
1

FROM ENGINEERING MODELS TO KNOWLEDGE GRAPH:

DELIVERING NEW INSIGHTS INTO MODELS

Audrey Berquand (1), Annalisa Riccardi (1)

(1) Intelligent Computational Engineering Lab, Mechanical and Aerospace Engineering Department,

 University of Strathclyde, Glasgow, United Kingdom, {audrey.berquand, annalisa.riccardi} @strath.ac.uk

ABSTRACT

Essential information on the early stages of a mission

design is contained in Engineering Models. Yet, these

models are often uneasy to visualise, query, let alone

compare. This study demonstrates how Knowledge

Graphs can overcome these data silos, interconnect

information, provide a big-picture perspective, and infer

new knowledge that would have remained hidden

otherwise. Following the migration of CubeSats

Engineering Models to a Knowledge Graph, two case

studies are explored. The first case study illustrates how

graph inference can derive implicit knowledge from

existing explicit concepts. In the second case study, a

Natural Language Processing layer is adjoined to the

Knowledge Graph to enhances the analysis of textual

content. The Natural Language Processing layer relies

on the document embedding method doc2vec.

1. INTRODUCTION

The ECSS-E-TM-10-25A Technical Memorandum

(TM) facilitates the common data definitions and

exchange of concurrent engineering studies outputs such

as Engineering Models (EMs). These models hold

essential information on the mission’s early design, yet

they are uneasy to visualise, query, or compare. This

paper explores the enhancement of data linkage,

reusability, and interpretability of EMs by migrating

them into a Knowledge Graph (KG). Furthermore, by

augmenting the graph with a reasoner, an inference

engine, and a Natural Language Processing (NLP) layer,

new insights into the models can be devised.

This study demonstrates via two case studies

how a KG populated with EMs facilitates information

retrieval and reuse at the early stages of space mission

design. The first case study relies on the graph inference

engine and a set of manually defined rules to infer the

mass budget of each design option within an iteration.

In the second case study, the similarities of missions are

assessed by embedding requirements sets with a

doc2vec model. All code is available at

github.com/strath-ace/smart-nlp. This study makes the

following contributions:

a. Provides a pipeline in Python to automatically

migrate any ECSS-E-TM-10-25A-based EM to

a Grakn KG.

b. Provides rules to infer a mass budget for each

design option of an iteration.

c. Trains a doc2vec model on ECSS data to

assess past and current missions’ similarities.

2. BACKGROUND

2.1. Engineering Models

The Model-Based System Engineering design approach

relies on virtual representations of systems such as EMs.

The European Cooperation for Space Standardisation

(ECSS) provides the ECSS-E-TM-10-25A TM [1], a

standard for model-based data exchange at the early

phases of engineering design. This memorandum

facilitates the common data definitions and exchange of

EMs produced during concurrent engineering studies.

In this study, we address the migration of EMs

following this standard. The models are generated and

exported with the RHEA Group’s Concurrent Design &

Engineering Platform 4 – Community Edition (CDP4-

CE). Each migration yields several JSON files

containing all data related to one iteration of an EM

(e.g., design options, requirements), as well as, the

parameters, templates, catalogues, and reference data

specific to a concurrent design facility (the Site

Directory), generic and model-specific concepts (the

Site Reference Data Library and the Model Reference

Data Library). Figure 1 displays an extract of an

exported JSON file, featuring one element of class

ElementDefinition named ‘Subsystem- Structure’. The

lengthy strings of numbers and characters are unique

identification numbers, iids. The JSON keys (e.g.,

owner, revisionNumber) either stand for attributes or

relationships. Iids are used to point to elements engaged

in a relationship with the element of interest.

Figure 1. Extract of a migrated JSON file

https://github.com/strath-ace/smart-nlp

2

2.2. Knowledge Graphs

KGs enable to organise data with different levels of

depth and complexity. By exploiting the graph

architecture, KGs can model different types of relations

(edges) and entities (nodes). Differently from plain

graph or non-relational databases, KGs have an

additional embedded layer called reasoner (or inference

engine) allowing to extract implicit knowledge from

existing explicit concepts.

This study relies on Grakn [2], an open-source

KG development tool. Grakn implements its own query

and ontology language, Graql. Reference [3] provides

an extensive comparison of Grakn with more classic

semantic web technologies such as the Web Ontology

Language (OWL) and Resource Description Framework

(RDF), justifying the predilection for Grakn. For

instance, Graql requires much less complexity to model

and query highly interconnected data than SQL [4].

Unlike Neo4j, Grakn includes a reasoner and is more

expressive semantically [5]. All data is stored locally,

securing access to proprietary information. Figure 2

exposes how the class element from Figure 1 would be

represented in a KG. In all following KG schemas,

entities are represented in rectangles, attributes in

circles, and relationships in diamonds. Inferred elements

will be indicated with dotted lines and shapes.

Figure 2. Representation of an ElementDefinition entity

in the KG

2.3. Document Embedding with Doc2vec

Part of the information found in the EM, and

subsequently migrated to the KG, is unstructured textual

data. Requirements, for instance, are stored into an

entity with an attribute content containing the

requirement definition stored as a string. Enhancing the

KG querying with an NLP layer enables semantic

understanding and, therefore, grasping the meaning and

context of the textual content.

This study implements a document-level

embedding method, the Paragraph Vector algorithm [6],

also known as doc2vec. This unsupervised algorithm

builds upon the Word2vec model [7], itself based on

neural networks, and used to learn word embeddings.

By adjoining a Paragraph ID vector to this process, the

authors of [6] were able to build a representation vector

at document-level, independently of its length,

representing the document concept. Paragraph Vector

has two modes/architectures: Distributed Bag of Words

(DBOW) and Distributed Memory (DM). In the DM

architecture, similar to the word2vec Continuous Bag of

Words architecture, a word is predicted based on its

neighbours and the new Paragraph ID feature vector. In

the DBOW architecture, similar to word2vec skip-gram,

the Paragraph vector is used to classify the words of the

document. Both architectures are respectively illustrated

in Figure 3 and Figure 4. Although the DBOW

architecture ignores the order of words, it has been

found to perform better than the DM mode [8], [9].

Therefore, the DBOW architecture is chosen as the

baseline for this study.

Figure 3. DM architecture based on [6]

Figure 4. DBOW architecture based on [6]

3. CORPUS

3.1. Engineering Models Corpus

The EMs corpus includes three models generated with

the CDP4-CE. Two of these models, STRATHcube and

NEACORE, result from feasibility studies led at the

University of Strathclyde’s Concurrent & Collaborative

Design Studio, respectively in 2020 and 2019. The third

model, based on the QARMAN mission, is generated

from online data.

STRATHcube’s primary payload is a 3D phased

array antenna for space debris detection. A secondary

objective is to perform measurements during re-entry

using several heat flux/pressure sensors and UV/visual

spectrometers. A third experiment involves a laser

onboard the International Space Station (ISS), from

which the CubeSat could be launched. The mission is

expected to run for a minimum of 6 months. The last

iteration of the model, including three design options, is

migrated to a Grakn KG.

3

NEACORE is an interplanetary mission

involving up to six 12U CubeSats, to be flown on a

single launcher between 2022 and 2023. The mission

aims to estimate the relative position, velocity, and 2D

shape of near-Earth objects (NEOs). The spacecraft

design needed to be flexible to accommodate a camera

and either a LIDAR or a spectrometer. Therefore, two

design options were explored. The mission is expected

to last between 3 and 6 years, with a low-thrust

propulsion system.

The third EM is based on the QARMAN mission

developed by the von Karman Institute [10], [11]. This

3U CubeSat deployed from the ISS in February 2020, is

the first CubeSat designed to survive atmospheric re-

entry. This mission was chosen for its similarities with

STRATHcube in orbit, size, deployment, and payloads.

The requirements from the mission were manually

inferred and inserted into a CDP4-CE EM.

3.2. Doc2Vec model training corpus

The doc2vec model training corpus includes 27,016

requirements extracted from a collection of ECSS

Active Standards [12]. Each requirement is composed of

39 tokens on average. The requirements are pre-

processed with a domain-specific pipeline including

ECSS multi-words and acronyms developed by [13].

4. METHODOLOGY

To migrate the EMs into a KG, the graph structure must

first be established through a schema, defining the

authorised entities, attributes, and relationships. Then,

the data imported from the EMs can be inserted into the

KG. Figure 5 displays the methodology followed to

migrate the EMs. In the second part, a doc2vec model is

trained to furthermore analyse the KG’s content.

Figure 5. EMs migration flowchart: from CDP4-CE

EMs to a Grakn KG.

4.1. Schema Migration: from UML to Graql

The schema layer is based on the ECSS-E-TM-10-25A

Annex A Unified Modeling Language (UML) model

encompassing all concepts (e.g., classes, properties,

relationships) found in an EM. These concepts are

mapped into Graql ones (e.g., entities, attributes, roles)

as shown in Table 1. Graql recognizes a limited range of

data types, allowing to define “long”, “double”,

“string”, ‘boolean”, and “datetime”. By default, other

data types found in the UML model are mapped to a

“string”.

Table 1. Mapping of UML concepts to Graql

UML Model Graql Schema

Class:

Class name

Class attributes – value type

Class attributes – reference types

Entity:

Entity name

Entity attributes

Entity roles

Association relationship

Directed composition
N-ry relationship

Inheritance relationship sub (e.g. e2 sub e1)

Property

(referencing to a value type)
attribute

All concepts from the UML model, 127 entities,

108 attributes, and 148 relationships, are mapped to a

Grakn schema. To distinguish the various types of UML

relationships, the relationship is either annotated as a

“Containment” (49% of relationships) or a “Reference”

(51% of relationships) in Graql.

4.2. Engineering Models Migration

Once the structure of the KG is defined, data is inserted

into the graph. The EMs iterations are exported from the

CDP4-CE as JSON files. A Migration Pipeline is built

in Python 3, relying on the Grakn Python Client [14] to

commit new data to the server. Each entity/class

requires a template function to generate a specific

commit query to insert the entity/attributes/relationship

into the graph keyspace.

4.3. Training of Doc2vec model

The model is trained with the open-source Gensim

Python library [15]. The hyper-parameters, displayed in

Table 2, are set accordingly to the recommendations

found in [8].

Table 2. Hyper-parameters for model training

Parameter Setting Parameter Description

Vector Size 300
Dimension of the

representation vectors

Epochs 400 Number of training iterations

Mode DBOW DBOW or DM mode

Minimum

Count
1

Minimum word frequency in

corpus threshold

Window 15 Left/right context window size

Subsampling 10-5
Threshold to downsample

high-frequency words

Negative

Sampling
5

Number of negative word

samples

The ECSS requirements corpus introduced in 3.2

is divided into a training set (80%) and a testing set

(20%). Each requirement is considered a document.

Following training, a ‘sanity-check’ revealed that the

model would associate each document/requirement

from the training set to itself with an accuracy of 0.99.

Treating the testing set as unseen documents, the

average cosine similarity of a document with itself is

around 0.98.

4

5. CASE STUDIES

Once the EMs have been migrated and the doc2vec

model trained, two case studies are explored to illustrate

the potential of graph inference and the combination of

graph technology with NLP.

5.1. Case Study 1: Inferring mass budgets

Computing the mass budget is a classic system

engineering task. In this case study, we demonstrate

how a mass budget can be inferred with rules and

automated reasoning for each design option.

There is no relationship to express that an

element is contained within the mass budget of a design

option in the ECSS-E-TM-10-25A standard. However,

this relationship can be inferred. A parameter is set as

option dependent or independent via an attribute

isOptionDependent of type Boolean.

As shown in Figure 6, when a parameter is

option dependent, its ParameterValueSet, containing the

published mass value, refers to the option it depends on.

A parameter value may vary depending on the design

option, therefore the relationship between the parameter

and the option is done at the ParameterValueSet level.

To ensure that only parameters identified as a mass are

retained, the Parameter must refer to a

SimpleQuantityKind with an attribute name ‘mass’.

When those conditions are met, a new relationship

includedInMassBudget is created between the

ParameterValueSet and the Option. Inferred elements

are indicated with dotted lines in the schema.

Figure 6. Inferring an includedInMassBudget

relationship when the parameter is option dependent.

Even if a Parameter is option independent

(isOptionDependent set to ‘False’), it does not

necessarily mean that it should be linked to all options’

mass budgets. The usage of the element containing the

parameter must be verified as it might exclude the

option as shown in Figure 7.

This logic transcribes into two rules, detailed in

Table 3. Grakn requires the “when” side of a rule to be a

conjunctive pattern while the rule’s result, the “then”

side, is atomic, meaning only one fact is inferred.

Figure 7. Inferring an includedInMassBudget

relationship when the parameter is option independent.

Table 3. Pseudo-code of Rules

Rule 1: The Parameter is option dependent

when {1. There is a ParameterValueSet, contained by an

option dependent Parameter,

2. The same Parameter refers to a SimpleQuantityKind

with name “mass”

3. There is an element of class Option which the element of

ParameterValueSet refers to as ActualOption.}, then

{The element of class ParameterValueSet is included in the

Option’s mass budget.}

Rule 2: The Parameter is option independent

when {1. There is a ParameterValueSet, contained by an

option independent Parameter,

2. The same Parameter Type refers to a

SimpleQuantityKind with name “mass”

3. The ElementUsage associated with the same Parameter

through an ElementDefinition does not exclude the Option.

}, then

{The element of class ParameterValueSet is included in the

Option’s mass budget.}

The outcomes of the inference are visualised via

the Grakn Workbase, displayed in Figure 8 and Figure

9. For clarity, only the relevant nodes and edges are

shown. In Figure 8, three new relationships, appearing

in purple, have successfully been inferred between each

option-dependent parameter’s values and the

corresponding option they referred to. In Figure 9,

relationships were inferred only between the

parameter’s mass value and the options 1 and 2 which

were not excluded from the element usage.

The generation of these new relationships

dramatically decreases the complexity of extracting the

mass budget from the EMs. Via the Python Client, the

values related to an option by an includedInMassBudget

relationship are queried. The number of elements, scale,

and mass margins associated with each value are

furthermore extracted from the graph.

5

Figure 8. Inference outcomes from Rule 1 visualised with the Grakn Workbase,

the three inferred edges are denoted by purple circles and framed in boxes (added manually to figure)

Figure 9. Inference outcomes from Rule 2 visualised with the Grakn Workbase,

the two inferred edges are denoted by purple circles and framed in boxes (added manually to figure)

Table 4 compares the mass budgets of

STRATHcube and NEACORE manually computed at

the time of the studies, with the budgets inferred from

the KG. The slight dissimilarities observed mostly

originate from missing mass margins in the original

models. Following the ESA CE margin philosophy [16],

a mass margin of 20% is assumed by default. However,

during manual computation, discussions with the

experts often revealed that the actual mass margin was

lower. This analysis also unveiled that the mass

parameter of one equipment from STRATHcube’s first

design option was missing, contributing to the delta

mass observed. In the case of the NEACORE’s second

design option, the comparison exposed an error in the

manual computation, as some equipment had been

wrongly incorporated into the option’s budget.

Removing these items from the manual computation

decreased the mass delta to 0.3%.

Table 4. Comparison of mass budgets manually

computed and inferred from the KG, per design option.

Satellite
Design

Option

Manual

Computation

[kg]

Inferred

from Graph

[kg]

∆

[%]

STRATH

cube

1 3.78 3.76 0.53

2 5.03 5.06 0.60

3 3.17 3.20 0.94

NEACORE
1 22.65 22.44 0.66

2 21.27 20.65 2.5

5.2. Case Study 2: Inferring Mission Similarities

To kick-start a study and support the parameters’

initialisation, it is common to investigate previous

similar missions. Centralising the EMs in a KG enables

to navigate through different models and assess their

similarities more quickly and efficiently. In this second

case study, requirements embedding with a doc2vec

model are used to assess the similarities between three

missions merged into a KG. As summarised in Table 5.,

the STRATHCube mission should emerge as more

similar to the QARMAN mission than to NEACORE.

Table 5. Overview of missions’ specifications

CubeSat Size Orbit Scientific Goals

STRATHcube 3U

LEO

(from ISS or

launcher)

Space Debris

Mitigation,

Re-entry

measurements,

Wireless Power

Transmission

NEACORE 12U

Inter-

planetary

(from

launcher)

Relative position,

velocity, 2D

shape of NEOs

QARMAN 3U
LEO

(from ISS)

Re-entry

measurements

6

Each iteration of an EM contains several

requirements, which will be considered as one

‘document’. The spacecraft’s requirements are therefore

not embedded separately but rather as a whole set.

Using the embedding learnt by the model, unseen

documents, requirements sets of each iteration,

extracted from the KG via the Python Client, are

represented as vectors. Similar requirements sets should

have close vectors representation. With the cosine

similarity measures, the similarity between two vectors,

therefore, two documents, is deduced. This

methodology is summarised in Figure 10 for a case

where n iterations with n different requirements sets are

extracted from the KG.

Figure 10. Process for Mission Similarity Assessment

Through the Grakn Python Client, requirements

from each EMs are extracted: 126 requirements from

STRATHcube, 23 from NEACORE, and 11 from

QARMAN. Using the doc2vec model previously trained

on the ECSS requirements, the three sets of

requirements are separately embedded into three

representation vectors. The similarity between these

three sets of requirements are then computed with a

cosine similarity measure. The results are displayed in

Table 6. The cosine similarity of a requirement set w.r.t

itself is kept as a ‘sanity check’ of the model.

Although the cosine similarity between

STRATHcube and QARMAN is low (0.27/0.25), there

is a significant difference with NEACORE (0.01/0.02)

confirming that the former is more similar to

STRATHcube than the latter. The methodology is

therefore successful in assessing missions’ similarities.

To balance the different size of requirements set,

keywords were originally selected to target

requirements related to orbit, payloads, deployment, and

dimensions. However, this strategy did not yield better

results and was discarded.

Table 6. Cosine similarity of requirements sets

(iteration number in brackets)

Mission STRATHcube NEACORE QARMAN

STRATHcube

(5)
0.99 0.01 0.27

NEACORE

(4)
0.02 0.99 0.08

QARMAN
(1)

0.25 0.06 0.98

6. CONCLUSION

This study provides a pipeline for automatically

migrating EMs based on the ECSS-E-TM-10-25A TM

to a Grakn KG. With the KG’s inference engine, new

graph edges, relationships, were inferred facilitating

access to the models’ content. To provide innovative

insights into the KG’s textual content, a document

embedding model, doc2vec, was trained with ECSS

requirements, to assess missions’ similarities. This study

has successfully demonstrated the potential of

combining KG technology and NLP to enhance the data

linkage, reusability, and interpretability of EMs.

 In future work, additional rules could be

defined to furthermore exploit the inference potential of

the KG reasoner. Additional NLP methods such as

Topic Modeling or the BERT language model could be

implemented to unlock new insights into the models.

Instead of relying on baseline hyper-parameters, the

doc2vec model could be finetuned to this specific

application.

7. ABBREVIATIONS AND ACRONYMS

CDF Concurrent Design Facility

CE Concurrent Engineering

CPD4-CE Concurrent Design & Engineering

Platform 4 – Community Edition

DBOW Distributed Bag of Words

DM Distributed Memory

ECSS European Cooperation for Space

Standardisation

EM Engineering Model

ESA European Space Agency

ISS International Space Station

KG Knowledge Graph

LEO Low Earth Orbit

NEACORE Nanospacecraft Exploration of

Asteroids by Collision and Flyby

Reconnaissance

NEO Near Earth Objects

NLP Natural Language Processing

QARMAN QubeSat for Aerothermodynamic

Research and Measurements on

Ablation

STRATHcube Space Debris Tracking, Re-entry

Analysis and Wireless Power

Transmission Student Partnership

CubeSat

TM Technical Memorandum

UML Unified Modeling Language

8. ACKNOWLEDGEMENTS

The authors would like to warmly thank the Grakn Lab

team for their invaluable support and wonderful open-

source tool. The authors also warmly thank Sabrina

Mirtcheva (ESA) for her support in accessing the raw

ECSS Requirements corpus. The development of the

Design Engineering Assistant is done in the frame of a

Networking Partnership Initiative (NPI) involving ESA

and the industrial partners RHEA Systems, Airbus and

7

satsearch. The authors therefore thank the NPI partners,

especially Tiago Soares (ESA), Hans-Peter de Koning

and Sam Generé (RHEA) for their invaluable support,

and expertise.

9. REFERENCES

[1] ECSS (2010). ECSS-E-TM-10-25A – Engineering

design model data exchange – CDF. Online at

https://ecss.nl/hbstms/ecss-e-tm-10-25a-engineering-

design-model-data-exchange-cdf-20-october-2010/

(as of July 2020)

[2] Grakn Lab. Online at https://grakn.ai/ (as of July

2020)

[3] Berquand, A., Murdaca, F., Riccardi, A., Soares, T.,

Generé, S., Brauer, N., and Kumar, K. (2019).

Artificial Intelligence for the Early Design Phases of

Space Missions. In Proc. 2019 IEEE Aerospace

Conference, Big Sky, MT, USA, doi:

10.1109/AERO.2019.8742082.

[4]fKlarman, S. (2017). Knowledge Graph

Representation: GRAKN.AI or OWL? Online at

https://blog.grakn.ai/knowledge-graph-

representation-grakn-ai-or-owl-506065bd3f24 (as of

July 2020)

[5]hAltinok, D. (2020). Neo4j vs GRAKN Part II:

Semantics. Online at: towardsdatascience.com/neo4

j-vs-grakn-part-ii-semantics-11a0847ae7a2 (as of

July 2020)

[6]hLe, Q., & Mikolov, T. (2014). Distributed

Representations of Sentences and Documents. In

Proc. of the 31st International Conference on

Machine Learning, Beijing, China. JMLR: W&CP

volume 32

[7] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.,

and Dean, J. (2013). Distributed Representations of

Words and Phrases and their Compositionality.

Advances in neural information processing systems,

pp. 3111–3119.

[8]vLau, J.H. & Baldwin,T (2016). An Empirical

Evaluation of doc2vec with Practical Insights into

Document Embedding Generation. In Proc. 1st

Workshop on Representation Learning for NLP. Pp

78-86. ACL. Berlin, Germany. doi:

10.18653/v1/W16-1609

[9] Mendsaikhan, O., Hasegawa, H., Yamaguchi, Y. &

Shimada, H. (2019). Identification of Cybersecurity

Specific Content Using the Doc2Vec Language

Model. In Proc. 2019 IEEE 43rd Annual Computer

Software and Applications Conference (COMPSAC),

Milwaukee, WI, USA, pp. 396-401, doi:

10.1109/COMPSAC.2019.00064

[10]fEoPortal Directory, QARMAN. Online at:

https://directory.eoportal.org/web/eoportal/satellite

-missions/q/qarman (as of July 2020)

[11] Bailet, G., Sakraker, I., Scholz & T., Muylaert, J.

(2012). Qubesat for Aerothermodynamic Research

and Measurement on AblatioN. In Proc. 9th

International Planetary Probe WorkShop,

Toulouse, France.

[12]gECSS Active Standards. Online at

https://ecss.nl/standards/active-standards/(as of

July 2020)

[13] Berquand, A., Moshfeghi, Y. & Riccardi, A.

(2020). Space mission design ontology: extraction

of domain-specific entities and concepts similarity

analysis. In Proc. of AIAA Scitech 2020 Forum,

Orlando, FL, doi: https://doi.org/10.2514/6.2020-

2253

[14]bGrakn Labs. Python Client API. Online at:

https://dev.grakn.ai/docs/client-api/python (as of

July 2020)

[15]bŘehůřek; R. & Sojka, P. (2010). Software

Framework for Topic Modelling with Large

Corpora. In Proc. of the LREC 2010 Workshop on

New Challenges for NLP Frameworks, Malta.

 doi: 10.13140/2.1.2393.1847

[16] Biesbroek, R. & Vennekens, J. (2017). Introduction

to Concurrent Engineering. ESA Academy

Presentation. Redu, Belgium.

https://ecss.nl/hbstms/ecss-e-tm-10-25a-engineering-design-model-data-exchange-cdf-20-october-2010/
https://ecss.nl/hbstms/ecss-e-tm-10-25a-engineering-design-model-data-exchange-cdf-20-october-2010/
https://grakn.ai/
https://blog.grakn.ai/knowledge-graph-representation-grakn-ai-or-owl-506065bd3f24
https://blog.grakn.ai/knowledge-graph-representation-grakn-ai-or-owl-506065bd3f24
https://directory.eoportal.org/web/eoportal/satellite-missions/q/qarman
https://directory.eoportal.org/web/eoportal/satellite-missions/q/qarman
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fecss.nl%2Fstandards%2Factive-standards%2F&data=02%7C01%7Caudrey.berquand%40strath.ac.uk%7Cd064ba07c21449b9af3308d82fe27f6f%7C631e0763153347eba5cd0457bee5944e%7C0%7C0%7C637311997138401606&sdata=IJFLAt6uenGl0hhpuDkG4UREWlZBW6bezWeFQj4bBTE%3D&reserved=0
https://doi.org/10.2514/6.2020-2253
https://doi.org/10.2514/6.2020-2253
../Downloads/Online%20at:%20%20https:/dev.grakn.ai/docs/client-api/python
../Downloads/Online%20at:%20%20https:/dev.grakn.ai/docs/client-api/python

