
An Improved Adaptive Genetic Algorithm for

Mobile Robot Path Planning Analogous to TSP with

Constraints on City Priorities

Junjie Jiang
School of Mechanical and

Automobile Engineering

South China University of

Technology
Guangzhou, China

304796768@qq.com

Xifan Yao
School of Mechanical and

Automobile Engineering

South China University of

Technology
Guangzhou, China

mexfyao@scut.edu.cn

Erfu Yang
Department of Design,

Manufacturing and

Engineering Management

University of Strathclyde
Glasgow, U.K

erfu.yang@strath.ac.uk

Jorn Mehnen
Department of Design,

Manufacturing and

Engineering Management

University of Strathclyde
Glasgow, U.K

jorn.mehnen@strath.ac.uk

Abstract—The material transportation planning with a

mobile robot can be regarded as the classic Traveling Salesman

Problem (TSP). To solve such problems with different priorities

at stations, an improved adaptive genetic simulated annealing

algorithm is proposed. Firstly, the priority matrix is defined

according to station priorities. Based on standard genetic

algorithm, the generating strategy of the initial population is

improved to prevent the emergence of non-feasible solutions,

and an improved adaptive operator is introduced to improve the

population ability for escaping local optimal solutions and

avoid premature phenomena. Moreover, to speed up the

convergence of the proposed algorithm, the simulated

annealing strategy is utilized in mutation operations. The

experimental results indicate that the proposed algorithm has

the characteristics of strong ability to avoid local optima and the

fasterr convergence speed.

Keywords—Traveling Salesman Problem (TSP), genetic

algorithm, simulated annealing, crossover and mutation, path

planning, mobile robots

I. INTRODUCTION

With the rapid development of modern industrial
technologies, mobile robost such as Automated Guided
Vehicles (AGVs) are increasingly playing the role of material
transportation in large factories [1]. Since AGVs were
introduced in the 1950s, over the past decades, today’ AGV
guidance technology has evolved from electromagnetic
guidance into laser and visual guidance. Such breakthrough
makes AGV no longer be limited by magnetic track, and
therefore have more freedom and flexibility to move in the
factory floors. As a result, AGV path planning problems have
arised and become a research hotspot, which attracts many
researchers’ interest in scientific research, and.

AGV/Mobile robot path planning aims at optimizing one
or more indicators (e.g., path length, elapsed time, cost, etc.)
to quickly find an optimal route among many alternative non-
collision paths [2]. Path planning can be divided into global
and local path planning according to the knowledge of the
surrounding environment [3]. The former belongs to static
planning while the latter is dynamic planning. In mobile robot
path planning, a common problem is planning the shortest
route, which connects each station, so that AGVs can supply
material for each station along the road during the movement.
The prototype of such problems is Traveling Salesman
Problem (TSP) which is a classic NP-Hard problem [4]. The
specific description is that a salesman wants to promote goods
in different cities. He can start from any city and traverse all
the cities until he gets back to the original one. The constraint

is that each city must be visited only once, and the journey is
required to be the shortest, which minimizes the objective
function. We assume that the number of cities is 𝑛 and the

travel path is S = (𝑠1, 𝑠2, 𝑠3…𝑠𝑛). So, the objective function
can be described as follows:

𝑓(S) = ∑𝑑(𝑠𝑖, 𝑠𝑖+1)

𝑛−1

𝑖=1

+ 𝑑(𝑠𝑛 , 𝑠1) (1)

where 𝑠𝑖 is the ith city and 𝑑(𝑠𝑖 , 𝑠𝑗) depicts the distance

between city 𝑠𝑖 and 𝑠𝑗.

To solve such TSPs, there exist many optimization
algorithms such as ant colony algorithm (ACO) [5], shuffled
frog leading algorithm (SFLA) [6], genetic algorithm (GA)
[7], simulated annealing (SA) [8], firefly algorithm (FA) [9],
and bat algorithm (BA) [10]. GA is a relatively simple and
practical algorithm, which imitates the mechanisms of
genetics including selection, crossover and mutation
operators. It initially operates on individuals from a randomly
generated population to gradually improve the fitness of
individuals, and eventually gets the best individual and find
the optimal solution to the problem. However, GA has the
slow convergence speed and easily fallsinto local optimal
solutions in practical use. The principle of SA [11] is
randomly searching in the search space, iterating for several
times, and gradually converging to the optimal solution by
setting the initial temperature, final temperature, annealing
temperature function, Markov chain length, etc. Its greatest
advantage is that the global optimal solution is more likely to
be obtained, and its convergence speed is faster than GA.
Moreover, SA has strong robustness. Since GA is easy to
integrate with other algorithms, the combination of GA and
SA can help to obtain the advantages of the both algorithms,
and there are some applications for solving TSP. Luo, et al
[12] proposed a Heuristic Simulated Annealing Genetic
Algorithm (HSAGA) in which GA functions as global search
strategy while the designed Heuristic Simulated Annealing
(HSA) algorithm acts as a local search strategy. HSA can
enhance the search effectiveness and avoid getting stuck into
a local optimal trap. Yao, et al [13] improved the selection of
the initial solution, the generation of the new solution and the
improvement of the current solution in the simulated
annealing and genetic algorithm. The method of
intergenerational crossing is adopted to improve the search
speed of the optimal solution. He, et al [8] proposed an
improved genetic simulated annealing algorithm, which
improves the ability of the algorithm to jump out fromlocal

mailto:304796768@qq.com
mailto:mexfyao@scut.edu.cn
mailto:erfu.yang@strath.ac.uk
mailto:jorn.mehnen@strath.ac.uk

optimal solutions. The algorithm has an obvious optimization
effect and can find the optimal solution for many cases.

In traditional TSP, the order of visiting cities isn’t
restricted. Therefore, the initial population generated in GA
can be completely random. While in a factory, the order of
each workstation’s demand for materials strictly depends on
the process corresponding to the station, so it is more
reasonable for AGVs to transport materials according to the
process. Thus, workstations should be assigned different
priorities and AGV should traverse each station according to
its priority. Such TSPs with constraints on city priorities are
essentially different from the classic Traveling Salesman
Problem with Precedence Constraint (TSPPC), as studied in
[14] and [15]. New improvements must be made in order to
solve such special TSPs by regarding workstations as cities for
our study. To this end, we propose an improved adaptive
genetic simulated annealing algorithm (IAGSAA), which is
based on standardGA, and improved by generating initial
population to avoid non-feasible solutions, and in which the
improved adaptive operator is introduced to improve the
ability of the algorithm to jump out from local optimal
solutions and resistance power to the destruction of excellent
individuals in each generation at the same time. Moreover, the
simulated annealing mutation strategy is introduced into the
GA mutation operation to improve the convergence speed of
the proposed algorithm.

II. MATHEMATICAL MODEL CONSTRUCTION

We assume that the total number of stations in the factory
is 𝑛 , the number of priorities is 𝑘, and the corresponding
number of stations in each priority is 𝑛1, 𝑛2, … , 𝑛𝑘 , so the
equation can be described as follows:

𝑛 =∑𝑛𝑖

𝑘

𝑖=1

 (2)

It is assumed that the smaller the station priority value is,
the higher the station priority is. So, AGV must firstly traverse
all stations in priority 1, and then stations in prioritis 2,3,... ,𝑘,
respectively. Therefore, the travel path is 𝑃 =
(𝑝1,1, 𝑝1,2, … , 𝑝1,𝑛1 , 𝑝2,1, 𝑝2,2, … , 𝑝2,𝑛2 , … , 𝑝𝑘,1, 𝑝𝑘,2, … , 𝑝𝑘,𝑛𝑘).

Then, the path length function of AGV traversing all the
stations is defined as follows:

𝑓(𝑃) =∑∑ 𝑑(𝑝𝑖,𝑗 , 𝑝𝑖,𝑗+1)

𝑛𝑖−1

𝑗=1

𝑘

𝑖=1

+∑𝑑(𝑝𝑖,𝑛𝑖,, 𝑝𝑖+1,1)

𝑘−1

𝑖=1

+ 𝑑(𝑝𝑘,𝑛𝑘 , 𝑝1,1) (3)

where 𝑝𝑖,𝑗 is the station number, representing the 𝑗th station

in priority 𝑖 ; and 𝑑(𝑝𝑖,𝑗 , 𝑝𝑖,𝑗+1) is the distance between

station 𝑝𝑖,𝑗 and station 𝑝𝑖,𝑗+1. The optimal solution should

make (3) obtain the minimum value.

III. DESIGN OF THE PROPOSED ALGORITHM

A. Defining Priority Matrix

We define the priority matrix as follows:

𝐺 =

[

𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑛−1 𝑎1,𝑛
𝑎2,1 𝑎2,2 ⋯ 𝑎2,𝑛−1 𝑎2,𝑛
⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑘−1,1 𝑎𝑘−1,2 ⋯ 𝑎𝑘−1,𝑛−1 𝑎𝑘−1,𝑛
𝑎𝑘,1 𝑎𝑘,2 ⋯ 𝑎𝑘,𝑛−1 𝑎𝑘,𝑛]

 (4)

where 𝐺 is a 𝑘 × 𝑛 matrix, representing totally 𝑛 stations
divided into 𝑘 priorities. The value of each element in matrix

𝐺 is 0 or 1, whose element 𝑎𝑖,𝑗 is defined as follows:

𝑎𝑖,𝑗 = {
0 if station 𝑗 ∉ priority 𝑖
1 if station 𝑗 ∈ priority 𝑖

 (5)

so, in each column of matrix 𝐺, only one element is 1, and the
rest are 0s.

B. Preliminary Sorting

Before sorting, the travel path is the same as the station
number sequence. Suppose that the 𝑛 -dimensional vector

corresponding to the travel is 𝑡 = [1 2 ⋯ 𝑛] and

priority 𝑖 contains 𝑛𝑖 stations. We can preliminarily sort
stations numbered 1 to 𝑛 according to the priority matrix,
sorting steps are described as follows:

Step 1: define 𝑘 zero vectors 𝑡𝑖 = [0 0 ⋯ 0](𝑖 =
1,2,… , 𝑘), so the dimension of 𝑡𝑖 is 𝑛𝑖.

Step 2: successively examine elements of 𝑗th column of
matrix 𝐺, if 𝑎𝑖,𝑗 = 1, then assign the 𝑗th element of vector 𝑡
to vector 𝑡𝑖.

Step 3: define a new n-dimensional vector tnew (tnew =
[t1 t2 … tk]) , so the order of elements of vector 𝑡𝑛𝑒𝑤 is
preliminarily sorted by the station priorities.

C. Fitness Function

We normalize the path length corresponding to the
individuals in each generation of population and the
normalized value is used to represent the fitness value of the
individual. Then, the fitness function can be defined as follows:

𝑓𝑖 = (𝑚𝑎𝑥𝑙 − 𝑙𝑖)/(𝑚𝑎𝑥𝑙 − 𝑚𝑖𝑛𝑙 + 𝑎) (6)

where 𝑙𝑖 represents the path length corresponding to the 𝑖th
individual; 𝑚𝑎𝑥𝑙 and 𝑚𝑖𝑛𝑙 respectively represent the
longest and shortest paths in this generation of population; and
the parameter 𝑎 is an extremely small positive number,
which prevents the denominator of (6) from being 0 later in
the iteration. We set 𝑎 = 0.0001 in the proposed algorithm.
The shorter the individual's corresponding path is, the larger
the fitness value is and the higher the survival probability is.
The fitness value calculated from (6) is ranged in [0-1].

D. Generating Piecewise Initial Populations

In GA, the initial population is randomly generated. While,
the generation criteria of the initial population will be adjusted
in an TSP with constraints on city priorities. As we have
divided vector 𝑡𝑛𝑒𝑤 into 𝑘 subvectors, the priorities of
stations corresponding to the elements in different subvectors
are different. The elements in each subvector are respectively
and randomly sorted to generate the initial population for
ensuring that the generated initial population still satisfies the
priority requirement. Thus, the generated initial population is
piecewise and the generating process is shown in Fig. 1, in
which there are 10 stations that are divided into three priorities.

2 5 6 1 4 7 10 3 8 9
Priority 1 Priority 2 Priority 3

5 6 2 4 10 1 7 3 9 8
Priority 1 Priority 2 Priority 3

rand rand rand

Fig. 1. Generating piecewise initial population.

E. Genetic Operator Design

a) Selection Operator

The individuals of larger fitness values will be retained,
while those of smaller fitness values will be discarded in each
generation. The larger the individual fitness value is, the
higher the probability of being retained is. Suppose that the
fitness values of 1-10 individuals in a generation are 0.4, 0.27,
0.53, 0.82, 0.68, 1, 0.45, 0.73, 0.96, and 0.14, respectively,
individuals 4, 5, 6, 8, 9 will be retained and survived while the
rest will be eliminated if the generated random number is 0.6.

b) Crossover and Mutation Operators

The crossover operation, which can improve the searching
ability of the population, is to match chromosomes randomly
and exchange some genes with a certain crossover probability
𝑝𝑐 . In this paper, we adopt piecewise Partial Mapped
Crossover (PMX) [16], to ensure that the crossed gene
positions belong to the same priority. The operation process
is described as follows:

Step1: randomly select two paternal chromosomes A and
B.

Step2: generate a random number 𝑘′ from 1 to 𝑘 and
randomly find two adjacent gene positions in the 𝑘′th
subvector, cross chromosomes A and B at the selected gene
positions.

Step3: modify the gene values outside the crossed gene
positions according to the mapping relation of the crossed
gene values in order that the same gene value does not appear
on one chromosome. Therefore, generate two chromosomes
A1 and B1.

As shown in Fig. 2, we use the chromosome segmentation
in the previous section to illustrate the crossover process.
Suppose 𝑘′ = 2, the crossed gene positions are 2 and 3.

5 6 2 4 10 1 7 3 9 8
Priority 1 Priority 2 Priority 3

5 2 6 4 1 7 10 8 3 9

5 6 2 4 1 7 10 3 9 8
Priority 1 Priority 2 Priority 3

5 2 6 4 10 1 7 8 3 9

Crossover Probability

A

B

A1

B1

Fig. 2. Piecewise partially mapped crossover.

The mutation operation, which can improve population
diversity and avoid premature phenomena in some degree
[17], is to change one or more gene values of individuals in a
population with a certain mutation probability 𝑝𝑚 . As
mentioned above, SA is better than GA in the convergence
speed. In this paper, we take the treatment strategy of the
deteriorating solution in SA to deal with the new individual
generated after mutation operation in GA. Therefore, the
strategy of combining piecewise two point exchange mutation
and Simulated Annealing Mutation (SAM) is utilized. The
operation process is described as follows:

Step1: perform piecewise two point exchange mutation
operation based on the crossover operation, i.e., generate two

different random numbers 𝑖𝑘′1 and 𝑖𝑘′2 (𝑖𝑘′1, 𝑖𝑘′2 ≤ 𝑗𝑘′ ,
where 𝑗𝑘′ is the total number of genes on the 𝑘′th segment

of chromosome) on the 𝑘′thsegment of chromosome A1 and
B1, then, exchange two genes in gene positions 𝑖𝑘′1 and
𝑖𝑘′2 . The mutation process illustration is shown in Fig. 3
(suppose 𝑖𝑘′1 = 1 and 𝑖𝑘′2 = 4).

Step2: calculate the fitness values of the two individuals
before and after the mutation respectively. The mutation is
accepted if the fitness value becomes larger. Otherwise,
whether the mutation accepted or not is determined by a
certain annealing probability 𝑝𝑡.

5 6 2 4 1 7 10 3 9 8
Priority 1 Priority 2 Priority 3

5 2 6 4 10 1 7 8 3 9

5 6 2 10 1 7 4 3 9 8
Priority 1 Priority 2 Priority 3

5 2 6 7 10 1 4 8 3 9

Mutation Probability

A2

B2

A1

B1

Fig. 3. Piecewise two point exchange mutation.

The crossover probability 𝑝𝑐 and mutation probability
𝑝𝑚 will directly affect the performance of the algorithm. In
standard GA(SGA), the values of 𝑝𝑐 and 𝑝𝑚 are fixed. The
average fitness value of the population can be rapidly
increased at the initial stage of the algorithm. However the
better individuals will be destroyed at the later stage of the
algorithm, leading to premature phenomena. In this paper, the
values of crossover and mutation probabilities will change
adaptively. Adapted genetic algorithm (AGA) originally was
proposed by Srinivas and Patnaik with the aim of increasing
the crossover and mutation probabilities later in the iteration,
so that the population can jump out of the local optimal
solutions. The formulas for calculating the adaptive crossover
and mutation probabilities given in [18] are as follows:

𝑝𝑐 = {

𝑘1(𝑓𝑚𝑎𝑥 − 𝑓
′)

𝑓𝑚𝑎𝑥 − 𝑓̅
, 𝑓′ ≥ 𝑓̅

𝑘3 , 𝑓′ ≤ 𝑓̅
 (7)

𝑝𝑚 = {

𝑘2(𝑓𝑚𝑎𝑥 − 𝑓)

𝑓𝑚𝑎𝑥 − 𝑓̅
, 𝑓 ≥ 𝑓̅

𝑘4 , 𝑓 ≤ 𝑓̅
 (8)

where 𝑓𝑚𝑎𝑥 represents the maximum fitness value of the

population; 𝑓̅ represents the average fitness value of the

population; 𝑓′ is the larger of the fitness values of the

individuals to be crossed; 𝑓 is the fitness values of the
individuals to be mutated; 𝑘1, 𝑘2, 𝑘3and 𝑘4 are parameters.
The adjustment curves of the crossover and mutation
probability corresponding to (7) and (8) are shown in Fig. 4.

(a) Adjustment curve of crossover probability.

(b) Adjustment curve of mutation probability.

Fig. 4. Adjustment curves of crossover and mutation probabilites in AGA.

According to Fig. 4, if the fitness value of the individual
is smaller than the average value, higher crossover and
mutation probabilities are used; and if the fitness value of the
individual is larger than the average value, lower crossover
and mutation probabilities are used. The probabilities vary
with the change of the fitness values of individuals. However,
the crossover and mutation probabilities of the optimal
individual in the population calculated from (7) and (8) are 0.
At the initial stage of the algorithm, even the individual with
the largest fitness value is generally not the global optimal
solution. Therefore, if the individual genes cannot be changed,
inversely, they are retained so many that the algorithm is still
likely to get stuck at the local optimum. To overcome this
shortcoming, many improved formulas [19] [20] [21] have
been used to calculate the adaptive crossover and mutation
probabilities. In addition, when there are more individuals,
whose fitness values are near the average fitness values, in
the population, they have advantages in the population
evolution because the individual genes are such similar that
poor effect of the subsequent evolution is resulted in. The
crossover and mutation probabilities of the individuals,
whose fitness values are near the maximum fitness value, are
such different that some better individuals are more likely to
be destroyed because of the relatively high crossover and
mutation probabilities [21]. To solve the problem, the

adaptive adjustment curve in 𝑓̅ and 𝑓𝑚𝑎𝑥 should be
flattened out. We adopt nonlinear adjustment as follows:

𝑝𝑐 =

{

 √2(𝑝𝑐1 − 𝑝𝑐2) + 𝑝𝑐2 − (𝑝𝑐1 − 𝑝𝑐2) × 𝑠𝑖𝑛 (

(𝑓′ − 𝑓)̅ × 𝜋

(𝑓𝑚𝑎𝑥 − 𝑓)̅ × 2
) , 𝑓′ ≥

𝑓̅ + 𝑓𝑚𝑎𝑥
2

𝑝𝑐2 + (𝑝𝑐1 − 𝑝𝑐2) × 𝑐𝑜𝑠 (
(𝑓′ − 𝑓)̅ × 𝜋

(𝑓𝑚𝑎𝑥 − 𝑓)̅ × 2
) , 𝑓̅ ≤ 𝑓′ ≤

𝑓̅ + 𝑓𝑚𝑎𝑥
2

𝑝𝑐1 , 𝑓
′ ≤ 𝑓̅

 (9)

𝑝𝑚 =

{

 √2(𝑝𝑚1 − 𝑝𝑚2) + 𝑝𝑚2 − (𝑝𝑚1 − 𝑝𝑚2) × 𝑠𝑖𝑛 (

(𝑓 − 𝑓)̅ × 𝜋

(𝑓𝑚𝑎𝑥 − 𝑓)̅ × 2
) , 𝑓 ≥

𝑓̅ + 𝑓𝑚𝑎𝑥
2

𝑝𝑚2 + (𝑝𝑚1 − 𝑝𝑚2) × 𝑐𝑜𝑠 (
(𝑓 − 𝑓)̅ × 𝜋

(𝑓𝑚𝑎𝑥 − 𝑓)̅ × 2
) , 𝑓̅ ≤ 𝑓 ≤

𝑓̅ + 𝑓𝑚𝑎𝑥
2

𝑝𝑚1 , 𝑓 ≤ 𝑓̅

 (10)

where 𝑓𝑚𝑎𝑥, 𝑓 ̅ and 𝑓′ have the same meanings as in (7) and
(8); 𝑓 is the smaller of the mutated individual fitness values;
and 𝑝𝑐1, 𝑝𝑐2, 𝑝𝑚1 and 𝑝𝑚2 are parameters. Respectively,
𝑝𝑐1 and 𝑝𝑚1 determine the maximum crossover and
mutation probabilities; 𝑝𝑐1 and 𝑝𝑐2 co-determine the
minimum crossover probability; 𝑝𝑚1 and 𝑝𝑚2 co-
determine the minimum mutation probability. The mutation
probability calculated from (10) can further protect the better
individuals generated by the crossover operation. The
improved adjustment curves of the crossover and mutation
probabilities are shown in Fig. 5, where:

𝑝𝑐3 =
√2

2
𝑝𝑐1 +

2 − √2

2
𝑝𝑐2 (11)

𝑝𝑐4 = (√2 − 1)𝑝𝑐1 + (2 − √2)𝑝𝑐2 (12)

𝑝𝑚3 =
√2

2
𝑝𝑚1 +

2 − √2

2
𝑝𝑚2 (13)

𝑝𝑚4 = (√2 − 1)𝑝𝑚1 + (2 − √2)𝑝𝑚2 (14)

(a) Improved adjustment curve of crossover probability.

(b) Improved adjustment curve of mutation probability.

Fig. 5. Adjustment curves of crossover and mutation probabilities for this

study.

The calculation formula of annealing probability 𝑝𝑡 and
the annealing temperature function are as follows:

𝑝𝑡 = 𝑒𝑥𝑝((𝑓𝑛𝑒𝑤 − 𝑓𝑜𝑙𝑑)/𝑇) (15)

𝑇(𝑛 + 1) = 𝐾 × 𝑇(𝑛) (16)

where 𝑓𝑜𝑙𝑑 and 𝑓𝑛𝑒𝑤 are fitness values before and after
individual mutation; 𝑇 is a temperature parameter that varies
with the number of iterations 𝑛 , so 𝑇(0) is the initial
temperature; and 𝐾 is the temperature attenuation parameter.

F. Terminal Condition

We set 𝑇𝑚𝑎𝑥 as the maximum number of iterations. If
𝑛 ≥ 𝑇𝑚𝑎𝑥 , then the iteration will be terminated and the
optimal result will be output.

G. Improved algorithm flowchart

The whole algorithm flowchart mainly includes inputting
the priority matrix, setting parameters, preliminary sorting, as
well as selection, crossover and mutation operations in the
improved genetic algorithm, as shown in Fig. 6.

Start

Generate the initial population

Calculate fitness

Satisfy the terminal condition?

Selection

Adaptive crossover

Adaptive mutation

N
Y

Output the

optimal solution

End

Input the priority matrix

Preliminary sort

Set parameters

Simulated annealSimulated anneal

Fig. 6. The flowchart of the proposed algorithm.

IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS

There are no known optimal solutions because any study
case of TSP with constraints on city priorities cannot be found
in the existing literature. In order to verify the effectiveness of
proposed IAGSAA in this paper, the chn31 data sets in the
TSPLIB test library is utilized for simulation experiments for
various cases. Without the loss of generality, set three stations
priorities in case Ⅰ, four in case Ⅱ and five in case Ⅲ. Four
algorithms (IAGSAA, SGA, AGA and Genetic Simulated
Annealing Algorithm (GSAA)) are compared from five
aspects, the optimal solution, the frequency of the optimal
solution, stable iteration, the operation time and the algorithm
stability. Each algorithm is run 20 times in MATLAB R2014a.
Set 200 as the population quantity and 1000 as the maximum
number of iterations. The initial temperature 𝑇(0) is 0.31
and the temperature attenuation parameter 𝐾 is 0.995 in
GSAA and IAGSAA. The values of other parameters in each
algorithm are shown in TABLE Ⅰ.

TABLE I. PARAMETER SETTING

Algorithm Parameter Value

SGA

𝑝𝑐 0.8

𝑝𝑚 0.1

AGA

𝑘1 0.85

𝑘2 0.15

𝑘3 0.85

𝑘4 0.15

GSAA
𝑝𝑐 0.8

𝑝𝑚 0.1

IAGSAA

𝑝𝑐1 0.8

𝑝𝑐2 0.4

𝑝𝑚1 0.1

𝑝𝑚2 0.001

A. Case Ⅰ

As shown in TABLE Ⅱ, the priority of each station in case
Ⅰ is given.

TABLE II. THE PRIORITY OF EACH STATION IN CASE Ⅰ

Priority Number of Stations Station Number

1 9 3/4/5/9/10/12/17/25/26

2 12 2/7/13/14/15/18/20/21/22/23/27/30

3 10 1/6/8/11/16/19/24/28/29/31

Hence, the priority matrix is defined as follows:

𝐺 = [
0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1

] (17)

The result of preliminary sorting is 3-4-5-9-10-12-17-25-
26-2-7-13-14-15-18-20-21-22-23-27-30-1-6-8-11-16-19-24-
28-29-31. Results of IAGSAA operation is shown in Fig. 7.
The optimized shortest path length is 21514.9702 and the
travel path is 9-10-4-5-17-3-26-25-12-14-15-13-7-2-23-18-
22-21-20-30-27-28-31-1-29-11-24-19-16-6-8.

(a) The shortest path length

(b) The evolution curve

Fig. 7. Results of IAGSAA operation in case Ⅰ.

Results of running 20 times of four algorithms are shown
in Fig. 8, and specific comparisons of the results are shown in
TABLE Ⅲ.

(a) Path length in case Ⅰ

(b) Stable iterations in case Ⅰ

Fig. 8. Results of running four algorithms 20 times in case Ⅰ.

TABLE III. SPECIFIC COMPARISON OF RESULTS IN CASE Ⅰ

Algorithm
Shortest Path

Length

Frequency of The

Optimal Solution

Average Path

Length

Standard Deviation of

The Path Length

Average Stable

Iteration

Average Elapsed

Time (𝒔)

SGA 21802.3659 0/20 22856.3086 977.6633 631.75 15.38

AGA 21514.9702 3/20 22202.4037 539.4112 639.05 15.18

GSAA 21514.9702 1/20 22832.9546 811.2824 419.70 15.91

IAGSAA 21514.9702 7/20 22002.4758 513.6103 435.90 16.36

B. Case Ⅱ

The priority of each station in case Ⅱ is given in TABLE
Ⅳ.

TABLE IV. THE PRIORITY OF EACH STATION IN CASE Ⅱ

Priority Number of Stations Station Number

1 5 3/4/12/17/25

2 11 2/5/7/13/15/18/20/21/22/27/30

3 9 1/8/11/16/19/24/28/29/31

4 6 6/9/10/14/23/26

Hence, the priority matrix is defined as follows:

𝐺 = [

0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1
0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

] (18)

The result of preliminary sorting is 3-4-12-17-25-2-5-7-
13-15-18-20-21-22-27-30-1-8-11-16-19-24-28-29-31-6-9-
10-14-23-26. Results of IAGSAA operation is shown in Fig.
9. The optimized shortest path length is 23834.4179 and the
travel path is 25-17-3-4-12-15-13-7-2-5-18-22-21-20-30-27-
28-31-1-29-11-24-19-16-8-9-10-6-23-14-26.

(a) The shortest path length

(b) The evolution curve

Fig. 9. Results of IAGSAA operation in case Ⅱ.

Results of running 20 times of four algorithms are shown
in Fig. 10, and specific comparisons of the results are shown
in TABLE Ⅴ.

(a) Path length in case Ⅱ

(b) Stable iterations in case Ⅱ

Fig. 10. Results of running four algorithms 20 times in case Ⅱ.

TABLE V. SPECIFIC COMPARISON OF RESULTS IN CASE Ⅱ

Algorithm
Shortest Path

Length

Frequency of The

Optimal Solution

Average Path

Length

Standard Deviation of

The Path Length

Average Stable

Iteration

Average Elapsed

Time (𝒔)

SGA 23834.4179 3/20 24942.4687 804.1380 551.45 15.19

AGA 23834.4179 5/20 24266.3097 494.7937 560.50 15.86

GSAA 23834.4179 2/20 24927.9354 655.0082 322.25 15.67

IAGSAA 23834.4179 9/20 24058.1916 258.5429 335.35 16.45

C. Case Ⅲ

The priority of each station in case Ⅲ is given in TABLE
Ⅵ.

TABLE VI. THE PRIORITY OF EACH STATION IN CASE Ⅲ

Priority Number of Stations Station Number

1 5 2/810/14/22

Priority Number of Stations Station Number

2 7 4/6/9/19/21/28/30

3 6 3/5/7/17/18/27

4 8 1/12/16/20/23/24/25/26

5 5 11/13/15/29/31

Hence, the priority matrix is defined as follows:

𝐺 =

[

0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1]

 (19)

The result of preliminary sorting is 2-8-10-14-22-4-6-9-
19-21-28-30-3-5-7-17-18-27-1-12-16-20-23-24-25-26-11-
13-15-29-31. Results of IAGSAA operation is shown in Fig.
11. The optimized shortest path length is 25222.0639 and the
travel path is 14-22-2-8-10-9-4-6-19-21-28-30-27-18-3-17-5-
7-16-23-24-20-26-25-12-1-31-29-11-13-15.

(a) The shortest path length

(b) The evolution curve

Fig. 11. Results of IAGSAA operation in case Ⅲ.

Results of running 20 times of four algorithms are shown
in Fig. 12, and specific comparisons of the results are shown
in TABLE Ⅶ.

(a) Path length in case Ⅲ

(b) Stable iterations in case Ⅲ

Fig. 12. Results of running four algorithms 20 times in case Ⅲ.

TABLE VII. SPECIFIC COMPARISON OF RESULTS IN CASE Ⅲ

Algorithm
Shortest Path

Length

Frequency of The

Optimal Solution

Average Path

Length

Standard Deviation of

The Path Length

Average Stable

Iteration

Average Elapsed

Time (𝒔)

SGA 25222.0639 6/20 25488.2436 246.3877 363.65 15.91

AGA 25222.0639 8/20 25371.8903 149.2661 372.20 15.38

GSAA 25222.0639 6/20 25466.7864 222.6532 258.10 16.95

IAGSAA 25222.0639 13/20 25296.1873 108.3068 265.55 17.38

According to the data in TABLE Ⅲ, TABLE Ⅴ and
TABLE Ⅶ, the advantage of AGA is that it can jump out of
the local optimal solution, but it has a slow convergence speed;
GSAA can accelerate the convergence of the calculation
process, but premature phenomena occur; although the
IAGSAA proposed in this paper is slightly longer than the
other three algorithms in the elapsed time, its average path
length and average stable iterations improve significantly at
the same time. In addition, the frequency of the optimal
solutions is greatly increased, and the standard deviation of the
path length is also greatly reduced, indicating the stability of
the algorithm. If there are more stations in each priority, more
combinations are obtained, and the improvement of IAGSAA
is more significant. The number of stations in each priority is
relatively small in case Ⅲ. Compared with SGA, the average
path length obtained by IAGSAA is reduced by about 200, the
standard deviation of the path length is reduced by about 140,
average stable iteration is reduced by about 100, and the
frequency of the optimal solutions is approximately doubled.
The number of stations in each priority is relatively big in case

Ⅰ. Compared with SGA, the average path length obtained by
IAGSAA is reduced by about 850, the standard deviation of
the path length is reduced by about 460, average stable
iteration is reduced by about 200, and the frequency of the
optimal solutions could be thought to have increased
approximately sixfold. Therefore, the algorithm proposed in
this paper has good effectiveness, which is able to avoid
premature phenomena, as well as accelerate the convergence
speed.

V. CONCLUSION

This study divides stations in a factory into several
priorities based on the process, which is represented by the
priority matrix, and analogous to a TSP with constraints on
city priorities. Since solving the problem by SGA shows a
slow convergence speed and premature phenomena, we have
proposed the IAGSAA, in which the generation strategy of the
initial population of SGA is improved, and improved adaptive
crossover and mutation, as well as SAM are introduced. Later

in the iteration of the IAGSAA, the adaptive crossover and
mutation can enrich the diversity of the population to find new
search directions and jump out of local optimal solutions.
SAM is very useful to accelerate the convergence speed of the
algorithm. Simulation results have indicated that the IAGSAA
can integrate the advantages of AGA and GSAA, and has
good performance.

Since the environment in the factory is complex and
dynamic, dynamic characteristics will be taken into account in
the further research, and the algorithm will be optimized to
shorten the operation time and make AGV respond quickly.
…

ACKNOWLEDGMENT

This work supported by the National Natural Science
Foundation of China (51675186), the National Natural
Science Foundation of China and the Royal Society of
Edinburgh (51911530245), and the Science and Technology
Project of Guangdong Province (2018A030321002).

REFERENCES

[1] E. Liu, X. Yao, M. Liu and H. Jin, "AGV Path Planning Based on
Improved Grey Wolf Optimization Algorithm and its Implementation
Prototype Platform," Commputer Integrated Manufacturing Systems,
vol. 24, no. 11, pp. 131-143, 2018.

[2] C. He, Y. Song, Q. Le, X. Lv, R. Liu and J. Chen, “Integrated
Scheduling of Multiple AGVs and Machines in Flexible Job Shops,”
China Mechanical Engineering, vol. 30, no. 04, pp. 64-73, 2019.

[3] E. Shi, Y. Huang, C. Zhu and Y. Zhang, “A Novel Method of Planing
path for DDWMR,” China Mechanical Engineering, vol. 23, no. 23,
pp. 2805-2809, 2012.

[4] Y. Chen and C. Han, “An Evolutionary Multiobjective Optimization
Method for Traveling Salemans Problems,” Control and Decision, vol.
34, no. 04, pp. 775-780, 2019.

[5] S. Chowdhury, M. Marufuzzaman, H. Tunc, L. Bian and W.
Bullington, “A Modified Ant Colony Optimization Algorithm to Solve
A Dynamic Traveling Salesman Problem: A Case Study with Drones
for Wildlife Surveillance,” Journal of Computational Design and
Engineering, vol. 6, no. 3, pp. 368-386, 2018.

[6] J. Zhang, L. Ma and Y. Li, “Improved Shuffled Frog-leaping Algorithm
for Traveling Salesman Problem,” Computer Engineering and
Applications, vol. 48, no.11, pp. 47-50, 2012.

[7] D. Wang, “Improved Genetic Algorithm in Application of the TSP
Problem,” Journal of Liaoning University of Technology (Natural
Science Edition), vol.39, no. 4, pp.235-239, 2019.

[8] Q. He, Y. Wu and T. Xu, “Application of Improved Genetic Simulated
Annealing Algorithm in TSP Optimization,” Control and Decision, vol.
33, no. 02, pp. 219-225, 2018.

[9] L. Zhang, Y. Gao and T. Fei, “Firefly Genetic Algorithm for Traveling
Salesman Problem,” Computer Engineering and Design, vol.40, no. 7,
pp. 1939-1944, 2019.

[10] E. Osaba, X. Yang, F. Diaz, L. G. Pedro and C. Roberto, “An Improved
Discrete Bat Algorithm for Symmetric and Asymmetric Traveling
Salesman Problems,” Engineering Applications of Artificial
Intelligence, vol. 48, no. C, pp. 59-71, 2016.

[11] W. Yuan, X. You, S. Liu and Y. Zhu, “Adaptive Simulated Annealing
Ant Colony Algorithm for Solving TSP Problem,” Computer
Applications and Software, vol. 35, no. 2, pp. 261-266, 2018.

[12] D. Luo, L. Zhang and Z. Xu, “Heuristic Simulated Annealing Genetic
Algorithm for Traveling Salesman Problem,” 2011 6th International
Conference on Computer Science & Education (ICCSE), pp. 260-264,
2011.

[13] M. Yao, N. Wang and L. Zhao, “Improved Simulated Annealing
Algorithm and Genetic Algorithm for TSP,” Computer Engineering
and Applications, vol. 49, no. 14, pp. 60-65, 2013.

[14] L. Zhu, Q. Liao and L. Zou, “Resolution of the Traveling Salesman
Problem with Precedence Constraint Applying Genetic Algorithm,”
Journal of South China University of Technology (Natural Science
Edition), vol. 32, no. 4, pp. 99-102, 2004.

[15] W. Zhang, Y. Li and X. Zhou, “A State Transition Algorithm for
Traveling Salesman Problem with Constraints on the Order of Visiting
Cities,” 2018 China automation conference (CAC), pp. 286-291, 2018.

[16] S. Li, X. Sun, D. Sun and W. Bian, “Summary of Crossover Operator
of Genetic Algorithm,” Computer Engineering and Applications, vol.
48, no. 1, pp. 36-39, 2012.

[17] E. Liu, X. Yao, H. Lan and H. Jin, “AGV Dynamic Path Planning
Based on Improved Genetic Algorithm and its Implementation,”
Commputer Integrated Manufacturing Systems, vol. 24, no. 6, pp. 133-
145, 2018.

[18] M. Srinivas and L. M. Patnaik, “Adaptive Probabilities of Crossover
and Mutation in Genetic Algorithms,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 24, no. 4, pp. 656-667, 1994.

[19] L. Wang and M. Li, “Application of Improved Adaptive Genetic
Algorithm in Mobile Robot Path Planning,” Journal of Nanjing
University of Science and Technology (Natural Science Edition), vol.
41, no. 5, pp. 627-633, 2017.

[20] C. Yang, Q. Qian, F. Wang and M. Sun, “An Improved Adaptive
Genetic Algorithm for Function Optimization,” 2016 IEEE
International Conference on Information and Automation (ICIA), pp,
675-680, 2016.

[21] J. Jin and Y. Su, “An Improved Adaptive Genetic Algorithm,”
Computer Engineering and Applications, vol. 41, no. 18, pp. 64-69,
2005.

