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Abstract

stgf is a community code employed for outer-region R-matrix calculations, de-
scribing electron-impact collisional processes. It is widely recognised that the
original version of stgf was written by M. J. Seaton in 1983, but through constant
refinement over the next decades by worldwide contributors has evolved into its
current form that more reflects modern coding practice and current computer ar-
chitectures. Despite its current wide acceptance, it was never formally published.

Therefore, we present an updated high-performance parallel version of pstgf,
that balances the requirements of small university clusters, yet can exploit the
computational power of cutting edge supercomputers. There are many improve-
ments over the original stgf, but most noticeably, the full introduction of MQDT
options that provide subsequent integration with ICFT (Intermediate Coupling
Frame Transformation) codes, and for either Breit–Pauli/DARC (Dirac Atomic
R-matrix Codes), better load balancing, high levels of vectorisation and simpli-
fied output. Semantically, the program is full fortran 90 in conjunction with MPI
(Message Passing Interface) though has CUDA fortran options for the most nu-
merically intensive code sections.
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PROGRAM SUMMARY/NEW VERSION PROGRAM SUMMARY
Program Title: RMATRX-PSTGF
Licensing provisions: GNU Lesser General Public License vLGPL2.1
Programming language: Fortran90

Nature of problem(approx. 50-250 words):
The R-matrix outer region code, pstgf directly calculates various electron-impact driven
processes such as excitation and ionisation, or provides K-matrices for input for subse-
quent ICFT, differential or magnetic sub-level codes. As the problem size increases, there
is an associated increase in the input/output, the numerical computation and unbalanced
workload, especially for electron-impact energies where the number of open-channels is
of a similar size to the number of closed. The code has been significantly modified to
address these issues.
pstgf interfaces the R-matrix inner region with the outer region, with the R-matrix acting
as intermediary between the two regions. The outer region expresses an electron moving
in the multi-pole expansion of the target and predominantly employs Coulomb functions,
perturbed or otherwise to achieve this. This is a computationally expensive task, as the
R-matrix must be formed for every energy point of every partial wave.

Solution method(approx. 50-250 words):
An approach that permutes both the partial wave and energy of the incident electron has
been implemented. In this version, each processor does not calculate the same incident
energy point for each partial wave, but rather distributes all energy points across all pro-
cessors. This achieves better load-balancing of the work between cores and avoids the
case where an overloaded single processor has to always calculate in the energy range
where there are approximately the same number of half-open or half-closed channels,
which is numerically intensive.

Additional comments(approx. 50-250 words):
Dimension parameters used to define arrays and matrices within pstgf (PARAM file) have
been removed, all array dimensions are dynamically allocatable based upon the H.DAT
file and set to the exact dimension. A CUDA subroutine for matrix multiplications using
GPUs has been included, it can be activated or deactivated commenting this module in the
source. Users of serial version stgf or older parallel versions of pstgf can move to current
version without any modification in the input files.
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1. Introduction

Time-independent R-matrix theory [3] is a powerful formalism that may be
used to calculate first order collisional processes, order α, where usually there is
one single active electron in the system: electron-impact excitation, ionisation,
photoionisation, dielectronic recombination, radiative recombination for atoms
and their associated ion stages. In its simplest form, R-matrix theory splits the
collisional problem into two distinct regions: an inner and an outer region. The
inner region is defined by the radial extent of the most diffuse orbital from the
nucleus. This is sufficient to encompass the charge cloud of the target, though
mathematically this R-matrix radius may be extended further, though at a compu-
tational cost. The inner region represents target atom/ion plus incident/outgoing
electron, and is treated as N + 1 electron many body problem, with all the inter-
actions taken in account between indistinguishable particles, including exchange
and correlation. We calculate a complete set of eigenfunctions representing both
the bound and continuum spectrum. One of the strengths of the R-matrix approach
is that as we achieve a complete description of the system in the inner region that
is independent of the incident electron energy, therefore only requiring one diag-
onalisation of N + 1 Hamiltonian, for a range of electron-impact energies. The set
of codes used for the calculations in the inner region were published in [4, 5, 6, 7]
and although they form a foundation for this work, they are not the subject of
present paper.

In the outer region, the formalism is quite different, the problem is treated as a
single electron moving in a multipole expansion of the target. In pstgf this single
electron, which is moving in the potential created by the remaining electrons,
is considered to be at a distance that correlation effects would be minimal, and
therefore are not included. Comparatively, in this region the physics simplifies, but
its range may extend to large distances due to the long-range effect of Coulomb-
like potentials. To extract collision strengths, we must be at distances from the
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nucleus where the wave function has returned to well-known asymptotic forms, a
distance considerably larger than the R-matrix inner-region radius.

The key of R-matrix method is the connection of the wave function at the
boundary between the inner and outer regions, as this interface determines the
phase shifts, consequently the S matrices, and finally the collision strengths. Greater
details about R-matrix method are given in [3].
pstgf is the most common atomic outer-region program used to perform the

calculations in the outer region for electron-impact excitation processes. As well
as directly calculating electron-impact excitation collision strengths, it is the pro-
genitor code for subsequent ICFT, LS, jK and jj differential codes, as well as
magnetic sub-level work. It has the capabilities to be interfaced with the molec-
ular suite of R-matrix codes. In general, pstgf can be used for any process that
can be described by the time-independent and non-damped R-matrix formalism,
the most common process included in such theory is the electron-impact excitation
and de-excitation of atoms and ions; other important processes are electron-impact
ionization, single or multiple, if the target structure includes such ionizing states,
electron-impact excitation of molecules, or any one-electron process described by
time independent R-matrix theory.
pstgf is a community code, employed by the majority of R-matrix groups

around the world, many of whom have made contributions and improvements
over the decades. In present work, we build upon this to provide new sustainable
version, that will address future problems that inevitably will be larger in scale.

Below, are some notable additions to the code have been carried out over the
years, that due to the original code not being formally published may have been
overlooked. These include the extension to neutral atoms [8], the ICFT (Inter-
mediate Frame Transformation) by Griffin and co-workers [9], and the first sys-
tematic parallelisation of the serial code by T. W. Gorczyca [10] and D. M. Mit-
nik (2002, unpublished), using the MPI protocol. This version tried to balance
the work-load by distributing the impact-electron energy distribution across the
whole energy range for each processor, and remains effective when the number of
processors is significantly less the number of energy points. However, in the in-
tervening years, the number of cores available to researchers has increased to the
point where each processor only carries out 1-3 energy points per partial wave.
This spurs some of the work presented later in this paper.

Subsequently, this parallel pstgf version was improved in efficiency. In this
new version, pstgf was restructured in terms of its memory usage. At every point
in the calculation, memory is assessed and if not required deallocated, before
the next section reducing the memory footprint of the code by half. Addition-
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ally, the H.DAT input file was split into individual partial waves H.DATXXX files,
that ensured that thousands of processors no longer needed to read a single file,
competing against each other, but could concurrently read 40-100 files in smaller
groups of processors. Where possible, the LAPACK routines for matrix-matrix
and matrix-vector multiplies where employed, especially if an optimised-vendor
supplied library was available. Specific routines that considered the multipole per-
turbation of the non-perturbed results were heavily loop unrolled and refactored
to ensure the greatest degree of vectorisation. However, even these improvements
need further consideration if we are to progress routinely to systems involving
Hamiltonian matrices in excess of 100 000 by 100 000 and involving over 10 000
channels. In this paper, we describe how to address these problems, ranging from
removing the last vestiges of fortran 77 legacy code (COMMON blocks, hard-
dimension arrays), to introducing GPU enabled sections for future hardware com-
patibility.

2. Glossary of terms

• Target state: eigenfunction of the Hamiltonian of the target, N-electron
system. It can be labelled with quantum numbers appropriate to the cou-
pling scheme employed. Usually the electronic orbitals are calculated by
other specialised packages, for example autostructure [11], MCHF [12],
GRASP [13, 14], or CIV3 [15]. R-matrix inner region codes use these or-
bitals to calculate the target energies and eigenfunctions.

• Partial wave Jπ or LS π: symmetry of the initial system target state plus
incoming electron, the quantum numbers are conserved. Each Hamiltonian
representing a partial wave is calculated independently of every other partial
wave. The total cross section is then the sum of the partial cross sections for
all possible values of J/L, from zero to infinity, all possible couplings of S
(LS coupling case), and π, even and odd.
For practical reasons, we have used for present work the notation of the
relativistic coupling Jπ, but the whole procedure is equivalent for the non-
relativistic case, and is achieved by just substituting the indexes Jπ for LS π.

• Channel: In the inner region, it is an eigenfunction of the Hamiltonian for
the N + 1-electron system. They are orthogonal to each other. The channels
conserve the quantum numbers of the total angular momentum J and parity
π, in the case we are working in level-resolved, relativistic Jπ coupling; or
orbital angular momentum L, total spin S and parity π in the case we are
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working in term-resolved non relativistic LS coupling. Hence, channels are
associated to the partial waves. Channels can be:

– Open: a channel is classified as open when the energy of the incident
electron exceeds the energy between an initial term/level and a final
term/level. In this case, a transition may be produced, the final pop-
ulation of the channel will be larger than zero. It has an oscillatory
asymptotic form.

– Closed: A channel is classified as closed when the incident electron
energy is less than the energy between and initial term/level and a
final term/level. In this case, the transition is energetically impossible.
It has an exponentially decaying asymptotic form.

• Phase shift δJπ: phase shift of the wave function in the asymptotic region
with respect to the case of a pure Coulomb potential, in the case of ion tar-
get; or constant potential, in the case of neutral target. Transition matrices,
and in consequence cross sections, may be determined in terms of the phase
shifts.

• Transitions matrix T Jπ
i f , from initial state i to final state f : transition ampli-

tudes. Its module square |Ti f |
2 is the transition probability from the initial

target state i to the final one f . The calculation of the transition matrix is
particular and independent for each partial wave. |Ti f |

2 =
∑

Jπ |T Jπ
i f |

2

• Collision strength Ω(i− f ), from initial state i to final state f . Dimensionless
version of the cross sections, see [3] for details. Ω(i − f ) =

∑
Jπ ΩJπ(i − f )

• R-matrix RJπ: A matrix (nchannels × nchannels) which connects the wave func-
tions of the channels between the inner and the outer region. This matrix is
the key to calculate the phase shifts, and with them the transition matrices,
collision strengths and cross sections. See [3] for theory details.

3. Overview

pstgf v1.1 beta 2019 is an upgrade of the previous working version v0.871.
The program is implemented in Fortran90 language, parallelised with the message
passing interface (MPI) protocol, and with optional CUDA features for further

1http://connorb.freeshell.org
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optimisations if the computer architecture allows. pstgf reads as input the target
state eigen-energies, the channels associated with each target state for each partial
wave, and the surface amplitudes (acquired from the matrix diagonalisation) for
each partial wave. All this information is encapsulated in the H.DATXXX file.
pstgf enforces the continuity of the radial wave function and its first derivative
between the inner and outer regions via the R matrix. The main goal is the solution
of the Schrödinger equation for one electron under the potential created by the
multipole expansion potential of the others, as a single particle model, neglecting
the electron exchange. This may be expressed as[

−
1
2

d2

dr2 +
l (l + 1)

r2 +
2z
r

+ εn

]
F Jπ

n =

N∑
m=1

U Jπ
nmF Jπ

m , (1)

with n from 1 to N, number of channels in the partial wave Jπ, r is the radial
coordinate, l is the orbital angular momentum, which depends on the partial wave
Jπ, V = 2z

r the potential in the outer region; z = Z − Ne is the effective charge.
εn = E − en is the channel reduced energy, being E the impact energy of the
projectile, and en the excitation energy of the individual target level, hence εn > 0
determines an open channel, while εn < 0 a closed one. Fn is the radial wave
function, and Unm is the long-range multipole expansion.

Once equation (1) has been solved, the radial wave function Fn is calculated
from the asymptotic region to the interface between the inner and outer regions
r0, then we have to match the solution with that from the inner region to fulfil its
continuity. This is achieved by the R matrix, which performs the unitary transfor-
mation among the channels to fulfil the continuity of the radial function and its
first derivative

Fn(r0) =

N∑
m=1

Rnm

(
r0

dFm

dr

∣∣∣∣∣
r=r0

− bFm

)
, (2)

b is defined by the boundary conditions in the inner region, as the value of the
logarithmic derivative of the radial wave function in the interface between inner
and outer region. This is usually chosen to be zero.

The surface amplitudes wnk are defined as follows

wnk =

nc∑
j=1

cn jkun j(r0) , (3)

where un j(r0) are the reduced surface amplitudes in the inner region; and cn jk

coefficients obtained from the N +1 Hamiltonian diagonalisation. The summation
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extends to the size of the continuum basis for each orbital nc, n extends over the
number of channels, while k the second index is over the Hamiltonian matrix size.
The R matrix itself can be defined as follows.

Rnm =
1

2r0

M∑
k=1

wnkwmk

Ek − E
, (4)

where the Ek are the R-matrix poles or eigenvalues of the N + 1 system. This ex-
pression (4) was traditionally the part of the calculation which took the most of the
time, but now it has been highly optimised using the CUDA programming tech-
niques for GPU (Graphical Processing Units). For further mathematical details
we refer to [16, 17, 3].

Note in equation (1) that the reduced energy εn, greater or lower than zero, will
determine the character of the channel, open or closed, so a different asymptotic
behaviour, see Section 2. The relative number of open and closed channels for
a value of the impact energy will be relevant in terms of the computation, we
designate as no the number of open channels and nc the number of closed channels.
Equation (1) varies slightly if written in a different coupling scheme ie. Dirac R-
matrix calculations replace l with κ. Equation (1) has to be solved for all the values
of the impact energy E and the complete set of partial waves Jπ, usually several
thousands of times. For ions, the collision strengths versus the impact energy
present narrow Rydberg resonance structures and as a consequence the grid of the
impact energies has to be quite fine to delineate them.

Use of pstgf assumes that the eigen-energies and eigen-functions in the inner
region have been previously calculated, so we know all the R-matrix poles Ek and
coefficients wnk for all the partial waves. This can be done with several meth-
ods and software packages; some examples are RMATRX [5], DARC [6, 7], or
BSR [18]. All the information about the channels in the inner region (En and wnk)
is stored in a set of generic binary files H.DATXXX. These may be concatenated
into a single H.DAT file, used by previous versions of the code, though for good
optimisation we would advise against this. Ideally, the inner region has diago-
nalised every Hamiltonian concurrently and the Hamiltonians are already in this
H.DATXXX form. pstgf requires as input the values of the wave functions of all
the channels at the boundary of the inner region r0 for all the partial waves. With
this initial conditions, pstgf expands the wave function in terms of equation (1)
from r0 up to a certain asymptotic limit r1, in which the wave function can be re-
placed by its analytic form, of a Coulomb function in the case of a charged target,
or a spherical Bessel function in the case of the neutral target. From this point on-
wards, the wave function F Jπ

n just follows its analytical asymptotic solution. In the
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interface between the inner and outer region r0, we have to impose the continuity
of the wave function and its first derivative.

The main calculation is distributed in two nested iterative loops. The outer
loop runs over partial waves LS π or Jπ, pstgf has input options (dstgf) to calculate
all the partial waves stored in H.DATXXX files or to restrict the calculation to a
subset of them. To obtain the final collision strengths Ω, pstgf has to sum up all
the contributing partial ones ΩJπ, obtained for each partial wave. The inner loop
concerns the impact energies E, this loop runs over a set of NE discrete values of
the scaled energy Ek. This grid should be fine enough to delineate fine Rydberg
resonance structure, and therefore requires a minimum several thousand energy
points. The inner loop, in energy, is the one which is parallelised, the energy
array {Ek} is split among the processors nproc, so each processor is assigned a set
of nproce = NE/nproc energies to calculate. For an optimum performance, the
number of energies should be an even divisor of nproc, if this is not the case, then
pstgf will add additional points to enforce this.

The first step in the calculation is to determine which channels are open and
which ones are closed, so their asymptotic behaviour is set as boundary condition
to the equation (1). Then, pstgf performs a Numerov method to propagate the
coupled radial wave functions F Jπ

nm from the boundary of the inner region r0 and
the asymptotic limit r1. An overview of the operating mode of pstgf is as follows:

1. Read standard input: energy grid E, partial waves Jπ to be processed, other
calculation parameters.

2. Read information about the target H.DAT, Jπ independent.
3. Start loop in Jπ.
4. Read information about the partial wave Jπ H.DAT.
5. Start loop in E. Parallel, split all the E values in all the processors.
6. Calculate partial ΩJπ for each energy.
7. End loop in E.
8. End loop in Jπ.
9. Add up the partial ΩJπ for all partial waves, add the top-up up to J → ∞,

and get the total Ω(E).
10. Write output to file OMEGA.

4. Computational details

As computer hardware capabilities have improved, more complicated systems
have been undertaken, resulting in increasing number of symmetries and more
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channels being calculated by pstgf, which revealed some implementation issues.
The first problem detected was the large time differences based upon different in-
cident electron energies. The key understanding in this issue concerns the number
of open and closed channels no, nc. It was detected that when both were approxi-
mately equal no ∼ nc, the computation time increases dramatically in comparison
to the cases where either only a few channels were open, or all channels were
open. Therefore, in the input array of impact energies Ek, there is a distinction
between what we call “fast energies” and “slow energies”. Usually all the partial
waves include channel energies up to a certain threshold Emax, common for all
partial waves. Up to now, for a fixed impact energy, all the partial waves will have
a similar number of open and closed channels. In other words, if an energy is
‘fast’ or ‘slow’ for an individual partial wave, most probably, it will have the same
character for all of them. However, computationally the bottleneck lays in the
energies around those with half the channels being closed and the other half open.
In previous v0.87 version, the energy array to be calculated by each processor was
independent of the partial wave, and all the processors worked on the same ener-
gies for each and every partial wave. When the number of processors increases
that gave rise to some of the processors only had a small number of slow energies,
or even none, while other processors had to work considerably harder for several
slow energies for all the partial waves. Hence, the time distribution among the
processors was very different and the fastest ones remained idle for large parts of
the calculation, while waiting for the few slow ones. This problem is maximised
when the number of processors increases, so there are less energies per processor
to proceed. In new version v1.1, we fix this issue and improve the time balanc-
ing by having the energy grid different for each partial wave, so the amount of
fast energies and slow energies calculated by each processor is evenly distributed.
Figure 1 shows a diagram of this energy distribution to the processors, in the left
picture (v0.87) each processor works only an energy array for all partial waves,
while in the right picture (v1.1) each processor works all the energies.

In v0.87 all the processors worked the same energies for all the partial waves,
and the output was split into several OMEGAXXXX files, XXXX being the index
of the processor, from 0000 to 9999. Each processor was assigned a unique out-
put file, containing unique calculated energies which via a post-processing code,
sorted and collated each file into a single universal OMEGA file of ascending inci-
dent energy values. In v1.1 all processors calculate all energies, but never consec-
utive energies for the same partial wave. This mitigates the issue of the ‘slow’ and
‘fast’ energies, as no individual processor is assigned the half-closed/half-open
channel energy for all partial waves, this now becomes shared among all proces-
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E1 E2 E3 E4 … En

Jp1 P0 P1 P2 P3 P(q-1)

Jp2 P0 P1 P2 P3 P(q-1)

Jp3 P0 P1 P2 P3 P(q-1)

…

Jps P0 P1 P2 P3 P(q-1)

E1 E2 E3 E4 … En

Jp1 P0 P1 P2 P3 P(q-1)

Jp2 P(q-1) P0 P1 P2 P(q-2)

Jp3 P(q-2) P(q-1) P0 P1 P(q-3)

…

Jps P(q-s) P(q-s-1) P(q-s-2) P(q-s-3) P(q-s+1)

Figure 1: Colour online. Diagram of energies and symmetries worked by each processor. Left:
v0.87; right v1.1. Pi represents the processor, it is also represented by a particular color; Ei
represents the energy array to be processed by processor Pi in the partial wave Jπ. The oval
represents the partial wave were the processor Pi starts calculating.

sors. As consequence, each OMEGAXXXX will not contain a converged collision
strength at each energy point, in fact each OMEGAXXXX file now containing ev-
ery energy only has meaning when summed over the respective energy points in
all files. Consequently, the OMEGA output file can not be split, and therefore
the partial collision strengths are added up inside pstgf using the MPI routine
mpi reduce, and a single OMEGA output file is produced.

A second lack of efficiency of previous versions to v0.87 was the reading of the
input file H.DAT. If the number of partial waves and channels increases, the size of
the H.DAT file can reach several gigabytes. In previous versions of pstgf, this sin-
gle file had to be read by all the processors each time they started the calculation
for a new partial wave. It was usual when the program was started, that all the pro-
cessors attempted to read the same large file at the same time, inevitably leading
to some processors blocking others, wasting computing time. Version v0.87 had
already implemented the possibility to work beyond a single large H.DAT file, by
splitting the monolithic single H.DAT into several smaller H.DATXXX files, being
XXX the label of the partial wave, from 000 to 999. Then for each partial wave,
the processor must read just the individual H.DATXXX which contains the infor-
mation about it, and not the whole H.DAT file, with several records of irrelevant
information. Nevertheless, it was still a blocking issue when all the processors
attempted to read the same file for the same partial wave, especially at the starting
of the calculation. As mentioned above we solve this problem changing the order
that the processors work the partial waves. In v1.1 all the processors carry-out
all the same partial waves, but with the difference being, not in the same order.
This implementation avoids all the processors reading from the same file at the
same time, so these reading waiting queues are minimised. We avoid to use MPI
communications inside the loop in the symmetry, because it would set barriers,
and that would make inefficient the work load balancing among the processors.
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Finally, other programming semantic improvements have been performed. All
common blocks have been removed and replaced by module, so the programming
style is clearly fortran90. All the statically dimensioned arrays and matrices have
been removed, previously enforced through a parameter file (PARAM). Now, all
arrays/matrices are designated allocatable and their scope is dynamically assigned
based upon the values read from the H.DATXXX files. With this change, pstgf
does not suffer from unexpected segmentation faults, due to a badly user defined
variable in the PARAM file. In addition, the memory usage is minimised to the
essential required. The calls to auxiliary routines from libraries lapack and blas
has been strategically modified in order to take advantage of their optimisation.
Another change carried out in the subroutines that contain the most load of work
for pstgf, is to split the memory in an strategic efficient way to work at cache level,
with faster access.

In principle, any outer-region electron-impact excitation calculation that can
be carried out with present version of pstgf would also be possible with previous
parallel versions, or even the serial version stgf, considering the calculation time
can become huge. The new version of the code will work without doing any
changes to the input files. Nevertheless, some minimum and optional changes can
be done, and they will improve the efficiency of new version:

• Remove the old parameter dimension information file PARAM. The code
no longer uses it, it is absolutely redundant, as all the dimensions are now
dynamically allocatable.

• The former parameter to set the maximum memory storage dimension with-
out openning any scratch file, mzmeg, is now an input variable. Set its value
in the namelist stgf of the standard input if you need to use scratch files in
stead of in-memory storage (default value is no scratch file to be opened).
We strongly recommend against that unless it is really necessary, the hard
disk can get exhausted if the number of processors is large.

• If the inner-region code provides one unique H.DAT file, split it several files
H.DATXXX, each one containing one only partial wave. We recommend to
use the utility tool hsplit.

• Keep the partial-wave list file sizeH.dat or sizeBP.dat, and format it properly,
so the order of the partial waves in this file is the same than the order in the
H.DATXXX files.
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5. CUDA optimisations for pstgf

Hamiltonian size (50 000 – 250 000)

Number of channels
(2 000 – 12 000)

!"#
$ − $#

!#&

'"& =)
#

!"# !#&
$ − $#

Figure 2: Colour online. Half of the symmetric R-matrix is calculated by 10 matrix multiplies, and
then symmetrised for the full result. We optimise the memory usage of the GPU, by allowing sev-
eral MPI tasks to access the GPU simultaneously. In the figure, the blue, red and green blocks are
representative of a particular task of matrix multiplication sent to the GPU, three in present case.
In general, each task calculates in a different energy and partial wave, and hence the submatrix of
a different R-matrix.

As the processor speed of individual CPUs has remained largely stagnant for
the last decade, one option to maintain greater scalability of existing codes is
to interface with the power of GPUs (graphical processing units). CUDA Fortran
combined with Nvidia GPUs is one of the simplest ways to seamlessly harness the
power of MPI and the GPUs. GPU usage is ideally suited to dense matrix multi-
plies, and the initialisation of the R-matrix falls into this category. As illustrated
in the Figure 2, the R-matrix can be calculated in a single matrix multiplication,
but this would exhaust the total memory of the GPU by a single processor. A
more optimal use involves separating the R-matrix formation into ten smaller ma-
trix multiplies, essentially pipelining them, one after another. The collective result
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from these 10 matrix multiplies, can be then symmetrised to provide the full re-
sult. This greatly reduces the consumption of memory on the GPU and allows
more MPI tasks to concurrently access it. The different coloured blocks, and the
respective positioning in the resulting R-matrix is given in Figure 2, and corre-
sponds to 3 different R-matrix matrices, at 3 different energies, being carried out
concurrently. Actual matrix multiples are further optimised by padding the larger
matrices with zeros to ensure that the matrices fall on optimal, divisible by 32 or
64 boundaries.

Traditionally, for medium to small cases the most time-consuming aspect of
the code was the formation of the R-matrix itself (subroutine RINIT). Test cases
for neutral Fe, show that for 7261 channels and a Hamiltonian size of 106 661
takes 14−18 secs per R-matrix formation and achieves a factor of 80−100 speed-
up over existing code.

6. Code Structure

6.1. Input files
6.1.1. Standard input

File dstgf, mandatory, ASCII.
Structured in namelist blocks, and optionally additional parameters.
namelist stgf General calculation parameters.
iprint Integer from -2 to 3. Default -2.

Moderates the level of standard output (routf). Principally used
for debugging
-2 minimum essential output information.
3 maximum available output information. The size of the

output file can become very large.
ipert Integer from 0 to 4. Default 0.

To include the longe-range multipole potentials. See QDT-
variable section for more details.
0 Omit the long-range multipole potentials.
1,2 Omit long-range multipole potentials for closed channels

when their asymptotic tail extends outside the asymptotic
limit r1.

3,4 Include all the long-range multipole potentials, consider
the contribution from r1 to infinity.

1,3 Perturbation for the T matrix.
2,4 Perturbation for the K matrix.
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pert Character(3). Default " ".
Activates the perturbation, variable ipert automatically. Useful
option if QDT is not activated. This variable should not be in-
cluded in the namelist if ipert is set manually.
"YES"/"yes" Activate perturbation, set ipert= 4.
Otherwise Do not activate perturbation, set ipert= 0.

ac Float positive. Default 1.E-5.
Accuracy / tolerance required for some numeric subroutines.

imesh Integer, negative or from 1 to 3. Mandatory, no default value.
Defines the energy mesh. See namelist imesh1, imesh2, imesh3 for
details.
1 For fixed linear grid of incremental energies.
2 For fixed non-linear grid based upon effective quantum

number (not recommended).
3 Read directly the energy mesh from standard input. See

additional variables section.
−(2S + 1) To chose appropriate mesh for a case of spin S (not rec-

ommended).
iopt1 Integer, 1,2,-1,-2,10,11. Default 1.

Defines the partial waves S Lπ or Jπ to be calculated.
1 Calculate all the symmetries stored in the H.DATXXX

files.
2 Specify directly in the standard input the symmetries to

be calculated. See below format in additional variables
section.

-1 / -2 As options =1,2, but in this case treat target levels as de-
generate, specify the degenerate levels after namelist as
additional variables, see such section and nastd parame-
ter.

10 / 11 For JAJOM, obsolete and not implemented in parallel
code.

minlt Integer. Default -1.
maxlt Integer. Default 1000.

Case iopt1= 1, not used in case iopt1= 2. Operate only the
symmetries which fulfil L, 2J ≥ minlt and L, 2J ≤ maxlt. The
default values indicate that all the partial waves included in the
H.DATXXX files will be calculated.
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irdec Integer, 0,1,2. Default 0.
Calculate the radiative decays between all the target terms or lev-
els connected by an electric dipole transition.
0 No radiative decays are calculated.
1 No QDT calculation, Bell and Seaton radiative decays.
2 If MQDT is activated, Hickman-Robicheaux radiative

decays.
lrglam Integer. Default -1.

Activates the high-L top-up. If top-up is activated then the partial
waves must be calculated in ascending order by all the processors,
so the efficiency is reduced. It is recommended to use the top-up
option in a single calculation including only the two last partial
waves.
Negative or 0 No top-up.
Positive Perform top-up from the highest calculated partial

wave up to infinity.
lcbe Integer. Default =lrglam.

Advanced control parameter for the dipole top-up. Not recom-
mended to modify its default value, only for advanced users.

itop Integer. Default -1.
Controls the non-dipole top-up over degenerate states. Not nec-
essary if iopt1 is positive. Not recommended to modify.
-1 Interpolate between degenerate and non-degenerate lim-

its when energy ratio exceeds 2L.
Other Interpolate between degenerate and non-degenerate lim-

its when energy ratio exceeds the J ratio.
elas Character(3). Default " ".

Controls if the elastic collision strengths should be written to out-
put OMEGA file.
"YES"/"yes" Write elastic transitions to OMEGA file in any

case.
"NO "/"no " Do not write elastic transitions to OMEGA file in

any case.
Otherwise Write the elastic transitions to OMEGA file if the

target is neutral, or do not if it is an ion.
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iprkm Integer from 0 to 4. Default 0.
Print K matrixes in optional output file KMAT.DAT. For ICFT
method. Not recommended to use this option, ICFT code is not
prepared for present implementation of pstgf. To work in ICFT
formalism, use previous v0.87 version.
0 Do not write K matrixes.
1 Each processor writes a binary, sequential file

KMAT.DATXXXX with the physical K matrix elements,
being XXXX the processor number.

2 Write unphysical K matrix to KMATLS file. Not imple-
mented in parallel code.

3 For input of post-processing differential cross sections.
This option has been removed from code and no longer
available.

4 Each processor writes unphysical K matrixes to
KMTLS.YYY.XXXX files, if QDT is not activated, or S
matrixes to SMTLS.YYY.XXXX files, if QDT is activated.
These files are input for ICFT code. YYY is the number
of symmetry, and XXXX the number of processor.

idip Integer 0 or 1. Default 0.
Write the target dipole electric line strengths
0 Do not write the line strengths
1 Write the dipole line strengths S to output ASCII file

STRENGTH.DAT.
nomwrt Integer. Default, see below.

Output management to file OMEGA
0 Collision strengths are not written to any file.
> 0 Collision strengths Ω for first nomwrt transitions are

written to output file OMEGA as upper triangle row-wise.
< 0 Collision strengths Ω for first -nomwrt transitions are

written to output file OMEGA as upper triangle column-
wise.

The default value indicates that all the transitions among the
nast target levels will be stored in the OMEGA file row-wise,
nomwrt=((nast*(nast-1))/2 if elastic transitions are not included,
or nomwrt=((nast*(nast+1))/2 if they are.
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ibige Integer. Default 0.
Print the infinite energy limit collision strengths for the electric
dipole transitions in OMEGA file, flagged as negative numbers,
see [19] for details.
≤ 0 Do not write the infinite-energy limits.
> 0 Write them.

isgpt Integer. Default 0.
Write partial-wave cross sections to output file SIGPW.DAT.
≤ 0 Do not write the partial collision strengths.
> 0 Write them.

itrmn Integer. Default 0.
itrmx Integer. Default 0.

Case isgpt= 1, not used in case iopt1= 0. Write in output file
the partial-wave cross sections from transition itrmn to transition
itrmx and also the sum of these partial wave cross sections for
each Jπ partial wave.

print Character(4). Default "FORM".
Print style of output file OMEGA.
"FORM" Write the collision strengths to the final output file

OMEGA ASCII formatted.
Otherwise Write the collision strengths to the final output file

OMEGAU binary in sequential access.
mzmeg Integer. Default Huge(1)/2**23.

Mega-words of memory available to store in memory the omem
array, containing all the open-channel collision strengths for all
energies. If the size of omem is larger than mzmeg×8 × 220 bytes,
then a scratch file must be opened to store the array in hard disk.
Warning, one scratch file is opened by each processor, if the num-
ber of processor is large, the hard disk can be exhausted.

mzpts Integer. Default 3201.
Number of spatial grid points of the outer region, to perform the
Numerov integration.

namelist stgfMQDT variables.
To be used only if multichannel quantum-defect theory is activated in the cal-

culation. This options are necessary for ICFT, otherwise it will consume a lot of
computing time unnecessarily.
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iqdt Integer 0,1,2. Default 0.
Controls MQDT operation. If iqdt > 0, then higher dipole per-
turbing potentials will be included in terms of variable ipert
0 No QDT operation is performed.
1 Full MQDT, all channels treated as open, it uses unphys-

ical K/S matrixes.
2 Work with unphysical K matrixes rather than S ones.

imode Integer 0,1,-1. Default 0.
Controls read and write of unphysical matrix when MQDT is ac-
tivated.
0 Calculates the unphysical matrix and writes it to output

file JBIN.
1 Reads the unphysical matrix from file JBIN. Solution on

a newly defined energy mesh obtained solely by interpo-
lation of the previous coarse mesh data read.

-1 Single pass operation. It is performed a full solution on a
coarse mesh and an interpolative solution on a fine mesh.

ijbin Integer. Default 0.
Write JBIN file in case imode=0.
0 Do not write the file.
Otherwise Write the file.

lmx Integer. Default 2 (quadrupole).
If perturbations are activated, largest perturbing multipole.

ieq Integer. Default -1.
Controls how often the unphysical K or S matrix is updated.
< 0 K or S matrix is updated at every |ieq|’th point of the

mesh, fine for constant step in a previously calculated
coarser energy mesh (imode=1), not so good (inefficient)
for constant step in effective quantum number.

> 0 K or S matrix is updated at ieq linearly spaced energies
across the total energy range defined by the input energy
mesh.

qetest Float. Default 1.E-7.
Energy in scaled Rydberg units E/z2. The K or S matrix is only
re-interpolated when the total energy has changed by more than
the qetest value since the last time. It gives a small time saving
when using a very fine mesh.
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fnumin Float. Default 0.0.
The effective quantum number below which the closed channel is
omitted when iqdt= 1, 2.

fnuhyb Float. Default -1.0.
The effective quantum number below which the closed channel is
a Θ function rather than S and C ones, when iqdt= 1, 2.

namelist stgf Advanced options
We strongly recommend against the modification of these variables, and they

should only be worked by experienced users.
iomsw Integer 1,0,-1. Default 1.

Controls the number of channels to be treated as open in MQDT
operation.
1 Full MQDT: it omits closed channels with n < l + 0.1.
0 Partial MQDT: keep (with a = −a, iomit(ichan)= −1 in

subroutine SC when a < 0).
-1 Hybrid: use Θ functions for ν < fnuhyb and ν < l, other-

wise operate as in case iomsw= 0.
lprtsw Integer. Default -1 for ions and 5 for neutrals.

Value of L or 2J above which negative ipert is allowed.
iccint Integer 1,0. Default 1.

Whether to include closed-closed channels perturbing integrals in
both MQDT or non-MQDT operations.
1 Include them.
0 Do not.

intpq Integer 0,1. Default 0.
Used in internal calculation subroutine.
0 use internal subroutine CORINT for closed channel

MQDT S and C integrals.
1 use Θ function subroutines to generate Q integrals.

namelist mesh1
Mandatory if imesh=1. Otherwise not present.
mxe Integer.

Number of electron-impact energies.
e0 Float.

First z-scaled energy of the grid in Rydberg E/z2.
eincr Float.

Energy increment step.
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qnmax Float.
If iqdt= 0 no MQDT except Gailitis average for n >qnmax.

abvthr Float. Default -1.0 for ions, or 1.E-3 for neutrals.
> 0 Drop energies from the grid within abvthr z-scaled Ryd-

berg above the first excitation threshold.
≤ 0 Do not drop any energy.

belthr Float. Default -1.0 for ions, or 1.E-3 for neutrals.
> 0 Drop energies from the grid within belthr z-scaled Ryd-

berg below the first excitation threshold.
≤ 0 Do not drop any energy.
These variables are only necessary in the case of neutral targets.

For an optimum performance mxemust be an even multiplier of the number of
processors. This condition is sometimes difficult to fulfil if abvthr or belthr are
used, so energies are dropped from the grid. This happens commonly in the case
of neutrals.
namelist mesh2
Mandatory if imesh=2 or negative, otherwise not present. This option is not

yet implemented in parallel version pstgf.
namelist mesh3
Mandatory if imesh=3, otherwise not present.
mxe Integer.

Number of electron-impact energies. To be read afterwards as
additional parmeter.

Additional variables not sorted as namelist, mandatory for determined values
of the variables in namelist stgf, see above.

Case iopt1=2.
In this case, the partial waves to be calculated must be specified. It is expected

several lines, each one with three integer numbers S, L, PI.
S, L, PI Several lines of three free-format integers each.
. . . List of partial waves to be calculated. These symmetries should

be present in the files H.DATXXX.
S 2S + 1 of the partial wave, or 0 to flag Jπ coupling.
L L or 2J of the partial wave.
PI Parity of the partial wave: 0 for even, 1 for odd.
A value of -1 -1 -1 or an End-Of-File marks the end of the list.

Case iopt1=-1,-2.
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In this case, the target term or level energies are treated as degenerate, and
the number of degenerate terms or levels for each target energy must be read in.
It is expected a first line with an integer number nastd, and a second line with a
set of nastd integers nlev(1:nastd). In the case iopt1= −2 the list of partial-wave
symmetries is specified after the shortlist of the degeneration of the energies.
nastd Integer, free format.

Number of target degenerated energies.
nlev(1:nastd) nastd integers, free format.

Number of degenerated terms or levels for each en-
ergy.

Case imesh=3.
After the namelist mesh3, expected a total of mxe floating point numbers.
emesh(1:mxe) mxe float, free format.

Electron-impact z-scaled energies in Rydberg,
sorted from smallest to largest. For an optimum per-
formance, mxe should be an even multiplier of the
number of processors.

6.1.2. H.DAT
Mandatory, binary.
Binary output from the inner region codes, used as input for the outer region

codes.
It can be presented in three different ways. pstgf inquires which one is present

in the following order, if several types are present, just the first one inquired as
positive is used, the remaining ones are just ignored:

1. Several H.DATXXX files, starting by H.DAT000 (recommended). H.DAT000
contains the information about the target and at least the first Jπ or LS π par-
tial wave. Each H.DATXXX file contains information about the channels of
one (recommended) or several partial waves. In the case the number of
H.DATXXX files is the same than the number of lines in the sizeH.dat file
and the sorting of the XXX indexes agrees with the sorting of partial waves
in sizeH.dat (see 6.1.3) the performance will be optimum.

2. One single H.DAT file. The single file contains the information about the
target and the channels of all the partial waves calculated in the inner region.
pstgf will still work, but its performance will be not optimum due to all the
processors will have to read the same large file for all the symmetries.
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H.DAT000, Target information
1: 5 INT*4, 2 REAL*8 NELC,NZED,LRANG2,LAMAX,NAST,RA,BSTO

2: NAST REAL*8 (ENAT(I) I=1-NAST)

3: NAST INT*4 (LAT(I) I=1-NAST)

4: NAST INT*4 (ISAT(I) I=1-NAST)

5: 3 LRANG2 REAL*8 ((COEFF(I,L) I=1-3), L=1-LRANG2)

L=1-LRANG2

L1: 1 INT*4 NBUTD(L)

L2: NBUTD REAL*8 EBUTD(I,L) I=1-NBUTD

L3: NBUTD REAL*8 CBUTD(I,L) I=1-NBUTD

H.DAT000, First symmetry information
1: 6 INT*4 LRGL2,NSPN2,NPTY2,NCHAN,MNP2,MORE2

2: NAST INT*4 (NCONAT(I) I=1-NAST)

3: NCHAN INT*4 (L2P(I) I=1-NCHAN)

4: LAMAX×NCHAN2 REAL*8 (((CF(I,N,M) I=1-NCHAN),N=1-NCHAN),M=1-LAMAX)

5: MNP2 REAL*8 (VALUE(I) I=1-MNP2)

6: NCHAN×MNP2 REAL*8 ((WMAT(I,K) K=1-NCHAN),I=1-MNP2)

Table 1: Record structure of the H.DAT000 file.

3. One single DSTGH.DAT file. For inner region calculations with the old
version DARC code, now obsolete. The option is kept just to allow the code
work for older calculations, but it is not recommended for new work.

Information about the target, first set of records of H.DAT000 or H.DAT files:

• 1: Number of electrons; nuclear charge; maximum L or 2J (target); max-
imum calculated coupling multipole; number of target terms or levels; R-
matrix box size (a.u.); logarithmic derivative of the radial function in the
boundary.

• 2: Target level or term energies.

• 3: Target L or 2J of each term or level.

• 4: Target 2S + 1 of each term, or 0 if Jπ coupling.

• 5: Coefficients for Buttle correction.
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• Following 3×lrang2 records: alternative form of the Buttle correction for
DARC codes. For older versions of inner-region codes, these data could be
in the different file DBUT in stead of H.DAT.

Information about the N + 1-electron symmetries, following records of H.DAT
or H.DAT000 files, after the target information; or whole files H.DATXXX files,
with XXX , 000.

• 1: L or 2J; 2S + 1 or 0; parity of partial wave; number of channels; number
of Hamiltonian eigenvalues in partial wave; flag to check if present partial
wave is the last one to be read.

• 2: Number of channels attached to the target level I.

• 3: L or 2J of the target term or level associated to channel I.

• 4: Coefficient of the multipole potential expansion.

• 5: Eigenvalues of the Hamiltonian, R-Matrix pole energies Ek equation 4.

• 6: R-Matrix amplitudes wi j equation 4.

6.1.3. sizeH.dat
Optional, nevertheless highly recommended, ASCII.
All the codes that work the inner region and provide H.DAT files are able to

provide an auxiliary formatted sizeH.dat file. There are two kinds of sizeH.dat
files readable by pstgf. It inquires if they exist in the following order:

1. sizeH.dat for LS π or Jπ coupling.
2. sizeBP.dat for Jπ coupling only.

If both files exist, only sizeH.dat is read by pstgf and sizeBP.dat is ignored.
sizeH.dat contains the basic information about each partial wave: 2S + 1, L, π,
number of channels, number of continuum basis × number of channels, number
of eigenvalues for the N + 1 Hamiltonian. If 2S + 1 = 0 then pstgf assumes
that partial waves are presented in Jπ coupling and J = 2L. The number of lines
in the file is interpreted by pstgf as the number of partial waves stored in the
H.DATXXX files (see 6.1.2). The best performance is reached if there is exactly
one partial wave per H.DATXXX file and the sorting of the XXX indexes agrees
with the sorting of partial waves in sizeH.dat
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sizeH.dat
1-NSLPI: 8X,I5,10X,I6,8X,I6,3(4X,I3) NCHAN,NCON,MNP2,S,L,IPI

sizeBP.dat
1-NSLPI: 3I7,9X,I3,8X,I3 NCHAN,NCON,MNP2,J2,IPI

Table 2: Formatted line structure of the sizeH.dat and sizeBP.dat files.

sizeBP.dat file works the same way as sizeH.dat file but it has no value of S
stored, it assumes always Jπ coupling.

If no sizeH.dat or sizeBP.dat files are found or they have different number of
lines than the number of H.DATXXX files, then a preliminary read of the H.DATXXX
files has to be carried out in order to let the program know in which file is stored
which partial wave, and that will take some time if the files are large. A correctly
formatted sizeH.dat will help a good performance of pstgf.

The file is ASCII formatted and has nslpi lines, number of partial waves. In
each partial wave it is read the number of channels; the number of continuum
functions (nchan×nrang); number of eigenvalues of the Hamiltonian (ncon plus
bound functions); 2S + 1 or 0; L or 2J; parity.

6.1.4. DBUT
File to store the Buttle correction. It works only for old versions of inner-

region codes, currently the Buttle correction is integrated in H.DATXXX files.

6.2. Output files
6.2.1. Standard output

File routf from processor 0 and routfgXXXX from other processors, being
XXXX the processor number, ASCII. Standard output, execution information,
warnings and errors. If the calculation finished OK, with no errors, then the stan-
dard output files from processors different to 0 will have no additional information,
and they can be safely removed to save space in the hard disk.

6.2.2. OMEGA
Final results, binary or ASCII depending on input variable print.
One single file, if in the standard input the variable print is specified as “FORM”

then output will be formatted in an OMEGA file, any other value and it will be un-
formatted with sequential access in an OMEGAU file.

In any of the formats it contain the information shown in table 3:

• 1: nuclear charge and number of electrons of the target.
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OMEGA
1: 2 INT*4 NZED NELC

2: 3 INT*4 NAST MXE NOMWRT

3: 2×NAST INT*4 (ISAT(I) LAT(I), I=1-NAST)

4: NAST REAL*8 (ENAT(I), I=1-NAST)

J=1-MXE: |NOMWRT|+1 REAL*8 E(J), (OMEGA(J,I), I=1-NOMWRT)

Table 3: Record or line structure of the OMEGA file.

• 2: Number of target terms or levels, number of impact energies and num-
ber of transitions stored, nomwrt, it can also contain elastic transitions if
variable elas is set to "YES".

• 3: Array containing the L, S or 0, 2J of each target term or level.

• 4: Array containing the term or level excitation energies of the target in
Rydberg scaled units with respect to the ground state energy.

• J = 1 − MXE: Impact scaled energy in Rydberg E/z2 and array with the
Ω values for the collision strengths for that energy. The Ω(i − j) matrix is
stored as the upper triangle by rows or columns depending of the sign of the
variable nomwrt.

6.2.3. SIGPW.DATXXXX
XXXX: index of processor.
ASCII, written if isgpt= 1.
Partial wave transition amplitudes, to calculate partial cross sections.

6.2.4. JBINLS.DATXXXX
XXXX: index of processor.
Binary, written if iprkm= 4.
Channel information to input in STGICF.

6.2.5. SMTLS.YYY.XXXX
XXXX: index of processor; YYY: index of symmetry.
Binary, written if iprkm= 4 and MQDT active.
Unphysical S matrix, to be used as input for STGICF.
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6.2.6. KMTLS.YYY.XXXX
XXXX: index of processor; YYY: index of symmetry.
Binary, written if iprkm= 4 and MQDT active.
Unphysical K matrix, to be used as input for STGICF.
These two files should be used with care, as the output is sorted by each pro-

cessor in terms of its local energy grid. ICFT code does not work with present
implementation of pstgf, so these files can not be used unless pstgicf is updated
in a consistent way of current pstgf version.

6.2.7. OMEGDR
ASCII, written if ndrmet> 0. Same format of OMEGA file, replacing the

number of transitions nomwrt for initial states for DR nast.
Dielectronic recombination cross sections. pstgf is not the appropriate code to

use to calculate DR. The radiation-damped code pstgfdamp should be used instead.

6.3. STRENGTH.DAT
ASCII, written if idip= 1.
E1 line strengths S between all target terms or levels.

6.3.1. TERM.DAT
ASCII, written if iprkm= 4.
Information about the target terms or level: 2S + 1, L, π and E.

6.4. Scratch files
6.4.1. SCRATCH1

File to store the omem array if its dimension is larger than mzmeg×220. In this
case a scratch file is opened and the array omem is stored on the hard disk. One file
is opened by each processor, if the number of processors is large, caution must be
taken to ensure that hard disk is not unexpectedly filled.

The best practice is not to modify the default value of mzmeg to ensure that no
scratch files are open. There is also a reduction the input and output time.

7. Test cases

We have used v1.1 to calculate the electron-impact excitation of the ion Ni3+,
for 42 Jπ partial waves, with a maximum of 1818 channels per partial wave and 10
energies per processor. We compare the computation time with the version v0.87.
Figure 3 shows the real nature of the problem, how the calculation time is very
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Figure 3: Total processor time spent in each energy Ni3+. The calculation of the transition matrix
S turns much slower when the number of open channels no and closed channels nc is similar.
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different for each value of the impact energy. The difference between the named
slow and fast energies is self-evident, reaching in the worst cases a factor ten. The
most of the calculation time will be spent in energies around the 150 index.

Figure 4 illustrates the workload unbalance versus processor time. When some
processors have to calculate a larger number of slow energies, other processors do
not. In the slowest cases, the relative difference in the processing time can reach
a 20%, this is unused processing time. In contrast, twisting the distribution of
energy points and forcing all processors to work all energies, the workload bal-
ancing is greatly improved reducing the overall processing time by approximately
15%, and the maximum processor waiting time to less than one half. Both curves
in figure 4 have the same area, but curve for v1.1 is flatter and its maximum (total
calculation time) is a 15% smaller.

This difference is more evident in a more extreme calculation case. Figure 5
shows a calculation case for neutral Fe, with 10 partial waves and number of chan-
nels between 6943 and 7102. In this case we perform the calculation in the most
extreme case, one processor per energy, and equal number of partial waves than
energies, so each processor works only one symmetry in each energy. The unequal
workload balance is more extreme in this case, reaching a comparative factor of 4
in the worst case. The effect of the redistribution of the energies and symmetries
among the processors leads to a reduction of a factor 1/2 in the computing time.

8. Example of input

We show an example the ASCII standard input (dstgf) for the case of electron-
impact excitation of ion Ge2+, 30-electron system plus projectile.

For the inner region calculation, we carried out 42 relativistic partial waves,
with J = 1

2 to 201
2 , even and odd parity. From the inner region, 42 H.DATXXX

files were produced and one sizeBP.dat of length 42 lines, transcribing the partial
wave symmetry associated with H.DATXXX file. section 6.1.3.

We calculate in the outer region the collision strengths for the first 40 partial
waves, from the first excitation threshold of the ion (0.56 Ry = 0.14z2) to twice
the ionisation limit (5.0 Ry = 1.25z2), with a fine energy mesh of 10−5z2. It is a
good practice to start the energy grid a little below the first threshold, so the user
can double-check that all collision strengths are zero below such threshold. This
is useful not only as first check for the validity of the calculation, but also for
postprocessing tasks, in case an interpolation or spline of the collision strengths
below the threshold is carried out. In the case of neutral targets, the drop of
the cross section below the threshold is smoother than in the case of ions, so
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it is possible to have non-zero cross sections for energies slightly below such
threshold.
&STGF IMESH=1 IQDT=0 IPRINT=-2 IOPT1=2 LRGLAM=-1 &END

&MESH1 MXE=120000 E0=0.13000 EINCR=0.00001 &END

0 1 0

0 1 1

0 3 0

0 3 1

0 5 0

0 5 1

0 7 0

0 7 1

0 9 0

0 9 1

0 11 0

0 11 1

0 13 0

0 13 1

0 15 0

0 15 1

0 17 0

0 17 1

0 19 0

0 19 1

0 21 0

0 21 1

0 23 0

0 23 1

0 25 0

0 25 1

0 27 0

0 27 1

0 29 0

0 29 1

0 31 0

0 31 1

0 33 0

0 33 1
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0 35 0

0 35 1

0 37 0

0 37 1

0 39 0

0 39 1

-1 -1 -1

With this input we will perform the calculation of the first 40 partial waves
specified in sizeBP.dat file and no top-up, with the full balancing efficiency of
pstgf, distributing read files in the different processors and doing the efficient
energy split in processors and partial waves.

In order to use this efficient split, we are forced to deactivate the top-up pro-
cedure, through setting LRGLAM to negative. As a second step we perform the
high-J top-up, in this case it is necessary that all processors calculate the collision
strengths for the same energies at least for the two last partial waves. Hence, to
perform the top-up, we carry out a second calculation including just these two last
partial waves. In this second calculation, we do not take advantage of the effi-
ciency improvements of v1.1-2018, but it is a small calculation, so the loss in user
time is minimal.
&STGF IMESH=1 IQDT=0 IPRINT=-2 IOPT1=2 LRGLAM=41 &END

&MESH1 MXE=1200 E0=0.130 EINCR=0.001 &END

0 41 0

0 41 1

-1 -1 -1

This time, we set the top-up variable LRGLAM to the value of 2J of the last
partial wave calculated = 41. The cross sections for the higher partial waves do
not present resonant structure, so it is not necessary to calculate an energy mesh
as fine as in the previous calculation. With the simple post-processing tool omadd,
we can add-up the two OMEGA files from the two calculations.

9. Future work

All these improvements in the implementation have been applied to the un-
damped version of pstgf. Nevertheless, they do not modify the physics of the
problem. As a consequence all these modifications can be integrated within the
radiationally damped version pstgfdamp [20] with a similar increase of efficiency.

Likewise, it would be necessary to modify the ICFT code pstgicf [9] to allow
for the reading of the files containing the K and S in a consistent way with current
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version of pstgf.
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