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Abstract—The material transportation planning with a 

mobile robot can be regarded as the classic Traveling Salesman 

Problem (TSP). To solve such problems with different priorities 

at stations, an improved adaptive genetic simulated annealing 

algorithm is proposed. Firstly, the priority matrix is defined 

according to  station priorities. Based on standard genetic 

algorithm, the generating strategy of the initial population is 

improved to prevent the emergence of non-feasible solutions, 

and an improved adaptive operator is introduced to improve the 

population ability for escaping  local optimal solutions and 

avoid premature phenomena. Moreover, to speed up the 

convergence of the proposed algorithm,  the simulated 

annealing strategy is utilized in mutation operations. The 

experimental results indicate that the proposed algorithm has 

the characteristics of strong ability to avoid local optima and the 

fasterr convergence speed. 

Keywords—Traveling Salesman Problem (TSP), genetic 

algorithm, simulated annealing, crossover and mutation, path 

planning, mobile robots 

I. INTRODUCTION 

With the rapid development of modern industrial 
technologies,  mobile robost such as Automated Guided 
Vehicles (AGVs) are increasingly playing the role of material 
transportation in large factories [1]. Since AGVs were 
introduced in the 1950s,  over the past decades, today’ AGV 
guidance technology has evolved from electromagnetic 
guidance into laser and visual guidance. Such breakthrough 
makes AGV no longer be limited by magnetic track, and 
therefore have more freedom and flexibility to move in the 
factory floors. As a result, AGV path planning problems have 
arised and become a research hotspot, which attracts many 
researchers’ interest in scientific research, and. 

AGV/Mobile robot path planning aims at optimizing one 
or more indicators (e.g., path length, elapsed time, cost, etc.) 
to quickly find an optimal route among many alternative non-
collision paths [2]. Path planning can be divided into global 
and local path planning according to the knowledge of the 
surrounding environment [3]. The former belongs to static 
planning while the latter is dynamic planning. In mobile robot 
path planning, a common problem is planning the shortest 
route, which connects each station, so that AGVs can supply 
material for each station along the road during the movement. 
The prototype of such problems is Traveling Salesman 
Problem (TSP) which is a classic NP-Hard problem [4]. The 
specific description is that a salesman wants to promote goods 
in different cities. He can start from any city and traverse all 
the cities until he gets back to the original one. The constraint 

is that each city must be visited only once, and the journey is 
required to be the shortest, which minimizes the objective 
function. We assume that the number of cities is 𝑛 and the 

travel path is S = (𝑠1, 𝑠2, 𝑠3…𝑠𝑛). So, the objective function 
can be described as follows: 

𝑓(S) = ∑𝑑(𝑠𝑖, 𝑠𝑖+1)

𝑛−1

𝑖=1

+ 𝑑(𝑠𝑛 , 𝑠1)                (1) 

where 𝑠𝑖  is the ith city and 𝑑(𝑠𝑖 , 𝑠𝑗) depicts the distance 

between city 𝑠𝑖 and 𝑠𝑗. 

To solve such TSPs, there exist many optimization 
algorithms such as ant colony algorithm (ACO) [5], shuffled 
frog leading algorithm (SFLA) [6], genetic algorithm (GA) 
[7], simulated annealing (SA) [8], firefly algorithm (FA) [9], 
and bat algorithm (BA) [10]. GA is a relatively simple and 
practical algorithm, which imitates the mechanisms of 
genetics including selection, crossover and mutation 
operators. It initially operates on individuals from a randomly 
generated population to gradually improve the fitness of 
individuals, and eventually gets the best individual and find 
the optimal solution to the problem. However, GA has the 
slow convergence speed and easily fallsinto local optimal 
solutions in practical use. The principle of SA [11] is 
randomly searching in the search space, iterating for several 
times, and gradually converging to the optimal solution by 
setting the initial temperature, final temperature, annealing 
temperature function, Markov chain length, etc. Its greatest 
advantage is that the global optimal solution is more likely to 
be obtained, and its convergence speed is faster than GA. 
Moreover, SA has strong robustness. Since GA is easy to 
integrate with other algorithms, the combination of GA and 
SA can help to obtain the advantages of the both algorithms, 
and there are some applications for solving TSP. Luo,  et al 
[12] proposed a Heuristic Simulated Annealing Genetic 
Algorithm (HSAGA) in which GA functions as global search 
strategy while the designed Heuristic Simulated Annealing 
(HSA) algorithm acts as a local search strategy. HSA can 
enhance the search effectiveness and avoid getting stuck into 
a local optimal trap. Yao, et al [13] improved the selection of 
the initial solution, the generation of the new solution and the 
improvement of the current solution in the simulated 
annealing and genetic algorithm. The method of 
intergenerational crossing is adopted to improve the search 
speed of the optimal solution. He, et al [8] proposed an 
improved genetic simulated annealing algorithm, which 
improves the ability of the algorithm to jump out fromlocal 
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optimal solutions. The algorithm has an obvious optimization 
effect and can find the optimal solution for many cases. 

In traditional TSP, the order of visiting cities isn’t 
restricted. Therefore, the initial population generated in GA 
can be completely random. While in a factory, the order of 
each workstation’s demand for materials strictly depends on 
the process corresponding to the station, so it is more 
reasonable for AGVs to transport materials according to the 
process. Thus, workstations should be assigned different 
priorities and AGV should traverse each station according to 
its priority. Such TSPs with constraints on city priorities are 
essentially different from the classic Traveling Salesman 
Problem with Precedence Constraint (TSPPC), as studied in 
[14] and [15]. New improvements must be made in order to 
solve such special TSPs by regarding workstations as cities for 
our study. To this end, we propose an improved adaptive 
genetic simulated annealing algorithm (IAGSAA), which is 
based on standardGA, and improved by generating initial 
population to avoid non-feasible solutions, and in which the 
improved adaptive operator is introduced to improve the 
ability of the algorithm to jump out from local optimal 
solutions and resistance power to the destruction of excellent 
individuals in each generation at the same time. Moreover, the 
simulated annealing mutation strategy is introduced into the 
GA mutation operation to improve the convergence speed of 
the proposed algorithm. 

II. MATHEMATICAL MODEL CONSTRUCTION 

We assume that the total number of stations in the factory 
is 𝑛 , the number of priorities is 𝑘, and the corresponding 
number of stations in each priority is 𝑛1, 𝑛2, … , 𝑛𝑘 , so the 
equation can be described as follows: 

𝑛 =∑𝑛𝑖

𝑘

𝑖=1

                                       (2) 

It is assumed that the smaller the station priority value is, 
the higher the station priority is. So, AGV must firstly traverse 
all stations in priority 1, and then stations in prioritis 2,3,... ,𝑘, 
respectively. Therefore, the travel path is 𝑃 =
(𝑝1,1, 𝑝1,2, … , 𝑝1,𝑛1 , 𝑝2,1, 𝑝2,2, … , 𝑝2,𝑛2 , … , 𝑝𝑘,1, 𝑝𝑘,2, … , 𝑝𝑘,𝑛𝑘). 

Then, the path length function of AGV traversing all the 
stations is defined as follows: 

𝑓(𝑃) =∑∑ 𝑑(𝑝𝑖,𝑗 , 𝑝𝑖,𝑗+1)

𝑛𝑖−1

𝑗=1

𝑘

𝑖=1

+∑𝑑(𝑝𝑖,𝑛𝑖,, 𝑝𝑖+1,1)

𝑘−1

𝑖=1

+ 𝑑(𝑝𝑘,𝑛𝑘 , 𝑝1,1)                                     (3) 

where 𝑝𝑖,𝑗 is the station number, representing the 𝑗th station 

in priority 𝑖 ; and 𝑑(𝑝𝑖,𝑗 , 𝑝𝑖,𝑗+1)  is the distance between 

station 𝑝𝑖,𝑗  and station 𝑝𝑖,𝑗+1. The optimal solution should 

make (3) obtain the minimum value. 

III. DESIGN OF THE PROPOSED ALGORITHM 

A. Defining Priority Matrix 

We define the priority matrix as follows: 

𝐺 =

[
 
 
 
 
𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑛−1 𝑎1,𝑛
𝑎2,1 𝑎2,2 ⋯ 𝑎2,𝑛−1 𝑎2,𝑛
⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑘−1,1 𝑎𝑘−1,2 ⋯ 𝑎𝑘−1,𝑛−1 𝑎𝑘−1,𝑛
𝑎𝑘,1 𝑎𝑘,2 ⋯ 𝑎𝑘,𝑛−1 𝑎𝑘,𝑛 ]

 
 
 
 

         (4) 

where 𝐺 is a 𝑘 × 𝑛 matrix, representing totally 𝑛 stations 
divided into 𝑘 priorities. The value of each element in matrix 

𝐺 is 0 or 1, whose element 𝑎𝑖,𝑗 is defined as follows: 

𝑎𝑖,𝑗 = {
0          if station 𝑗 ∉ priority 𝑖
1          if station 𝑗 ∈ priority 𝑖

           (5) 

so, in each column of matrix 𝐺, only one element is 1, and the 
rest are 0s. 

B. Preliminary Sorting 

Before sorting, the travel path is the same as the station 
number sequence. Suppose that the 𝑛 -dimensional vector 

corresponding to the travel is  𝑡 = [1 2 ⋯ 𝑛]  and 

priority 𝑖  contains 𝑛𝑖 stations. We can preliminarily sort 
stations numbered 1 to 𝑛 according to the priority matrix, 
sorting steps are described as follows: 

Step 1: define 𝑘 zero vectors 𝑡𝑖 = [0 0 ⋯ 0](𝑖 =
1,2,… , 𝑘), so the dimension of 𝑡𝑖 is 𝑛𝑖. 

Step 2: successively examine elements of 𝑗th column of 
matrix 𝐺, if 𝑎𝑖,𝑗 = 1, then assign the 𝑗th element of vector 𝑡 
to vector 𝑡𝑖. 

Step 3: define a new n-dimensional vector tnew (tnew =
[t1 t2  … tk]) , so the order of elements of vector 𝑡𝑛𝑒𝑤  is 
preliminarily sorted by the station priorities. 

C. Fitness Function 

We normalize the path length corresponding to the 
individuals in each generation of population and the 
normalized value is used to represent the fitness value of the 
individual. Then, the fitness function can be defined as follows: 

𝑓𝑖 = (𝑚𝑎𝑥𝑙 − 𝑙𝑖)/(𝑚𝑎𝑥𝑙 − 𝑚𝑖𝑛𝑙 + 𝑎)               (6) 

where 𝑙𝑖 represents the path length corresponding to the 𝑖th 
individual; 𝑚𝑎𝑥𝑙  and 𝑚𝑖𝑛𝑙  respectively represent the 
longest and shortest paths in this generation of population; and 
the parameter 𝑎  is an extremely small positive number, 
which prevents the denominator of (6) from being 0 later in 
the iteration. We set 𝑎 = 0.0001 in the proposed algorithm. 
The shorter the individual's corresponding path is, the larger 
the fitness value is and the higher the survival probability is. 
The fitness value calculated from (6) is ranged in [0-1]. 

D. Generating Piecewise Initial Populations 

In GA, the initial population is randomly generated. While, 
the generation criteria of the initial population will be adjusted 
in an TSP with constraints on city priorities. As we have 
divided vector 𝑡𝑛𝑒𝑤  into 𝑘  subvectors, the priorities of 
stations corresponding to the elements in different subvectors 
are different. The elements in each subvector are respectively 
and randomly sorted to generate the initial population for 
ensuring that the generated initial population still satisfies the 
priority requirement. Thus, the generated initial population is 
piecewise and the generating process is shown in Fig. 1, in 
which there are 10 stations that are divided into three priorities. 

2 5 6 1 4 7 10 3 8 9
Priority 1 Priority 2 Priority 3

5 6 2 4 10 1 7 3 9 8
Priority 1 Priority 2 Priority 3

rand rand rand

 

Fig. 1. Generating piecewise initial population. 



E. Genetic Operator Design 

a) Selection Operator 

The individuals of larger fitness values will be retained, 
while those of smaller fitness values will be discarded in each 
generation. The larger the individual fitness value is, the 
higher the probability of being retained is. Suppose that the 
fitness values of 1-10 individuals in a generation are 0.4, 0.27, 
0.53, 0.82, 0.68, 1, 0.45, 0.73, 0.96, and 0.14, respectively, 
individuals 4, 5, 6, 8, 9 will be retained and survived while the 
rest will be eliminated if the generated random number is 0.6. 

b) Crossover and Mutation Operators 

The crossover operation, which can improve the searching 
ability of the population, is to match chromosomes randomly 
and exchange some genes with a certain crossover probability 
𝑝𝑐 . In this paper, we adopt piecewise Partial Mapped 
Crossover (PMX) [16], to ensure that the crossed gene 
positions belong to the same priority. The operation process 
is described as follows: 

Step1: randomly select two paternal chromosomes A and 
B. 

Step2: generate a random number 𝑘′ from 1 to 𝑘 and 
randomly find two adjacent gene positions in the 𝑘′th 
subvector, cross chromosomes A and B at the selected gene 
positions. 

Step3: modify the gene values outside the crossed gene 
positions according to the mapping relation of the crossed 
gene values in order that the same gene value does not appear 
on one chromosome. Therefore, generate two chromosomes 
A1 and B1. 

As shown in Fig. 2, we use the chromosome segmentation 
in the previous section to illustrate the crossover process. 
Suppose 𝑘′ = 2, the crossed gene positions are 2 and 3. 

5 6 2 4 10 1 7 3 9 8
Priority 1 Priority 2 Priority 3

5 2 6 4 1 7 10 8 3 9

5 6 2 4 1 7 10 3 9 8
Priority 1 Priority 2 Priority 3

5 2 6 4 10 1 7 8 3 9

Crossover Probability

A

B

A1

B1

 

Fig. 2. Piecewise partially mapped crossover. 

The mutation operation, which can improve population 
diversity and avoid premature phenomena in some degree 
[17], is to change one or more gene values of individuals in a 
population with a certain mutation probability 𝑝𝑚 . As 
mentioned above, SA is better than GA in the convergence 
speed. In this paper, we take the treatment strategy of the 
deteriorating solution in SA to deal with the new individual 
generated after mutation operation in GA. Therefore, the 
strategy of combining piecewise two point exchange mutation 
and Simulated Annealing Mutation (SAM) is utilized. The 
operation process is described as follows: 

Step1: perform piecewise two point exchange mutation 
operation based on the crossover operation, i.e., generate two 

different random numbers 𝑖𝑘′1  and 𝑖𝑘′2  ( 𝑖𝑘′1, 𝑖𝑘′2 ≤ 𝑗𝑘′ , 
where 𝑗𝑘′ is the total number of genes on the 𝑘′th segment 

of chromosome) on the 𝑘′thsegment of chromosome A1 and 
B1, then, exchange two genes in gene positions 𝑖𝑘′1  and 
𝑖𝑘′2 . The mutation process illustration is shown in Fig. 3 
(suppose 𝑖𝑘′1 = 1 and 𝑖𝑘′2 = 4). 

Step2: calculate the fitness values of the two individuals 
before and after the mutation respectively. The mutation is 
accepted if the fitness value becomes larger. Otherwise, 
whether the mutation accepted or not is determined by a 
certain annealing probability 𝑝𝑡. 

5 6 2 4 1 7 10 3 9 8
Priority 1 Priority 2 Priority 3

5 2 6 4 10 1 7 8 3 9

5 6 2 10 1 7 4 3 9 8
Priority 1 Priority 2 Priority 3

5 2 6 7 10 1 4 8 3 9

Mutation Probability

A2

B2

A1

B1

 

Fig. 3. Piecewise two point exchange mutation. 

The crossover probability 𝑝𝑐  and mutation probability 
𝑝𝑚 will directly affect the performance of the algorithm. In 
standard GA(SGA), the values of 𝑝𝑐 and 𝑝𝑚 are fixed. The 
average fitness value of the population can be rapidly 
increased at the initial stage of the algorithm. However the 
better individuals will be destroyed at the later stage of the 
algorithm, leading to premature phenomena. In this paper, the 
values of crossover and mutation probabilities will change 
adaptively. Adapted genetic algorithm (AGA) originally was 
proposed by Srinivas and Patnaik with the aim of increasing 
the crossover and mutation probabilities later in the iteration, 
so that the population can jump out of the local optimal 
solutions. The formulas for calculating the adaptive crossover 
and mutation probabilities given in [18] are as follows: 

𝑝𝑐 = {

𝑘1(𝑓𝑚𝑎𝑥 − 𝑓
′)

𝑓𝑚𝑎𝑥 − 𝑓̅
, 𝑓′ ≥ 𝑓̅

𝑘3                       , 𝑓′ ≤ 𝑓̅
                         (7) 

𝑝𝑚 = {

𝑘2(𝑓𝑚𝑎𝑥 − 𝑓)

𝑓𝑚𝑎𝑥 − 𝑓̅
, 𝑓 ≥ 𝑓̅

𝑘4                       , 𝑓 ≤ 𝑓̅
                         (8) 

where 𝑓𝑚𝑎𝑥  represents the maximum fitness value of the 

population; 𝑓̅  represents the average fitness value of the 

population;  𝑓′  is the larger of the fitness values of the 

individuals to be crossed;  𝑓  is the fitness values of the 
individuals to be mutated; 𝑘1, 𝑘2, 𝑘3and 𝑘4 are parameters. 
The adjustment curves of the crossover and mutation 
probability corresponding to (7) and (8) are shown in Fig. 4. 



 

(a) Adjustment curve of crossover probability. 

 

(b) Adjustment curve of mutation probability. 

Fig. 4. Adjustment curves of crossover and mutation probabilites in AGA. 

According to Fig. 4, if the fitness value of the individual 
is smaller than the average value, higher crossover and 
mutation probabilities are used; and if the fitness value of the 
individual is larger than the average value, lower crossover 
and mutation probabilities are used. The probabilities vary 
with the change of the fitness values of individuals. However, 
the crossover and mutation probabilities of the optimal 
individual in the population calculated from (7) and (8) are 0. 
At the initial stage of the algorithm, even the individual with 
the largest fitness value is generally not the global optimal 
solution. Therefore, if the individual genes cannot be changed, 
inversely, they are retained so many that the algorithm is still 
likely to get stuck at the local optimum. To overcome this 
shortcoming, many improved formulas [19] [20] [21] have 
been used to calculate the adaptive crossover and mutation 
probabilities. In addition, when there are more individuals, 
whose fitness values are near the average fitness values, in 
the population, they have advantages in the population 
evolution because the individual genes are such similar that 
poor effect of the subsequent evolution is resulted in. The 
crossover and mutation probabilities of the individuals, 
whose fitness values are near the maximum fitness value, are 
such different that some better individuals are more likely to 
be destroyed because of the relatively high crossover and 
mutation probabilities [21]. To solve the problem, the 

adaptive adjustment curve in 𝑓̅  and 𝑓𝑚𝑎𝑥  should be 
flattened out. We adopt nonlinear adjustment as follows: 

𝑝𝑐 =

{
 
 

 
 √2(𝑝𝑐1 − 𝑝𝑐2) + 𝑝𝑐2 − (𝑝𝑐1 − 𝑝𝑐2) × 𝑠𝑖𝑛 (

(𝑓′ − 𝑓)̅ × 𝜋

(𝑓𝑚𝑎𝑥 − 𝑓)̅ × 2
) , 𝑓′ ≥

𝑓̅ + 𝑓𝑚𝑎𝑥
2

𝑝𝑐2 + (𝑝𝑐1 − 𝑝𝑐2) × 𝑐𝑜𝑠 (
(𝑓′ − 𝑓)̅ × 𝜋

(𝑓𝑚𝑎𝑥 − 𝑓)̅ × 2
)                        , 𝑓̅ ≤ 𝑓′ ≤

𝑓̅ + 𝑓𝑚𝑎𝑥
2

𝑝𝑐1                                                                            , 𝑓
′ ≤ 𝑓̅

                          (9) 

𝑝𝑚 =

{
 
 

 
 √2(𝑝𝑚1 − 𝑝𝑚2) + 𝑝𝑚2 − (𝑝𝑚1 − 𝑝𝑚2) × 𝑠𝑖𝑛 (

(𝑓 − 𝑓)̅ × 𝜋

(𝑓𝑚𝑎𝑥 − 𝑓)̅ × 2
) , 𝑓 ≥

𝑓̅ + 𝑓𝑚𝑎𝑥
2

𝑝𝑚2 + (𝑝𝑚1 − 𝑝𝑚2) × 𝑐𝑜𝑠 (
(𝑓 − 𝑓)̅ × 𝜋

(𝑓𝑚𝑎𝑥 − 𝑓)̅ × 2
)                        , 𝑓̅ ≤ 𝑓 ≤

𝑓̅ + 𝑓𝑚𝑎𝑥
2

𝑝𝑚1                                                                            , 𝑓 ≤ 𝑓̅

                   (10) 

where 𝑓𝑚𝑎𝑥, 𝑓 ̅ and 𝑓′ have the same meanings as in (7) and 
(8); 𝑓 is the smaller of the mutated individual fitness values; 
and 𝑝𝑐1, 𝑝𝑐2, 𝑝𝑚1 and 𝑝𝑚2 are parameters. Respectively, 
𝑝𝑐1  and 𝑝𝑚1  determine the maximum crossover and 
mutation probabilities; 𝑝𝑐1  and 𝑝𝑐2  co-determine the 
minimum crossover probability; 𝑝𝑚1  and 𝑝𝑚2  co-
determine the minimum mutation probability. The mutation 
probability calculated from (10) can further protect the better 
individuals generated by the crossover operation. The 
improved adjustment curves of the crossover and mutation 
probabilities are shown in Fig. 5, where: 

𝑝𝑐3 =
√2

2
𝑝𝑐1 +

2 − √2

2
𝑝𝑐2                   (11) 

𝑝𝑐4 = (√2 − 1)𝑝𝑐1 + (2 − √2)𝑝𝑐2            (12) 

𝑝𝑚3 =
√2

2
𝑝𝑚1 +

2 − √2

2
𝑝𝑚2                (13) 

𝑝𝑚4 = (√2 − 1)𝑝𝑚1 + (2 − √2)𝑝𝑚2           (14) 

 

(a) Improved adjustment curve of crossover probability. 



 

(b) Improved adjustment curve of mutation probability. 

Fig. 5. Adjustment curves of crossover and mutation probabilities for this 

study. 

The calculation formula of annealing probability 𝑝𝑡 and 
the annealing temperature function are as follows: 

𝑝𝑡 =  𝑒𝑥𝑝((𝑓𝑛𝑒𝑤 − 𝑓𝑜𝑙𝑑)/𝑇)                    (15) 

𝑇(𝑛 + 1) = 𝐾 × 𝑇(𝑛)                           (16) 

where 𝑓𝑜𝑙𝑑  and 𝑓𝑛𝑒𝑤  are fitness values before and after 
individual mutation; 𝑇 is a temperature parameter that varies 
with the number of iterations 𝑛 , so 𝑇(0)  is the initial 
temperature; and 𝐾 is the temperature attenuation parameter. 

F. Terminal Condition 

We set 𝑇𝑚𝑎𝑥  as the maximum number of iterations. If 
𝑛 ≥ 𝑇𝑚𝑎𝑥 , then the iteration will be terminated and the 
optimal result will be output. 

G. Improved algorithm flowchart 

The whole algorithm flowchart mainly includes inputting 
the priority matrix, setting parameters, preliminary sorting, as 
well as selection, crossover and mutation operations in the 
improved genetic algorithm, as shown in Fig. 6. 

Start

Generate the initial population

Calculate fitness

Satisfy the terminal condition?

Selection

Adaptive crossover

Adaptive mutation

N
Y

Output the 

optimal solution

End

Input the priority matrix

Preliminary sort

Set parameters

Simulated annealSimulated anneal  

Fig. 6. The flowchart of the proposed algorithm. 

IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS 

There are no known optimal solutions because any study 
case of TSP with constraints on city priorities cannot be found 
in the existing literature. In order to verify the effectiveness of 
proposed IAGSAA in this paper, the chn31 data sets in the 
TSPLIB test library is utilized for simulation experiments for 
various cases. Without the loss of generality, set three stations 
priorities in case Ⅰ, four in case Ⅱ and five in case Ⅲ. Four 
algorithms (IAGSAA, SGA, AGA and Genetic Simulated 
Annealing Algorithm (GSAA)) are compared from five 
aspects, the optimal solution, the frequency of the optimal 
solution, stable iteration, the operation time and the algorithm 
stability. Each algorithm is run 20 times in MATLAB R2014a. 
Set 200 as the population quantity and 1000 as the maximum 
number of iterations. The initial temperature 𝑇(0) is 0.31 
and the temperature attenuation parameter 𝐾  is 0.995 in 
GSAA and IAGSAA. The values of other parameters in each 
algorithm are shown in TABLE Ⅰ. 

TABLE I.  PARAMETER SETTING 

Algorithm Parameter Value 

SGA 

𝑝𝑐 0.8 

𝑝𝑚 0.1 

AGA 

𝑘1 0.85 

𝑘2 0.15 

𝑘3 0.85 

𝑘4 0.15 

GSAA 
𝑝𝑐 0.8 

𝑝𝑚 0.1 

IAGSAA 

𝑝𝑐1 0.8 

𝑝𝑐2 0.4 

𝑝𝑚1 0.1 

𝑝𝑚2 0.001 

A. Case Ⅰ 

As shown in TABLE Ⅱ, the priority of each station in case 
Ⅰ is given. 

TABLE II.  THE PRIORITY OF EACH STATION IN CASE Ⅰ 

Priority Number of Stations Station Number 

1 9 3/4/5/9/10/12/17/25/26 

2 12 2/7/13/14/15/18/20/21/22/23/27/30 

3 10 1/6/8/11/16/19/24/28/29/31 

Hence, the priority matrix is defined as follows: 

𝐺 = [
0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1

]                (17)

The result of preliminary sorting is 3-4-5-9-10-12-17-25- 
26-2-7-13-14-15-18-20-21-22-23-27-30-1-6-8-11-16-19-24-
28-29-31. Results of IAGSAA operation is shown in Fig. 7. 
The optimized shortest path length is 21514.9702 and the 
travel path is 9-10-4-5-17-3-26-25-12-14-15-13-7-2-23-18- 
22-21-20-30-27-28-31-1-29-11-24-19-16-6-8. 



 

(a) The shortest path length 

 

(b) The evolution curve 

Fig. 7. Results of IAGSAA operation in case Ⅰ. 

Results of running 20 times of four algorithms are shown 
in Fig. 8, and specific comparisons of the results are shown in 
TABLE Ⅲ. 

 

(a) Path length in case Ⅰ 

 

(b) Stable iterations in case Ⅰ 

Fig. 8. Results of running four algorithms 20 times in case Ⅰ. 

TABLE III.  SPECIFIC COMPARISON OF RESULTS IN CASE Ⅰ 

Algorithm 
Shortest Path 

Length 

Frequency of The 

Optimal Solution 

Average Path 

Length 

Standard Deviation of 

The Path Length 

Average Stable 

Iteration 

Average Elapsed 

Time  (𝒔) 

SGA 21802.3659 0/20 22856.3086 977.6633 631.75 15.38 

AGA 21514.9702 3/20 22202.4037 539.4112 639.05 15.18 

GSAA 21514.9702 1/20 22832.9546 811.2824 419.70 15.91 

IAGSAA 21514.9702 7/20 22002.4758 513.6103 435.90 16.36 

B. Case Ⅱ 

The priority of each station in case Ⅱ is given in TABLE 
Ⅳ. 

TABLE IV.  THE PRIORITY OF EACH STATION IN CASE Ⅱ 

Priority Number of Stations Station Number 

1 5 3/4/12/17/25 

2 11 2/5/7/13/15/18/20/21/22/27/30 

3 9 1/8/11/16/19/24/28/29/31 

4 6 6/9/10/14/23/26 

Hence, the priority matrix is defined as follows: 

𝐺 = [

0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1
0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

]                (18)

The result of preliminary sorting is 3-4-12-17-25-2-5-7- 
13-15-18-20-21-22-27-30-1-8-11-16-19-24-28-29-31-6-9-
10-14-23-26. Results of IAGSAA operation is shown in Fig. 
9. The optimized shortest path length is 23834.4179 and the 
travel path is 25-17-3-4-12-15-13-7-2-5-18-22-21-20-30-27- 
28-31-1-29-11-24-19-16-8-9-10-6-23-14-26. 



 

(a) The shortest path length 

 

(b) The evolution curve 

Fig. 9. Results of IAGSAA operation in case Ⅱ. 

Results of running 20 times of four algorithms are shown 
in Fig. 10, and specific comparisons of the results are shown 
in TABLE Ⅴ. 

 

(a) Path length in case Ⅱ 

 

(b) Stable iterations in case Ⅱ 

Fig. 10. Results of running four algorithms 20 times in case Ⅱ. 

TABLE V.  SPECIFIC COMPARISON OF RESULTS IN CASE Ⅱ 

Algorithm 
Shortest Path 

Length 

Frequency of The 

Optimal Solution 

Average Path 

Length 

Standard Deviation of 

The Path Length 

Average Stable 

Iteration 

Average Elapsed 

Time  (𝒔) 

SGA 23834.4179 3/20 24942.4687 804.1380 551.45 15.19 

AGA 23834.4179 5/20 24266.3097 494.7937 560.50 15.86 

GSAA 23834.4179 2/20 24927.9354 655.0082 322.25 15.67 

IAGSAA 23834.4179 9/20 24058.1916 258.5429 335.35 16.45 

C. Case Ⅲ 

The priority of each station in case Ⅲ is given in TABLE 
Ⅵ. 

TABLE VI.  THE PRIORITY OF EACH STATION IN CASE Ⅲ 

Priority Number of Stations Station Number 

1 5 2/810/14/22 

Priority Number of Stations Station Number 

2 7 4/6/9/19/21/28/30 

3 6 3/5/7/17/18/27 

4 8 1/12/16/20/23/24/25/26 

5 5 11/13/15/29/31 

Hence, the priority matrix is defined as follows: 

𝐺 =

[
 
 
 
 
0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1]

 
 
 
 

                (19)

The result of preliminary sorting is 2-8-10-14-22-4-6-9- 
19-21-28-30-3-5-7-17-18-27-1-12-16-20-23-24-25-26-11-
13-15-29-31. Results of IAGSAA operation is shown in Fig. 
11. The optimized shortest path length is 25222.0639 and the 
travel path is 14-22-2-8-10-9-4-6-19-21-28-30-27-18-3-17-5- 
7-16-23-24-20-26-25-12-1-31-29-11-13-15. 



 

(a) The shortest path length 

 

(b) The evolution curve 

Fig. 11. Results of IAGSAA operation in case Ⅲ. 

Results of running 20 times of four algorithms are shown 
in Fig. 12, and specific comparisons of the results are shown 
in TABLE Ⅶ. 

 

(a) Path length in case Ⅲ 

 

(b) Stable iterations in case Ⅲ 

Fig. 12. Results of running four algorithms 20 times in case Ⅲ. 

TABLE VII.  SPECIFIC COMPARISON OF RESULTS IN CASE Ⅲ 

Algorithm 
Shortest Path 

Length 

Frequency of The 

Optimal Solution 

Average Path 

Length 

Standard Deviation of 

The Path Length 

Average Stable 

Iteration 

Average Elapsed 

Time  (𝒔) 

SGA 25222.0639 6/20 25488.2436 246.3877 363.65 15.91 

AGA 25222.0639 8/20 25371.8903 149.2661 372.20 15.38 

GSAA 25222.0639 6/20 25466.7864 222.6532 258.10 16.95 

IAGSAA 25222.0639 13/20 25296.1873 108.3068 265.55 17.38 

According to the data in TABLE Ⅲ, TABLE Ⅴ and 
TABLE Ⅶ, the advantage of AGA is that it can jump out of 
the local optimal solution, but it has a slow convergence speed; 
GSAA can accelerate the convergence of the calculation 
process, but premature phenomena occur; although the 
IAGSAA proposed in this paper is slightly longer than the 
other three algorithms in the elapsed time, its average path 
length and average stable iterations improve significantly at 
the same time. In addition, the frequency of the optimal 
solutions is greatly increased, and the standard deviation of the 
path length is also greatly reduced, indicating the stability of 
the algorithm. If there are more stations in each priority, more 
combinations are obtained, and the improvement of IAGSAA 
is more significant. The number of stations in each priority is 
relatively small in case Ⅲ. Compared with SGA, the average 
path length obtained by IAGSAA is reduced by about 200, the 
standard deviation of the path length is reduced by about 140, 
average stable iteration is reduced by about 100, and the 
frequency of the optimal solutions is approximately doubled. 
The number of stations in each priority is relatively big in case 

Ⅰ. Compared with SGA, the average path length obtained by 
IAGSAA is reduced by about 850, the standard deviation of 
the path length is reduced by about 460, average stable 
iteration is reduced by about 200, and the frequency of the 
optimal solutions could be thought to have increased 
approximately sixfold. Therefore, the algorithm proposed in 
this paper has good effectiveness, which is able to avoid 
premature phenomena, as well as accelerate the convergence 
speed. 

V. CONCLUSION 

This study divides stations in a factory into several 
priorities based on the process, which is represented by the 
priority matrix, and analogous to a TSP with constraints on 
city priorities. Since solving the problem by SGA shows a 
slow convergence speed and premature phenomena, we have 
proposed the IAGSAA, in which the generation strategy of the 
initial population of SGA is improved, and improved adaptive 
crossover and mutation, as well as SAM are introduced. Later 



in the iteration of the IAGSAA, the adaptive crossover and 
mutation can enrich the diversity of the population to find new 
search directions and jump out of local optimal solutions. 
SAM is very useful to accelerate the convergence speed of the 
algorithm. Simulation results have indicated that the IAGSAA 
can integrate the advantages of AGA and GSAA, and has 
good performance. 

Since the environment in the factory is complex and 
dynamic, dynamic characteristics will be taken into account in 
the further research, and the algorithm will be optimized to 
shorten the operation time and make AGV respond quickly. 
… 
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