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Abstract: In many industrial processes, the regulatory level based on PID controllers is 

able to maintain the process variables about the given set point values. However, 

economic reasons and operational constraints make it necessary to optimise plant 

operations to achieve as much operational efficiency as possible. This paper presents two 

solutions to solve the optimisation problem: either the optimal predictive controller 

replaces the regulatory level PID controllers, or the predictive controller is implemented 

at the supervisory level. A comparison with popular multi-variable PID tuning methods 

demonstrates the superior performances of predictive control.  The example is developed 

using a graphical predictive control software that uses the state of the art identification, 

control design optimisation and simulation LabVIEW toolkits for design verification and 

deployment. The control solutions can be easily imported to a real time platform for 

industrial applications.  
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1. INTRODUCTION 
 

In many control systems the quality of the control 

action is not a very crucial issue and a control that 

eliminate steady state offset and accomplish 

acceptable closed loop behaviour is sufficient. 

However, today's competitive environment presents 

significant challenges to the process industry on 

multiple fronts and manufacturers are challenged by 

increasing global competition, commoditization, new 

regulations, higher quality standards and responsible 

participation in ecologically oriented decisions. The 

market dynamics have made it clear that 

manufacturers must fundamentally change their 

production processes to profitably compete in the 

global market while ensuring customers receive the 

highest quality products in time. Obviously 

constraints are present in all control systems due to 

physical, environmental and economic limits on 

plant operation and in this context classical control 

methods are not sufficient to ensure good 

performance. 

Process efficiency and optimality can be improved 

adopting advanced control techniques. 

Advance control includes a vast number of methods 

that have in common basic ideas such as: 

• Process modelling and parameters identification 

• Prediction of process behaviour using process 

model 

• Evaluation and optimization of performance 

criteria 

• Multivariable and feedback control. 

Advanced control relies strongly on process model 

that try to summarize the process information and 

describe the behaviour of the system. It is evident 

that the more accurate the process model is the better 

satisfactory control performances can be achieved. 

Perhaps the most important use of the system model 

arises in predictive control applications, in which the 

model is used to predict the process output behaviour 

when facing changes in set point or inputs. 

The methods of model based predictive control 

have been widely presented and discussed in 

literature (Camacho and Bordons, 1999, 

Macieiowski, 2002, Qin and Badgwell, 1997).  For 

industrial applications several commercial predictive 

control products have been promoted, among which 

DMC-Plus, from ASPEN Tech., Connoisseur by 

Foxboro-Invensys, and RMPCT by Honeywell. 

A close literature review shows that in the academic 

works usually the model predictive controller is 
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implemented as a single or two degree of freedom 

controller in the control architecture, whereas in the 

industrial control hierarchy model predictive 

controllers are supervisory applications, 

implemented on top of the regulatory control.  The 

predictive controller performs the set point 

adjustment for the underlying control loops in order 

to drive the process variables at desired set points or 

to maintain process variables within constraints. 
 

In this paper it is demonstrated how model predictive 

control can be implemented at the supervisory 

control level to manipulate set points of multiple 

control loops in order to drive multiple process 

output variables to their targets and enforce operating 

constraints.  The simulations are conducted using a 

new graphical based integrated predictive control 

design toolkit that incorporates system identification, 

control design, simulation, verification, validation 

and real time implementation in a single graphical 

programming environment. Predictive control 

architectures in common industrial applications are 

illustrated in next section. Section IV illustrates the 

most common method for tuning PID and predictive 

controller. Section V provides the predictive tool 

overview. In Section VI experimental results and a 

comparison with multivariable PID is reported. 

Conclusions are finally presented in section VII. 
 

 

3. MPC CONTROL ARCHITECTURE 
 

3.1 Regulatory MPC 
 

Academic works often present architectures where 

the predictive controller is deployed at regulatory 

level (figure 1) 
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Fig. 1. Regulatory MPC 
 

In general, a predictive control algorithm solves an 

on-line and optimal control problem subject to 

system dynamics and variable constraints.  Consider 

the system model 
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where ( ) xnx k ∈�  are the states, ( ) unu k ∈�  are 

manipulated inputs and ( ) yn
y k ∈� are the measured 

outputs. The vectors dp(k) and dm(k) are unmeasured 

disturbances to the state dynamics (process noise) 

and to the outputs (measurement noise), respectively 

(Ordys and Clarke, 1993). The controller predicts the 

future behavior of the actual system over a time 

interval defined by a lower and upper prediction 

horizon, denoted by Nw and Np, respectively. The 

optimal input to the plant is calculated by minimizing 

a cost function defined along the prediction horizon, 

usually specified as a sum of quadratic future errors 

between the reference trajectory and predicted plant 

output, and the predicted control effort: 
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Subject to constraints specified on the inputs, outputs 

and inputs increments: 
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where 

Q(i): Positive Definite Error Weighting Matrix; 

R(i): Positive Semi-Definite Control Weighting 

Matrix; 

ˆ( / )y k i k+ : Vector of Predicted Output Signals; 

r(k+i): Vector of Future Set-Point; 

( / )u k i k∆ + : Vector of Future Control Actions. 

The presence of disturbances and plant/model 

mismatch are taken into account by implementing a 

feedback measurement and a receding horizon 

strategy, which means that only the first element of 

the computed control sequence is applied to the 

plant. At the next sampling interval, both control 

horizon and prediction horizon move one step ahead 

and the entire cycle of state estimation, output 

prediction and optimization is repeated using the new 

measurement from the plant.  
 

 

3.2 Supervisory MPC 
 

In industrial applications predictive controllers are 

usually implemented at the supervisory level of a 

two-layers architecture (Figure 2 and 3). On the 

regulatory level the typical continuous controllers are 

PID controllers. 
 

PLANTPID

PREDICTIVE

CONTROLLER

+

reference

outputinput

set-point

SUPERVISORY
LEVEL

REGULATORY
LEVEL

 
Fig. 2. Two layers architecture/cascade configuration  
 

The advantage of a cascade configuration (figure 2) 

is that the MPC algorithm is sitting on top of the 

existing PID control structure and does not interfere 

with the closed loop control system. The control of 

the process can be switched to the MPC algorithm by 

simply redirecting the set point input (Bulut et al., 

2000). 
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The general state space equations describing the 

plant and the controller are the following: 
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Where xp(k) and xc(k) are the states of the plant and 

the PID controller respectively, u(k) is the input to 

the plant generated by the low level controller, dp(k) 

and dm(k) are the process noise and the measurement 

noise and w(k) is the noise on the control signal. 

The error signal ek is defined as e(k)= r(k)- y(k)  

After appropriate substitutions, it is possible to write 

the state space equations for the MPC model in terms 

of the states xp(k) and xc(k) and the independent 

variables r(k), dp(k), dm(k) and w(k) as follow: 
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In a parallel configuration the predictive controller it 

is used in parallel with the existing low level PID in 

order to improve the performance of the closed loop 

system (figure 3).  As in the cascade MPC 

configuration, the parallel MPC structure does not 

requires modification to the existing regulatory 

control structure (Bulut et al., 2000). In different 

papers (Saez et al. 2002, Uduehi et al. 2004) it has 

been demonstrated that that for linear time invariant 

multivariable systems, the effect of the control law 

obtained for the regulatory level MPC controller is 

equivalent to that obtained for the supervisory level 

MPC controller. In those cases the supervisory MPC 

controller directly regulates the input u(k) to the 

plant, whereas in this paper the supervisory level 

MPC controller performs dynamic set point 

adjustments for regulatory level controllers. 

Lets assume that the equations for controller and 

plant are the same as in (4) (5) and that the input to 

the plant is given by u1(k)=u2(k)+u(k), where u(k) is 

the output of the PID controller and u1(k) is the 

optimal output of the MPC. 
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Fig. 3.Parallel configuration. 
 

It is possible to write the state space equations in a 

form analogue to (6) where 
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and X(k), W(k), Y(k), A, G, C, M are as previously 

defined. In this case u2(k) is the only manipulated 

variable, whereas r(k) is treated as a known input. 

The physical constraints on the inputs and outputs of 

the plant can be written in the form: 
 

    ( )min maxk≤ ≤Y Y Y  

 

and easily incorporate in the constrained model 

predictive control controller at supervisory level that 

uses the models described above to compute the set 

points for regulatory control loops. 
 

 

4. CONTROLLER TUNING 
 

4.1 PID Tuning 
 

Since the upper level supervisory predictive controls 

often depend upon lower level PID loops, a correct 

tuning of these regulators is fundamental in order to 

obtain satisfactory performance of the control 

strategy. Among the most common PID tuning 

methods we find Davison method (Davison. 1976), 

Penttinen-Koivo method (Penttinen and Koivo, 

1980), Maciejowski method (Maciejowski, 1989). 

In (Martin et al. 2002) a method that combines ideas 

from the three methods above is presented. 

The resulting combined controller is: 
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where Kp is Maciejowski’s proportional term, Ki is 

Davison’s integral matrix and Kd is Pettinen-Koivo’s 

proportional gain. G(jωb) is the frequency response 

at the bandwidth ωb, G(0) is the steady-state gain 

matrix of the plant for a step input, C and B derive 

from state-space plant model. The parameters p, ε 

and d are scalar tuning parameters.  

The tuning strategy consists on increasing p from a 

small positive value till a satisfactory closed-loop 

response for a step input reference is reached. After 

that p is decreased and the value of ε is augmented 

until the outputs of the closed loop have the 

maximum speed of response. The parameter ε is 

determined by a procedure called “tuning the 

regulator on-line” that consist of modifying its value 

so that the outputs of the closed loop for step inputs 

reach the maximum speed of response 

The reason of the coupling in the combined method 

is due to the fact that each gain acts in different 

region of the frequency domain: the integrator is 

dominant at low frequency, the derivative term 

prevails at high frequency and the proportional gain 

acts in the medium frequency. 
 

 

4.2 MPC Tuning 
 

The tuning parameters of the MPC controller are the 

cost function weighting matrices R and Q, the control 

horizon Nu, the prediction horizon Np and the 

sampling time Ts for the discretization of the system. 

The prediction horizon Np determines the number of 

output predictions that are used in the optimization 

calculation. A long prediction horizon leads to better 

performance and has a stabilizing effect, but it 

increases the computation burden. 

The control horizon Nu determines the number of 

future control actions that are calculate in each 

optimization step. In general, a short control horizon 

leads to a controller that is moderately insensitive to 

uncertainties and modelling errors, whereas a long 

control horizon results in unnecessary control action 

and long computation time. 

The matrix Q, penalises the tracking errors and 

guides the servo performance of the control system. 

The matrix R is a move suppression factors that 

change the aggressiveness of the controller and 

assure a smooth control action.  

Smaller sampling time Ts demand more aggressive 

control, while larger time constants result in less 

aggressive action. 

Usually the tuning of these parameters in order to 

guarantee good performances, stability and 

robustness is done by simulation, even if approaches 

for developing model predictive control tuning rules 

exists (Wojsznis et al., 2003) 

 

 

 

 

 

 

5. PREDICTIVE CONTROL TOOLKIT 
 

The National Instruments Inc LabVIEW platform is 

used to develop the toolkit.  The predictive control 

toolkit introduces in LabVIEW a new set of functions 

that accomplish the state estimation, integration, 

model prediction and optimization calculations. The 

main components of the toolkit are well illustrated in 

(Balbis et al., 2005).  Existing LabVIEW toolkits are 

used for the model definition and analysis. For 

example, once a model has been built using the 

Identification toolkit, its property such as 

controllability and observability are investigated 

using Control Design toolkit.  

The dynamic behavior of the designed predictive 

controller can be tested and verified by embedding 

the controller in the Simulation environment. The 

overall block diagram for a cascade supervisory 

MPC application developed using the toolkit is 

shown in figure 4. 
 

 
 

Fig. 4. Block diagram of supervisory/cascade control 

application 
 

Simulation allows discovering errors and assessing 

the performance. There are cases in which software 

and operating system must behave deterministically. 

For this purpose LabVIEW Real Time Module 

allows execution on NI RT series hardware, 

including RT Series Plug-in Devices, PXI embedded 

controllers, RT Compact FieldPoint and Compact 

Vision controllers. The traditional complexity of 

building embedded system is overcome by the 

simply architecture of a LabVIEW Real Time 

system. 

On a Windows based machine the application is 

developed with the usual graphical approach, by 

simply choosing the vi, or in other words the 

functions needed in the application, and wiring them 

using the mouse. Once the application is ready, it can 

be downloaded to the target processor running a real 

time operating system by configuring a set up page. 

Moreover, the modular nature of LabVIEW 

programming allows easily scaling from simple 

application to complicated control systems, as 

modifications and additions are fast and simple to 

implement. 
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5. DEMONSTRATION EXAMPLE 
 

In order to illustrate the performance of predictive 

controller at regulatory and supervisory level, 

various simulations have been carried out using a 

Predictive Control toolkit developed for LabVIEW.  

The experimental results are compared with 

multivariable PID controllers tuned using the 

combined methods described above. 

The system to control is a stable non minimum phase 

MIMO system which transfer function is 
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The discrete transfer function used to generate all 

model-based controllers was obtained discretizing 

the system with sampling time Ts=0.1s. 

The multi-loop regulatory level controller is 

constituted by four nominal multivariable PID 

controllers. The settings used for the PID controller 

are displayed on the table 1. 
 

Table 1 PID Controller Tuning Parameters 
          

 p       ε       d            Kp                   Ki               Kd 

 
1.04 2.16 1.71 2.29 0 1

0.9      0.7      0.001                  
1.67 1.72 2.29 1.71 1 0

p dε

     − −
     ⋅ ⋅ ⋅
     − −     

 

 

Figures 4 to 8, show the process output and input as 

controlled by the nominal regulatory level controller 

(PID), regulatory level MPC controller and the 

supervisory MPC controllers. For simplicity, it is 

considered only the case in which the multi-loop 

regulatory level controller is constituted by four 

nominal multivariable PID controllers tuned using 

the combined method.  

The MPC design tuning parameters are: Np = 25; 

Nu = 1; Nw = 1; Q(t) = diag(2,1), R(t)=diag(1,1). 

Figures 4 and 5 show the trajectory of input and 

output obtained applying multi-loop PID and MPC 

controller at regulatory level.  It can be noticed that 

in both cases the oscillatory, non-minimum phase 

dynamics are effectively dominated. However using 

a predictive controller gives smaller overshoot and 

shorter settling time. 

 

Figure 4 PID (--), MPC (−) output unconstrained 

case 

 
Figure 5 PID (--), MPC (-) input unconstrained case 

 

A main feature of model predictive controllers is the 

ability to handle constraints in explicit way. Figure 6 

shows the case of regulatory MPC subject to the 

inputs constraints 0 ( ) 5u k≤ ≤  

In the second scenario presented in figures 7 and 8, 

a nominal multivariable regulatory level PID 

controller controls the process and a MPC controller 

is placed at the supervisory level according to the 

cascade and parallel structures presented above. 
 

 
Figure 6 PID (--), MPC (-) input constrained case 
 

Comparing the results in Figures 4 and 6, it can be 

observed that the system response of the process 

when under direct MPC control at the regulatory 

level is similar to the response when the MPC 

controller is used at the supervisory level.  The 

purpose of this simulation is to show that a MPC 

controller can be easily implemented at top level of 

an already existing control structure. In this way 

additional objectives and constraints such as 

economical criteria can be redefined without 

considering the PID replacement at the loop level. 
 

 
Figure 6 PID+ MPC output cascade configuration (-) 

and parallel configuration (- -) 
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Figure 7 PID+ MPC input cascade configuration (-) 

and parallel configuration (- -) 
 

Another advantage of MPC is that it allows 

incorporating measured and unmeasured 

disturbances in the model, enabling feed-

forward/feedback action to minimize the impact of 

disturbances on the process outputs. In the last 

scenario the model was modified to include 

stochastic disturbances acting on the process control 

loops. The response of supervisory MPC and 

regulatory PID to unmeasured disturbances is shown 

in figure 8 – the rejection of MPC is more effective 

than that of the PID regulatory loops alone 
 

 
Figure 8 Response of regulatory PID (--) and 

supervisory MPC (-) in presence of plant 

disturbances 
 

 

6. CONCLUSION 
 

This paper presented the effect of control law 

obtained applying a predictive control both at 

regulatory level and supervisory level.  

The easy applicability of the developed graphical 

based predictive controller framework for industrial 

control applications have been underlined and clearly 

illustrated by a case study.  Closed-loop simulations 

with a stable non minimum phase system as 

controlled process showed that the supervisory MPC 

controller has better performances compared to 

classical PID control schemes and allows taking in 

account all constraints.  The flexibility in formulating 

the control problem allows for integrating additional 

objectives and constraints such as economical 

criteria. 
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