable or transferable approaches, com-

prising unsupervised and supervised methods, that can work with minimal train-

ing data and can work on any unseen dataset. For the proposed OPT, it would

be beneficial to undertake a sensitivity analysis to assess the effect of noise-level,

i.e., the percentage of energy consumed by unlabelled appliances, on disaggre-

gation performance.
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