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ABSTRACT  

Essential information on the early stages of a mission 

design is contained in Engineering Models. Yet, these 

models are often uneasy to visualise, query, let alone 

compare. This study demonstrates how Knowledge 

Graphs can overcome these data silos, interconnect 

information, provide a big-picture perspective, and infer 

new knowledge that would have remained hidden 

otherwise. Following the migration of CubeSats 

Engineering Models to a Knowledge Graph, two case 

studies are explored. The first case study illustrates how 

graph inference can derive implicit knowledge from 

existing explicit concepts. In the second case study, a 

Natural Language Processing layer is adjoined to the 

Knowledge Graph to enhances the analysis of textual 

content. The Natural Language Processing layer relies 

on the document embedding method doc2vec. 

 

1. INTRODUCTION 

The ECSS-E-TM-10-25A Technical Memorandum 

(TM) facilitates the common data definitions and 

exchange of concurrent engineering studies outputs such 

as Engineering Models (EMs). These models hold 

essential information on the mission’s early design, yet 

they are uneasy to visualise, query, or compare. This 

paper explores the enhancement of data linkage, 

reusability, and interpretability of EMs by migrating 

them into a Knowledge Graph (KG). Furthermore, by 

augmenting the graph with a reasoner, an inference 

engine, and a Natural Language Processing (NLP) layer, 

new insights into the models can be devised.  

This study demonstrates via two case studies 

how a KG populated with EMs facilitates information 

retrieval and reuse at the early stages of space mission 

design. The first case study relies on the graph inference 

engine and a set of manually defined rules to infer the 

mass budget of each design option within an iteration. 

In the second case study, the similarities of missions are 

assessed by embedding requirements sets with a 

doc2vec model. All code is available at 

github.com/strath-ace/smart-nlp. This study makes the 

following contributions: 

a. Provides a pipeline in Python to automatically 

migrate any ECSS-E-TM-10-25A-based EM to 

a Grakn KG. 

b. Provides rules to infer a mass budget for each 

design option of an iteration. 

c. Trains a doc2vec model on ECSS data to 

assess past and current missions’ similarities. 

 

2. BACKGROUND 

2.1. Engineering Models 

The Model-Based System Engineering design approach 

relies on virtual representations of systems such as EMs. 

The European Cooperation for Space Standardisation 

(ECSS) provides the ECSS-E-TM-10-25A TM [1], a 

standard for model-based data exchange at the early 

phases of engineering design. This memorandum 

facilitates the common data definitions and exchange of 

EMs produced during concurrent engineering studies.  

In this study, we address the migration of EMs 

following this standard. The models are generated and 

exported with the RHEA Group’s Concurrent Design & 

Engineering Platform 4 – Community Edition (CDP4-

CE). Each migration yields several JSON files 

containing all data related to one iteration of an EM 

(e.g., design options, requirements), as well as, the 

parameters, templates, catalogues, and reference data 

specific to a concurrent design facility (the Site 

Directory), generic and model-specific concepts (the 

Site Reference Data Library and the Model Reference 

Data Library). Figure 1 displays an extract of an 

exported JSON file, featuring one element of class 

ElementDefinition named ‘Subsystem- Structure’. The 

lengthy strings of numbers and characters are unique 

identification numbers, iids. The JSON keys (e.g., 

owner, revisionNumber) either stand for attributes or 

relationships. Iids are used to point to elements engaged 

in a relationship with the element of interest. 

 

 

Figure 1. Extract of a migrated JSON file 

 

https://github.com/strath-ace/smart-nlp
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2.2. Knowledge Graphs  

KGs enable to organise data with different levels of 

depth and complexity. By exploiting the graph 

architecture, KGs can model different types of relations 

(edges) and entities (nodes). Differently from plain 

graph or non-relational databases, KGs have an 

additional embedded layer called reasoner (or inference 

engine) allowing to extract implicit knowledge from 

existing explicit concepts.  

This study relies on Grakn [2], an open-source 

KG development tool.  Grakn implements its own query 

and ontology language, Graql. Reference [3] provides 

an extensive comparison of Grakn with more classic 

semantic web technologies such as the Web Ontology 

Language (OWL) and Resource Description Framework 

(RDF), justifying the predilection for Grakn. For 

instance, Graql requires much less complexity to model 

and query highly interconnected data than SQL [4]. 

Unlike Neo4j, Grakn includes a reasoner and is more 

expressive semantically [5]. All data is stored locally, 

securing access to proprietary information. Figure 2 

exposes how the class element from Figure 1 would be 

represented in a KG. In all following KG schemas, 

entities are represented in rectangles, attributes in 

circles, and relationships in diamonds. Inferred elements 

will be indicated with dotted lines and shapes. 

 

Figure 2. Representation of an ElementDefinition entity 

in the KG 

 

2.3. Document Embedding with Doc2vec 

Part of the information found in the EM, and 

subsequently migrated to the KG, is unstructured textual 

data. Requirements, for instance, are stored into an 

entity with an attribute content containing the 

requirement definition stored as a string. Enhancing the 

KG querying with an NLP layer enables semantic 

understanding and, therefore, grasping the meaning and 

context of the textual content.  

This study implements a document-level 

embedding method, the Paragraph Vector algorithm [6], 

also known as doc2vec. This unsupervised algorithm 

builds upon the Word2vec model [7], itself based on 

neural networks, and used to learn word embeddings. 

By adjoining a Paragraph ID vector to this process, the 

authors of [6] were able to build a representation vector 

at document-level, independently of its length, 

representing the document concept. Paragraph Vector 

has two modes/architectures: Distributed Bag of Words 

(DBOW) and Distributed Memory (DM). In the DM 

architecture, similar to the word2vec Continuous Bag of 

Words architecture, a word is predicted based on its 

neighbours and the new Paragraph ID feature vector. In 

the DBOW architecture, similar to word2vec skip-gram, 

the Paragraph vector is used to classify the words of the 

document. Both architectures are respectively illustrated 

in Figure 3 and Figure 4. Although the DBOW 

architecture ignores the order of words, it has been 

found to perform better than the DM mode [8], [9]. 

Therefore, the DBOW architecture is chosen as the 

baseline for this study. 

 

Figure 3. DM architecture based on [6] 

 

Figure 4. DBOW architecture based on [6] 

 

3. CORPUS 

3.1.  Engineering Models Corpus 

The EMs corpus includes three models generated with 

the CDP4-CE. Two of these models, STRATHcube and 

NEACORE, result from feasibility studies led at the 

University of Strathclyde’s Concurrent & Collaborative 

Design Studio, respectively in 2020 and 2019. The third 

model, based on the QARMAN mission, is generated 

from online data. 

STRATHcube’s primary payload is a 3D phased 

array antenna for space debris detection. A secondary 

objective is to perform measurements during re-entry 

using several heat flux/pressure sensors and UV/visual 

spectrometers. A third experiment involves a laser 

onboard the International Space Station (ISS), from 

which the CubeSat could be launched. The mission is 

expected to run for a minimum of 6 months. The last 

iteration of the model, including three design options, is 

migrated to a Grakn KG. 
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NEACORE is an interplanetary mission 

involving up to six 12U CubeSats, to be flown on a 

single launcher between 2022 and 2023. The mission 

aims to estimate the relative position, velocity, and 2D 

shape of near-Earth objects (NEOs). The spacecraft 

design needed to be flexible to accommodate a camera 

and either a LIDAR or a spectrometer. Therefore, two 

design options were explored. The mission is expected 

to last between 3 and 6 years, with a low-thrust 

propulsion system. 

The third EM is based on the QARMAN mission 

developed by the von Karman Institute [10], [11]. This 

3U CubeSat deployed from the ISS in February 2020, is 

the first CubeSat designed to survive atmospheric re-

entry. This mission was chosen for its similarities with 

STRATHcube in orbit, size, deployment, and payloads. 

The requirements from the mission were manually 

inferred and inserted into a CDP4-CE EM.  

 

3.2. Doc2Vec model training corpus 

The doc2vec model training corpus includes 27,016 

requirements extracted from a collection of ECSS 

Active Standards [12]. Each requirement is composed of 

39 tokens on average. The requirements are pre-

processed with a domain-specific pipeline including 

ECSS multi-words and acronyms developed by [13].  

 

4. METHODOLOGY 

To migrate the EMs into a KG, the graph structure must 

first be established through a schema, defining the 

authorised entities, attributes, and relationships. Then, 

the data imported from the EMs can be inserted into the 

KG. Figure 5 displays the methodology followed to 

migrate the EMs. In the second part, a doc2vec model is 

trained to furthermore analyse the KG’s content. 

 

 

Figure 5. EMs migration flowchart: from CDP4-CE 

EMs to a Grakn KG. 

4.1. Schema Migration: from UML to Graql 

The schema layer is based on the ECSS-E-TM-10-25A 

Annex A Unified Modeling Language (UML) model 

encompassing all concepts (e.g., classes, properties, 

relationships) found in an EM. These concepts are 

mapped into Graql ones (e.g., entities, attributes, roles) 

as shown in Table 1. Graql recognizes a limited range of 

data types, allowing to define “long”, “double”, 

“string”, ‘boolean”, and “datetime”. By default, other 

data types found in the UML model are mapped to a 

“string”.  

Table 1. Mapping of UML concepts to Graql 

UML Model Graql Schema 

Class: 

Class name 

Class attributes – value type 

Class attributes – reference types 

Entity: 

Entity name 

Entity attributes 

Entity roles 

Association relationship 

Directed composition 
N-ry relationship 

Inheritance relationship sub (e.g. e2 sub e1) 

Property  

(referencing to a value type) 
attribute 

 
All concepts from the UML model, 127 entities, 

108 attributes, and 148 relationships, are mapped to a 

Grakn schema. To distinguish the various types of UML 

relationships, the relationship is either annotated as a 

“Containment” (49% of relationships) or a “Reference” 

(51% of relationships) in Graql.  

 

4.2. Engineering Models Migration  

Once the structure of the KG is defined, data is inserted 

into the graph. The EMs iterations are exported from the 

CDP4-CE as JSON files. A Migration Pipeline is built 

in Python 3, relying on the Grakn Python Client [14] to 

commit new data to the server. Each entity/class 

requires a template function to generate a specific 

commit query to insert the entity/attributes/relationship 

into the graph keyspace.  

 

4.3. Training of Doc2vec model 

The model is trained with the open-source Gensim 

Python library [15]. The hyper-parameters, displayed in 

Table 2, are set accordingly to the recommendations 

found in [8]. 

Table 2. Hyper-parameters for model training 

Parameter Setting Parameter Description 

Vector Size 300 
Dimension of the 

representation vectors 

Epochs 400 Number of training iterations 

Mode DBOW DBOW or DM mode 

Minimum 

Count 
1 

Minimum word frequency in 

corpus threshold 

Window 15 Left/right context window size 

Subsampling 10-5 
Threshold to downsample 

high-frequency words 

Negative 

Sampling 
5 

Number of negative word 

samples 

 

The ECSS requirements corpus introduced in 3.2 

is divided into a training set (80%) and a testing set 

(20%). Each requirement is considered a document. 

Following training, a ‘sanity-check’ revealed that the 

model would associate each document/requirement 

from the training set to itself with an accuracy of 0.99. 

Treating the testing set as unseen documents, the 

average cosine similarity of a document with itself is 

around 0.98.  
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5. CASE STUDIES 

Once the EMs have been migrated and the doc2vec 

model trained, two case studies are explored to illustrate 

the potential of graph inference and the combination of 

graph technology with NLP.  

 

5.1. Case Study 1: Inferring mass budgets 

Computing the mass budget is a classic system 

engineering task. In this case study, we demonstrate 

how a mass budget can be inferred with rules and 

automated reasoning for each design option. 

There is no relationship to express that an 

element is contained within the mass budget of a design 

option in the ECSS-E-TM-10-25A standard. However, 

this relationship can be inferred. A parameter is set as 

option dependent or independent via an attribute 

isOptionDependent of type Boolean.  

As shown in Figure 6, when a parameter is 

option dependent, its ParameterValueSet, containing the 

published mass value, refers to the option it depends on. 

A parameter value may vary depending on the design 

option, therefore the relationship between the parameter 

and the option is done at the ParameterValueSet level. 

To ensure that only parameters identified as a mass are 

retained, the Parameter must refer to a 

SimpleQuantityKind with an attribute name ‘mass’. 

When those conditions are met, a new relationship 

includedInMassBudget is created between the 

ParameterValueSet and the Option. Inferred elements 

are indicated with dotted lines in the schema. 

 

 

Figure 6. Inferring an includedInMassBudget 

relationship when the parameter is option dependent. 

Even if a Parameter is option independent 

(isOptionDependent set to ‘False’), it does not 

necessarily mean that it should be linked to all options’ 

mass budgets. The usage of the element containing the 

parameter must be verified as it might exclude the 

option as shown in Figure 7. 

This logic transcribes into two rules, detailed in 

Table 3. Grakn requires the “when” side of a rule to be a 

conjunctive pattern while the rule’s result, the “then” 

side, is atomic, meaning only one fact is inferred.  

 

Figure 7. Inferring an includedInMassBudget 

relationship when the parameter is option independent. 

Table 3. Pseudo-code of Rules 

Rule 1: The Parameter is option dependent 

when {1. There is a ParameterValueSet, contained by an 

option dependent Parameter, 

2. The same Parameter refers to a SimpleQuantityKind 

with name “mass” 

3. There is an element of class Option which the element of 

ParameterValueSet refers to as ActualOption.}, then  

{The element of class ParameterValueSet is included in the 

Option’s mass budget.} 
 

Rule 2: The Parameter is option independent 

when {1. There is a ParameterValueSet, contained by an 

option independent Parameter, 

2. The same Parameter Type refers to a 

SimpleQuantityKind with name “mass” 

3. The ElementUsage associated with the same Parameter 

through an ElementDefinition does not exclude the Option. 

}, then  

{The element of class ParameterValueSet is included in the 

Option’s mass budget.} 

 

The outcomes of the inference are visualised via 

the Grakn Workbase, displayed in Figure 8 and Figure 

9. For clarity, only the relevant nodes and edges are 

shown. In Figure 8, three new relationships, appearing 

in purple, have successfully been inferred between each 

option-dependent parameter’s values and the 

corresponding option they referred to. In Figure 9,  

relationships were inferred only between the 

parameter’s mass value and the options 1 and 2 which 

were not excluded from the element usage.  

The generation of these new relationships 

dramatically decreases the complexity of extracting the 

mass budget from the EMs. Via the Python Client, the 

values related to an option by an includedInMassBudget 

relationship are queried. The number of elements, scale, 

and mass margins associated with each value are 

furthermore extracted from the graph. 
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Figure 8. Inference outcomes from Rule 1 visualised with the Grakn Workbase,  

the three inferred edges are denoted by purple circles and framed in boxes (added manually to figure) 

 

 
Figure 9. Inference outcomes from Rule 2 visualised with the Grakn Workbase,  

the two inferred edges are denoted by purple circles and framed in boxes (added manually to figure) 

 

Table 4 compares the mass budgets of 

STRATHcube and NEACORE manually computed at 

the time of the studies, with the budgets inferred from 

the KG. The slight dissimilarities observed mostly 

originate from missing mass margins in the original 

models. Following the ESA CE margin philosophy [16], 

a mass margin of 20% is assumed by default. However, 

during manual computation, discussions with the 

experts often revealed that the actual mass margin was 

lower. This analysis also unveiled that the mass 

parameter of one equipment from STRATHcube’s first 

design option was missing, contributing to the delta 

mass observed. In the case of the NEACORE’s second 

design option, the comparison exposed an error in the 

manual computation, as some equipment had been 

wrongly incorporated into the option’s budget. 

Removing these items from the manual computation 

decreased the mass delta to 0.3%.   

Table 4. Comparison of mass budgets manually 

computed and inferred from the KG, per design option. 

Satellite 
Design 

Option 

Manual 

Computation 

[kg] 

Inferred 

from Graph 

[kg] 

∆ 

[%] 

STRATH 

cube 

1 3.78  3.76 0.53 

2 5.03 5.06 0.60 

3 3.17 3.20 0.94 

NEACORE 
1 22.65 22.44 0.66 

2 21.27 20.65 2.5 

5.2. Case Study 2: Inferring Mission Similarities 

To kick-start a study and support the parameters’ 

initialisation, it is common to investigate previous 

similar missions. Centralising the EMs in a KG enables 

to navigate through different models and assess their 

similarities more quickly and efficiently. In this second 

case study, requirements embedding with a doc2vec 

model are used to assess the similarities between three 

missions merged into a KG. As summarised in Table 5., 

the STRATHCube mission should emerge as more 

similar to the QARMAN mission than to NEACORE. 

 

Table 5. Overview of missions’ specifications 

CubeSat Size Orbit Scientific Goals 

STRATHcube 3U 

LEO  

(from ISS or 

launcher) 

Space Debris 

Mitigation,  

Re-entry 

measurements, 

Wireless Power 

Transmission 

NEACORE 12U 

Inter-

planetary  

(from 

launcher) 

Relative position, 

velocity, 2D 

shape of NEOs 

QARMAN 3U 
LEO 

(from ISS)  

Re-entry 

measurements 
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Each iteration of an EM contains several 

requirements, which will be considered as one 

‘document’. The spacecraft’s requirements are therefore 

not embedded separately but rather as a whole set. 

Using the embedding learnt by the model, unseen 

documents, requirements sets of each iteration, 

extracted from the KG via the Python Client, are 

represented as vectors. Similar requirements sets should 

have close vectors representation. With the cosine 

similarity measures, the similarity between two vectors, 

therefore, two documents, is deduced. This 

methodology is summarised in Figure 10 for a case 

where n iterations with n different requirements sets are 

extracted from the KG. 

 

Figure 10. Process for Mission Similarity Assessment 

 

Through the Grakn Python Client, requirements 

from each EMs are extracted: 126 requirements from 

STRATHcube, 23 from NEACORE, and 11 from 

QARMAN. Using the doc2vec model previously trained 

on the ECSS requirements, the three sets of 

requirements are separately embedded into three 

representation vectors. The similarity between these 

three sets of requirements are then computed with a 

cosine similarity measure. The results are displayed in 

Table 6. The cosine similarity of a requirement set w.r.t 

itself is kept as a ‘sanity check’ of the model.  

Although the cosine similarity between 

STRATHcube and QARMAN is low (0.27/0.25), there 

is a significant difference with NEACORE (0.01/0.02) 

confirming that the former is more similar to 

STRATHcube than the latter. The methodology is 

therefore successful in assessing missions’ similarities. 

To balance the different size of requirements set, 

keywords were originally selected to target 

requirements related to orbit, payloads, deployment, and 

dimensions. However, this strategy did not yield better 

results and was discarded. 

Table 6. Cosine similarity of requirements sets 

(iteration number in brackets) 

Mission STRATHcube NEACORE QARMAN 

STRATHcube 

(5) 
0.99 0.01 0.27 

NEACORE 

(4) 
0.02 0.99 0.08 

QARMAN 
(1) 

0.25 0.06 0.98 

6. CONCLUSION 

This study provides a pipeline for automatically 

migrating EMs based on the ECSS-E-TM-10-25A TM 

to a Grakn KG. With the KG’s inference engine, new 

graph edges, relationships, were inferred facilitating 

access to the models’ content. To provide innovative 

insights into the KG’s textual content, a document 

embedding model, doc2vec, was trained with ECSS 

requirements, to assess missions’ similarities. This study 

has successfully demonstrated the potential of 

combining KG technology and NLP to enhance the data 

linkage, reusability, and interpretability of EMs. 

 In future work, additional rules could be 

defined to furthermore exploit the inference potential of 

the KG reasoner. Additional NLP methods such as 

Topic Modeling or the BERT language model could be 

implemented to unlock new insights into the models. 

Instead of relying on baseline hyper-parameters, the 

doc2vec model could be finetuned to this specific 

application.  

  

7. ABBREVIATIONS AND ACRONYMS 

CDF  Concurrent Design Facility  

CE  Concurrent Engineering  

CPD4-CE  Concurrent Design & Engineering 

Platform 4 – Community Edition  

DBOW Distributed Bag of Words 

DM Distributed Memory 

ECSS European Cooperation for Space 

Standardisation 

EM Engineering Model 

ESA  European Space Agency  

ISS International Space Station 

KG Knowledge Graph 

LEO Low Earth Orbit 

NEACORE Nanospacecraft Exploration of 

Asteroids by Collision and Flyby 

Reconnaissance 

NEO Near Earth Objects 

NLP Natural Language Processing 

QARMAN QubeSat for Aerothermodynamic 

Research and Measurements on 

Ablation 

STRATHcube Space Debris Tracking, Re-entry 

Analysis and Wireless Power 

Transmission Student Partnership 

CubeSat 

TM  Technical Memorandum 

UML Unified Modeling Language 
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