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Abstract
Markov processes are a fundamental model of probabilistic tran-
sition systems and are the underlying semantics of probabilistic
programs.We give an algebraic axiomatization of Markov processes
using the framework of quantitative equational logic introduced
in [14]. We present the theory in a structured way using work of
Hyland et al. [10] on combining monads. We take the interpolative
barycentric algebras of [14] which captures the Kantorovich metric
and combine it with a theory of contractive operators to give the
required axiomatization of Markov processes both for discrete and
continuous state spaces. This work apart from its intrinsic interest
shows how one can extend the general notion of combining effects
to the quantitative setting.

Keywords Markov processes, equational logic, quantitative rea-
soning, combining monads

1 Introduction
The theory of effects began with the pioneering work of Moggi [16,
17] on an algebraic treatment of programming languages via the
theory of monads. This allowed a compositional treatment of var-
ious semantic phenomena such as state, IO, exceptions etc. This
work was followed up by the program of Plotkin and Power [19, 20]
on understanding the monads as arising from operations and equa-
tions; see also the survey of Hyland and Power [11]. A fundamental
contribution, due to Hyland et al. [10], was a way of combining
effects by taking the “sum” of theories.

In the present paper we use the framework of [14] which in-
troduced the quantitative analogue of equational logic and the
techniques of [10] to develop an algebraic theory of Markov pro-
cesses. In [14] it was shown how a certain set of equations gave as
free algebras the space of probability distributions with the Kan-
torovich metric. A challenge at the time was to extend this to the
theory of Markov processes, which are dynamically evolving prob-
ability distributions. Instead of developing an equational theory in
an ad-hoc way, we use the ideas of [10] to obtain a very general
theory of probability distributions equipped with additional oper-
ators. Markov processes (or labelled Markov processes [18]) are
just a very special instance of these where there is a set of unary
operators for the transitions.

It is very pleasing that one can obtain the axiomatisation of
Markov processes in this systematic way. Some effort is involved
in showing that the techniques apply to the quantitative setting; in
that sense our results go beyond the example of Markov processes
as they can be seen as an example of a general paradigm of forming
sums of quantitative theories. Overall, we see our work as a first
step towards a full-blown theory of quantitative effects.

LICS’18, July 09–12, 2018, Oxford, UK
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The main conceptual advance we feel we have attained is uni-
fying an algebraic presentation of Markov processes with their
well-known coalgebraic presentation. On the one hand, one sees
them as algebras arising from a very natural quantitative theory;
on the other hand, they arise from the theory of quantitative bisim-
ulation via final coalgebras of behaviour functors. This all comes
about as we have a coincidence of initial and final coalgebras. Such
a coincidence is known in domain theory [21, 22] but seems not to
have been developed in the metric case.

As far as we are aware, the algebraic and coalgebraic viewpoints
in semantics have largely developed independently. We feel our
work contributes to building a bridge between the two and we hope
in future work to use this unified perspective in applications.

Technical summary
In [14] it is shown that any quantitative equational theory U in-
duces a monad TU on Met (the category of metric spaces), namely
the monad assigning to an arbitrary space M the quantitative al-
gebra freely generated over M and satisfying the quantitative in-
ferences (conditional equations) ofU . One can readily show that
if one considers a signature Σ and the empty theory, the induced
monad is the free monad Σ∗ over the signature endofunctor (also
called Σ) inMet.

Similarly, suppose that with each operator f ∈ Σ of arity n we
associate a contractive factor 0 < c < 1 (written f : ⟨n, c⟩ ∈ Σ) and
add, for each δ ≥ cε , the axiom

{x1 =ε y1, . . . ,xn =ε yn } ⊢ f (x1, . . . ,xn ) ≡δ f (y1, . . . ,yn )

obtaining the quantitative theory of contractive operators O(Σ). Then
the induced monad is the free monad Σ̃∗ on the endofunctor Σ̃ =∐

f : ⟨n,c ⟩∈Σ c · Id
n (where c ·X is the space X with metric rescaled

by a factor of c).
In [14], the monad induced by the quantitative equational theory

B of interpolative barycentric algebras was shown to be the monad
Π of finitely supported Borel probabilitymeasureswith Kantorovich
metric. By taking the (disjoint) union of the axioms of interpolative
barycentric algebras and of the algebra of contractive operators
for Σ, one obtains B + O(Σ), the quantitative theory of interpolative
barycentric algebras with contractive operators in Σ.

We show that the free monad induced by B+O(Σ) is isomorphic
to the sum of monads Σ̃∗+Π. Because of this characterisation, by us-
ing results in [10], we can show thatTB+O(Σ) assigns to an arbitrary
metric spaceM the initial solution of the functorial equation

XM � Π(Σ̃XM +M) .

We obtain analogous results for complete separable metric spaces by
taking the completion of the monad. In this case the monad assigns
to any complete separable metric space M the unique solution of
the functorial equation

YM � ∆(Σ̃YM +M) .

1
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where ∆ is the Giry monad of Borel probability measures with
Kantorovich metric.

By observing that the maps from left to right of the above iso-
morphisms are coalgebra structures, we can algebraically recover
Markov processes by using as the signature Σ which has a con-
stant symbol 0, representing termination, and a unary operator
⋄(t), representing the capability of performing a transition to t .

The above findings fit into a more general pattern: we show that
under certain assumptions on the quantitative theories U , U ′, the
free monad TU+U ′ that arises from the disjoint union U + U ′

of the two theories is the categorical sum TU + TU ′ of the free
monads onU andU ′, respectively. The only requirement on the
theories is that they can be axiomatised by a set of quantitative
inferences involving only quantitative equations between variables
as hypotheses. In [15] this type of theory is called simple.

For simple quantitative theories we have another main result:
the quantitative algebras satisfying a simple theoryU are in one-to-
one correspondence with the Eilenberg-Moore algebras for the free
monad TU . This result generalises the classical isomorphism be-
tween the algebras of a functor F and the Eilenberg-Moore algebras
of the free monad F ∗ on F [3].

2 Preliminaries
The basic structures with which we work are metric spaces of
various kinds. A metric induces a topology on M , and different
metrics can induce the same topology. In particular, for any metric
d , the 1-bounded function d ′(x ,y) =def d(x ,y)/(1+d(x ,y)) is also a
metric and yields the same topology as d . We henceforth restrict to
1-bounded metrics. If a metric space has a countable dense subset
we say it is separable; this is equivalent to having a countable base
for the topology. A sequence (xi ) in a metric space is said to be
Cauchy if ∀ϵ > 0,∃N ,∀i, j ≥ N ,d(xi ,x j ) ≤ ϵ . If every Cauchy
sequence converges we say, the space is said to be complete. If a
space is not complete it can be isometrically embedded in a complete
space by adding the limits of Cauchy sequences, this is a standard
construction [8]. If (X ,d) is a metric space we write (X ,d) or just
X for its completion.

Completeness is a metric concept: the same topological space
can be described by two different metrics, one complete and the
other one not. If, for a given topology, there is some metric that
is complete we say that the topology is completely metrizable.
Topological spaces underlying complete separable metric space are
called Polish.

The categories of metric spaces that we consider areMet: met-
ric spaces, CMet: complete metric spaces and CSMet: complete
separable metric spaces (recall that all the spaces we consider
are 1-bounded). The morphisms are the non-expansive maps, i.e.
the f : (X ,dX ) → (Y ,dY ) such that dY (f (x), f (y)) ≤ dX (x ,y).
These categories have all countable products and coproducts. One
can define products by taking the set theoretic product and defin-
ing the metric to be the sup of the pointwise metrics, i.e. given
{(Mi ,di )|i ∈ I } the metric on ΠiMi is

d((x1, . . . ,xn , . . .), (y1, . . . ,yn , . . .)) =def sup
i

di (xi ,yi ).

We assume that the reader is familiar with the basic notions of
σ -algebras, measurable functions and measures. Given a topology
the σ -algebra generated is called its Borel algebra and its elements
are called Borel sets. A probability measure defined on the Borel

sets is a Borel probability measure. Given a topological space with
its Borel σ -algebra, we define the support of a measure to be the
complement of the union of all open sets with zero measure. A
measure is said to be finitely supported if its support is a finite set.
A finitely supported probability measure is just a convex sum of
point measures; i.e. measures whose support is a single point.

We assume the reader is familiar with monads and with algebras
of a monad (the Eilenberg-Moore algebras of a monad).

2.1 Kantorovich Metric
We review some well-known facts about metrics between spaces
of probability distributions.

LetM be a metric space. The Kantorovich metric1 between Borel
probability measures µ,ν overM is defined as:

K(dM )(µ,ν ) = sup
f ∈ΦM

����∫ f dµ −
∫

f dν
���� .

with supremum ranging over the set ΦM of positive 1-bounded
non-expansive real-valued functions f : M → [0, 1].

Under suitable restrictions on the type of measures, the above
distance has a well-known dual characterization, based on the no-
tion of coupling. A coupling for a pair of Borel probability measures
(µ,ν ) overM , is a Borel probability measureω on the product space
M ×M , such that, for all Borel sets E ⊆ M

ω(E ×M) = µ(E) and ω(M × E) = ν (E) .

A Borel probability measure µ overM is Radon if for any Borel
set E ⊆ M , µ(E) is the supremum of µ(K) over all compact subsets
K of E. We write C(µ,ν ) for the set of Radon couplings for a pair
of Borel probability measures (µ,ν ).

Theorem 2.1 (Kantorovich-Rubinstein Duality [27, Thm. 5.10]).
LetM be a metric space. Then, for arbitrary Radon probability mea-
sures µ,ν overM

K(dM )(µ,ν ) = min
{∫

d dω | ω ∈ C(µ,ν )

}
.

Examples of Radon probability measures are finitely supported
Borel probability measures on any metric space and generic Borel
probability measures over complete separable metric spaces.

We write ∆(M) for the space of Borel probability measures over
M with the Kantorovich metric and Π(M) for the subspace of ∆(M)

of the finitely supported Borel probability measures overM .

Lemma 2.2. Let M be a separable metric space. Then, the Cauchy
completion of Π(M) is isomorphic to the set of Borel probability mea-
sures over the Cauchy completion ofM , i.e., Π(M) � ∆(M).

3 Quantitative Equational Theories
Quantitative equations were introduced in [14]. In this framework
equalities t ≡ε s are indexed by a positive rational number, to
capture the idea that t is “within ε” of s . This informal notion is
formalized in a manner analogous to traditional equational logic
and it is shown that one can axiomatize quantitative analogues of
algebras. Analogues of Birkhoff’s completeness theorem [14] and
variety theorem [15] were established. The collection of equation-
ally defined quantitative algebras form the algebras for monads on
suitable categories of metric spaces. In this section we review this
formalism.
1Sometimes called the Wasserstein-1 metric.
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Let Σ be an algebraic signature of function symbols f : n ∈ Σ of
arity n ∈ N. Let X be a countable set of variables, ranged over by
x ,y, z, . . . . We write T(Σ,X ) for the set of Σ-terms freely generated
over X , ranged over by t , s,u, . . ..

A substitution of type Σ is a function σ : X → T(Σ,X ) that is
homomorphically extended to terms as

σ (f (t1, . . . , tn )) = f (σ (t1), . . . ,σ (tn ));

we write S(Σ) for the set of substitutions of type Σ.
A quantitative equation of type Σ over X is an expression of

the form t ≡ε s , for t , s ∈ T(Σ,X ) and a positive rational number
ε ∈ Q≥0. We write E(Σ,X ) for the set of quantitative equations of
type Σ over X , and its subsets will be ranged over by Γ,Θ,Π, . . .

Fix X a countable set of metavariables. A quantitative deduction
system of type Σ is a relation ⊢ ⊆ 2E(Σ,X ) × E(Σ,X ) from the pow-
erset of E(Σ,X ) to E(Σ,X ) satisfying the following meta-axioms,
for each f : n ∈ Σ

(Refl) ∅ ⊢ x ≡0 x ,

(Symm) {x ≡ε y} ⊢ y ≡ε x ,

(Triang) {x ≡ε z, z ≡ε ′ y} ⊢ x ≡ε+ε ′ y ,

(1-Bdd) ∅ ⊢ x ≡1 y ,

(Max) {x ≡ε y} ⊢ x ≡ε+ε ′ y , for all ε ′ > 0 ,
(Arch) {x ≡ε ′ y | ε ′ > ε} ⊢ x ≡ε y ,

(f -NE) {x1 =ε y1, . . . ,xn =ε yn } ⊢ f (x1, . . . ,xn ) ≡ε f (y1, . . . ,yn ) ,

(Subst) If Γ ⊢ t ≡ε s , then σ (Γ) ⊢ σ (t) ≡ε σ (s), for all σ ∈ S(Σ) ,

(Cut) If Γ ⊢ Θ and Θ ⊢ t ≡ε s , then Γ ⊢ t ≡ε s ,

(Assum) If t ≡ε s ∈ Γ, then Γ ⊢ t ≡ε s ,

where we write Γ ⊢ Θ to mean that Γ ⊢ t ≡ε s holds for all
t ≡ε s ∈ Θ and σ (Γ) = {σ (t) ≡ε σ (s) | t ≡ε s ∈ Γ}.

The rules (Subst), (Cut), (Assum) are the usual rules of equational
logic. The axioms (Refl), (Symm), (Triang) correspond, respectively,
to reflexivity, symmetry, and the triangle inequality; (Max) repre-
sents inclusion of neighborhoods of increasing diameter; (Arch) is
the Archimedean property of the reals w.r.t. a decreasing chain of
neighborhoods with converging diameters; and (f -NE) expresses
nonexpansivness of the f ∈ Σ. We have added the axiom (1-Bdd) to
ensure that the algebras we get also have 1-bounded metrics. This
is a minor variation of the theory presented in [14]. The results
that we use from that paper all hold with this change.

A quantitative equational theory of type Σ over X is a set U
of universally quantified quantitative inferences over E(Σ,X ), (i.e.,
expressions of the form

{t1 ≡ε1 s1, . . . , tn ≡εn sn } ⊢ t ≡ε s ,

with a finite set of hypotheses) closed under ⊢-deducibility.
A set A of quantitative inferences axiomatises a quantitative

equational theoryU , ifU is the smallest quantitative equational
theory containing A.

The models of quantitative equational theories are universal
Σ-algebras equipped with a metric, called quantitative algebras.

Definition 3.1. A quantitative Σ-algebra is a tuple A = (A, ΣA ),
where A is a metric space and ΣA = { f A : An → A | f : n ∈ Σ} is
a set of non-expansive interpretations for the algebraic operators in
Σ, i.e., satisfying the following, for all 0 ≤ i ≤ n and ai ,bi ∈ A,

max
i

dA(ai ,bi ) ≥ dA(f
A (a1, . . . ,an ), f

A (b1, . . . ,bn )) .

The morphisms between quantitative Σ-algebras are non-expan-
sive Σ-homomorphisms. Quantitative Σ-algebras and their mor-
phism form a category QA(Σ).

A quantitative algebra A = (A, ΣA ) satisfies the quantitative
inference Γ ⊢ t ≡ε s over E(Σ,X ), written Γ |=A t ≡ε s , if for any
assignment ι : X → A,(
for all t ′ ≡ε ′ s ′ ∈ Γ, dA(ι(t ′), ι(s ′)) ≤ ε ′

)
implies dA(ι(t), ι(s)) ≤ ε ,

where ι(t) is the homomorphic interpretation of t ∈ T(Σ,X ) in A.
A quantitative algebra A is said to satisfy (or be a model for) the

quantitative theory U , if Γ |=A t ≡ε s whenever Γ ⊢ t ≡ε s ∈ U .
We write K(Σ,U) for the collection of models of a theory U of
type Σ.

Sometimes it is convenient to consider quantitative Σ-algebras
whose carrier is a complete metric space. This class of algebras
forms a full subcategory of QA(Σ), written CQA(Σ). Similarly, we
write CK(Σ,U) for the full subcategory of quantitative Σ-algebras
in CQA(Σ) which are models ofU .

The following definition lifts the Cauchy completion of metric
spaces to quantitative algebras.

Definition 3.2. The Cauchy completion of a quantitative Σ-algebra
A = (A, ΣA ), is the quantitative Σ-algebra A = (A, ΣA ), where A
is the Cauchy completion ofA and ΣA = { f A : An → A | f : n ∈ Σ}
is such that for Cauchy sequences (bij )j converging to b

i ∈ A, for
1 ≤ i ≤ n, we have:

f A (b1, . . . ,bn ) = lim
j

f A (b1j , . . . ,b
n
j ) .

The above extends to a functor C : QA(Σ) → CQA(Σ) which is
the left adjoint to the functor embedding CQA(Σ) into QA(Σ).

The completion of quantitative Σ-algebras extends also to a func-
tor from K(Σ,U) to CK(Σ,U), whenever U can be axiomatised
by a collection of continuous schemata of quantitative inferences,
i.e., by axiom schemata of the form

{x1 ≡ε1 x1, . . . ,xn ≡εn yn } ⊢ t ≡ε s , for all ε ≥ f (ε1, . . . , εn ),

where f : R≥0 → R≥0 is a continuous real-valued function, and
xi ,yi ∈ X . We call such a theory continuous.

Free Monads on Quantitative Theories. Recall that to every sig-
nature Σ, one can associate a signature endofunctor (also called Σ)
on Met by:

Σ =
∐
f :n∈Σ

Idn .

It is easy to see that, by couniversality of the coproduct, quantitative
Σ-algebras correspond to Σ-algebras for the functor Σ in Met, and
the morphisms between them to non-expansive homomorphisms
of Σ-algebras. Below we pass between the two points of view as
convenient.

In [14] it is shown that any quantitative theory U of type Σ
induces a monad TU on Met, called the free monad on U . The
relevant results leading to its definition are summarized in the
following theorem.

Theorem 3.3 (Free Algebra). Let U be a quantitative theory of
type Σ. Then, for any X ∈ Met there exists a metric space TX ∈ Met,
a non-expansive map ηUX : X → TX , and a quantitative Σ-algebra
(TX ,ψ

U
X ) satisfying U , such that, for any quantitative Σ-algebra

(A,α) in K(Σ,U) and non-expansive map β : X → A, there exists
3
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a unique homomorphism h : TX → A of quantitative Σ-algebras
making the following diagram commute

X TX ΣTX

A ΣA
β

ηUX

h

ψU
X

Σh
α

The map h is also called the homomorphic extension of α along β .

The universal property above says that (TX ,ψU
X ) is the free quan-

titative Σ-algebra for X in K(Σ,U). From Theorem 3.3, one can de-
fine the monad (TU ,η

U , µU ) as follows: the functor TU : Met →
Met associates to X ∈ Met the carrier TX of the free quantitative
Σ-algebra for X in K(Σ,U); the maps ηUX form the components of
the unit ηU : Id ⇒ TU ; and the multiplication µU : TUTU ⇒ TU
is defined at X as the unique map that, by Theorem 3.3, satisfies
µUX ◦ ηUX = id and µUX ◦ψU

TUX = ψ
U
X ◦ ΣµUX .

A similar free construction also holds for quantitative algebras
in CQA(Σ) for continuous quantitative equational theories:

Theorem 3.4 (Free Complete Algebra). Let U be a continuous
quantitative theory of type Σ. Then, for any X ∈ CMet, quantitative
Σ-algebra (A,α) in CK(Σ,U) and non-expansive map β : X → A,
there exists a unique homomorphism h : CTU → A of quantitative
Σ-algebras making the following diagram commute

X CTUX ΣCTUX

A ΣA
β

CηUX

h

CψU
X

Σh
α

The above is equivalent to saying that the forgetful functor from
CK(Σ,U) to CMet has a left adjoint. In particular, CTU is the free
monad on U in CMet, provided that the quantitative theory is
continuous.

4 Disjoint Union of Quantitative Theories
One of the advantages of the approach followed in [10] is that it
allows one to combine different computational phenomena in a
smooth way. In our setting we need to combine quantitative theo-
ries. The major example discussed in this paper is the combination
of interpolative barycentric algebras (which we had shown [14] to
axiomatize probability distributions with the Kantorovich metric)
and the algebras that give a transition structure. This combination
gives us the usual theory of Markov processes, but now enriched
with metric reasoning principles for the underlying probability
distributions.

In this section we develop the theory of the disjoint union of
quantitative equational theories. Let Σ, Σ′ be two disjoint signa-
tures. The disjoint union of two quantitative equational theoriesU ,
U ′ of respective types Σ and Σ′, writtenU +U ′, is the smallest
quantitative theory containingU andU ′. Following Kelly [13], we
show that any model for U +U ′ is a ⟨U ,U ′⟩-bialgebra: a metric
space A with both a Σ-algebra structure α : ΣA → A satisfyingU

and a Σ′-algebra structure β : Σ′A → A satisfyingU ′. Formally, let
K((Σ,U) ⊕ (Σ′,U ′)) be the category of ⟨U ,U ′⟩-bialgebras with
non-expansive maps that preserve their two algebraic structures.
Then, the following isomorphism of categories holds.

Proposition 4.1. K(Σ + Σ′,U +U ′) � K((Σ,U) ⊕ (Σ′,U ′)).

We already saw that any quantitative equational theory induces
a free monad on Met. Next, we would like show that under certain
assumptions on the theories, the free monadTU+U ′ on the disjoint
unionU +U ′ corresponds to the categorical sumTU +TU ′ of the
free monads onU andU ′, respectively.

The only requirement we ask is that the theories can be ax-
iomatised by a set of simple quantitative inferences, i.e., inferences
having as hypothesis only equations of the form x ≡ε y, for x ,y ∈ X .
As in [15], we call these theories simple. Note that any continuous
quantitative theory is simple.

Let T -Alg be the category of Eilenberg-Moore T -algebras of a
monad T . Then, we have:

Theorem 4.2. For any simple quantitative equational theory U of
type Σ, TU -Alg � K(Σ,U).

Proof. The isomorphism is given by the following pair of functors

TU -Alg K(Σ,U)

H

K

both mapping morphisms essentially to themselves and on objects
acting as follows: for (A,α) ∈ TU -Alg and (B, β) ∈ K(Σ,U),

H (A,α) = (A,α ◦ψU
A ◦ ΣηUA ) , K(B, β) = (B, β♭) ,

where β♭ : TUB → B is the unique map that, by Theorem 3.3,
satisfies the equations β♭ ◦ ηUB = idB and β♭ ◦ψU

B = β ◦ Σβ♭ .
To show that K is well defined, we need to prove that the unit

and associativity laws for the TU -algebra hold. The unit law fol-
lows directly by definition of β♭ . The associativity law follows
by Theorem 3.3, since both β♭ ◦ µUB and β♭ ◦ TU β♭ fit as the
unique homomorphic extension of β along ηUB . Given any mor-
phism h : (B, β) → (B′, β ′) of quantitative Σ-algebras in K(Σ,U),
K(h) = h is proved to be a TU -homomorphism by showing that
both (β ′)♭ ◦TUh and h ◦ β♭ fit as the unique homomorphic exten-
sion ofψU

B′ along h. Functoriality of K follows similarly, using the
universal property in Theorem 3.3.

To show that H is well defined, we need to show that for any
(A,α) ∈ TU -Alg, H (A,α) satisfies U . Since, by hypothesis, U is
a simple quantitative theory, it is axiomatised by a set A ⊆ U of
simple quantitative inferences. Thus, H (A,α) is a model forU iff it
satisfies all the quantitative inference in A. To this end, note that
for any assignment ι : X → A of the metavariables, the following
diagram commutes

X T(Σ,X ) ΣT(Σ,X )

A TUA ΣTUA

A TUA ΣTUA ΣA

ηΣX

ι TΣι

ψ Σ
X

ΣTΣι
ηUA

id
α

ψU
A

Σα
α ψU

A ΣηUA

(1)

where the commutativity of the bottom-right square is proven as
follows, by naturality of the maps, by the monad laws, and the unit

4
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and associativity laws of (A,α) ∈ TU -Alg

TUA ΣTUA ΣTUA

TUA TUTUA ΣTUTUA ΣTUA

A TUA ΣTUA ΣA

ΣA

id

ψU
A id

idΣTU ηUA

α

µUA

TU α
µUA

ΣµUA

(ψUTU )A
ΣµUA

ΣTU α

Σα

α ψU
A

Σα

id
ΣηUA

By the commutativity of (1) and uniqueness of homomorphic ex-
tension, we have that the homomorphic extension ι♯ : T(Σ,X ) → A

of ι on (A,α) can be factorised as ι♯ = α ◦TU ι. MoreoverTΣι, is the
homomorphic extension of ηUA ◦ ι : X → TUA on (TUA,ψU

A ).
Let Γ ⊢ t ≡ε s ∈ A and ι : X → A be an assignment of the

metavariables. Assume that, for all x ≡δ y ∈ Γ, dA(ι♯(x), ι♯(y)) ≤ δ .
Since x ,y ∈ X , then we have dA(ι(x), ι(y)) ≤ δ .

By Theorem 3.3, (TUA,ψU
A ) satisfies U , so that, because TΣι is

the homomorphic extension of ηUA ◦ ι : X → TUA on (TUA,ψU
A ),

we have that(
for all x ≡δ y ∈ Γ, dTUA(η

U
A ◦ ι(x),ηUA ◦ ι(y)) ≤ δ

)
implies (2)

dTUA(TΣι(t),TΣι(s)) ≤ ε .

By definition of dTUA, we have that dTUA(η
U
A ◦ ι(x),ηUA ◦ ι(y)) =

dA(ι(x), ι(y)), hence, by (2), we get dTUA(TΣι(t),TΣι(s)) ≤ ε . Thus,

ε ≥ dTUA(TΣι(t),TΣι(s))

≥ dA(α ◦TΣι(t),α ◦TΣι(s)) (α non-expansive)

≥ dA(ι
♯(t), ι♯(s)) . (α ◦TΣι = ι

♯ )

Therefore H (A,α) satisfiesU . Note the crucial role played by the
requirement of simple equations. This allows us to have only vari-
ables on the left-hand side and we know these are isometrically
embedded by η.

It remains to show that K and H are inverses of each other. On
morphisms this is clear. As for objects, for (A,α) ∈ TU -Alg and
(B, β) ∈ K(Σ,U), we have

KH (A,α) = (A, (α ◦ψU
A ◦ ΣηUA )♭) ,

HK(B, β) = (B, β♭ ◦ψU
B ◦ ΣηUB ) ,

thus, we need to show β♭◦ψU
B ◦ΣηUB = β and (α ◦ψ

U
A ◦ΣηUA )♭ = α .

These are proved by the commutativity of the following diagrams

TUB ΣTUB ΣB

B ΣB

β ♭

ψU
B

Σβ ♭

ΣηUB

id

β

A TUA ΣTUA

TUTUA

A TUA ΣA

ηUA

id
α

ψU
A

(θTU )A
Σα

µUA

TU α

α θA

where θ = ψU ◦ ΣηU . In particular, the second one proves that α
satisfies the equalitiesα◦ηUA = idA andα◦ψU

A = α◦ψ
U
A ◦ΣηUA ◦Σα

which, by Theorem 3.3, are uniquely satisfied by (α ◦ψU
A ◦ ΣηUA )♭ .

Hence, (α ◦ψU
A ◦ ΣηUA )♭ = α . □

When the quantitative equational theoriesU ,U ′ are simple, by
Theorem 4.2, we get a refinement of Proposition 4.1 as follows.

LetT ,G be two monads on a category C. A ⟨T ,G⟩-bialgebra is an
object A ∈ C with Eilenberg-Moore algebra structures α : TA → A
and β : GA → A. We write ⟨T ,G⟩-biAlg for the category of ⟨T ,G⟩-
bialgebras with morphisms those in C preserving the two algebraic
structures.

Corollary 4.3. LetU ,U ′ be simple quantitative equational theo-
ries. Then K(Σ + Σ′,U +U ′) � ⟨TU ,TU ′⟩-biAlg.

Proof. Immediate from Theorem 4.2 and Proposition 4.1. □

Now we are ready to state the main theorem of the section.

Theorem 4.4. LetU ,U ′ be simple quantitative theories. Then, the
monad TU+U ′ in Met is the sum of monads TU +TU ′ .

Proof. By Corollary 4.3 and Theorem 3.3 the obvious forgetful func-
tor from ⟨TU ,TU ′⟩-biAlg to Met has a left adjoint. The monad
generated by this adjunction is isomorphic toTU+U ′ . Thus, by [13]
(cf. also [1, Proposition 2.8]), the monad TU+U ′ is also isomorphic
to TU +TU ′ . □

The above constructions do not use any specific property of
the category Met, apart from requiring its morphisms to be non-
expansive. Thus, under mild restrictions on the type of theories and
conditions on the free monad induced by them, we can reformulate
alternative versions of Theorem 4.4 which are valid on specific full
subcategories ofMet.

The first one applies to CMet, provided that the quantitative
equational theories are continuous. Recall that, the disjoint union
U + U ′ of two continuous quantitative theories U ,U ′ is also
continuous, so that, by Theorem 3.4, the free monad on it in CMet
is CTU+U ′ . Moreover, continuous theories are simple.

Theorem 4.5. LetU ,U ′ be continuous quantitative theories. Then,
the monad CTU+U ′ in CMet is the sum of CTU and CTU ′ .

Note that, for a continuous quantitative theoryU , if the functor
TU preserves separability of the metric spaces, then the free monad
on U in CSMet is given by CTU . This is the case, for example, for
countable signatures (see Lemma A.3 in the appendix). Thus, under
an additional condition on the free monads, the theorem above can
also be stated for the case of complete separable metric spaces.

Corollary 4.6. LetU ,U ′ be continuous quantitative theories and
assume TU+U ′ , TU , and TU ′ preserve separability of metric spaces.
Then, the monad CTU+U ′ in CSMet is the sum of CTU and CTU ′ .

5 Interpolative Barycentric Algebras
Interpolative barycentric algebras [14] are the quantitative algebras
for the signature

ΣB = {+e : 2 | e ∈ [0, 1]}

having a binary operator +e , for each e ∈ [0, 1] (a.k.a. barycentric
signature), and satisfying the following axioms

(B1) ⊢ x +1 y ≡0 x ,

(B2) ⊢ x +e x ≡0 x ,

(SC) ⊢ x +e y ≡0 y +1−e x ,

(SA) ⊢ (x +e y) +e ′ z ≡0 x +ee ′ (y + e′−ee′
1−ee′

z) , for e, e ′ ∈ [0, 1) ,

(IB) {x ≡ε y,x
′ ≡ε ′ y

′} ⊢ x +e x
′ ≡δ y +e y

′, for δ ≥ eε + (1 − e)ε ′.
5
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The quantitative theory induced by the axioms above, written B, is
called interpolative barycentric quantitative equational theory. The
axioms (B1), (B2), (SC), (SA) are those of barycentric algebras (a.k.a.
abstract convex sets) due to M. H. Stone [24] where (SC) stands
for skew commutativity and (SA) for skew associativity. (IB) is the
interpolative barycentric axiom introduced in [14].

5.1 On Metric Spaces
Let Π : Met → Met be the functor assigning to each X ∈ Met the
metric space Π(X ) of finitely supported Borel probability measures
with Kantorovich metric and acting on morphisms f ∈ Met(X ,Y )
as Π(f )(µ) = µ ◦ f −1, for µ ∈ Π(X ).

This functor has a monad structure, with unit δ : Id ⇒ Π and
multiplicationm : Π2 ⇒ Π, given as follows, for x ∈ X , Φ ∈ Π2(X ),
and Borel subset E ⊆ X

δX (x) = δx , m(Φ)(E) =

∫
evE dΦ ,

where δx is the Dirac distribution at x ∈ X , and evE : Π(X ) → [0, 1]
is the evaluation function, taking µ ∈ Π(X ) to µ(E) ∈ [0, 1]. This
monad is also known as the finite distribution monad.

For any X ∈ Met, one can define a quantitative ΣB-algebra
(Π(X ),ϕX ) as follows, for arbitrary µ,ν ∈ ΠX

ϕX : ΣBΠX → ΠX ϕX (in+e (µ,ν )) = eµ + (1 − e)ν .

This quantitative algebra satisfies the interpolative barycentric
theory B [14, Theorem 10.4]) and is universal in the following
sense.

Theorem 5.1 ([14, Th. 10.5]). For any ΣB -algebra (A,α) satisfying
B and non-expansive map β : X → A, there exists a unique homomor-
phism h : ΠX → A of quantitative ΣB -algebras making the diagram
below commute

X ΠX ΣBΠX

A ΣBA
β

δX

h

ϕX

ΣBh

α

From this we obtain that Π is isomorphic to the monad TB on
the quantitative theory B of interpolative barycentric algebras.

Theorem 5.2. The monads TB and Π in Met are isomorphic.

The proof is given in the appendix.

5.2 On Complete Separable Metric Spaces
Define the functor ∆ : CSMet → CSMet assigning to each X ∈

CSMet the complete separable metric space ∆(X ) of Borel proba-
bility measures with Kantorovich metric and acting on morphisms
f ∈ CSMet(X ,Y ) as ∆(f )(µ) = µ ◦ f −1, for µ ∈ ∆(X ). This func-
tor has a monad structure, defined similarly to the one for Π. It is
known as the metric Giry monad.

Note that Cauchy completion preserves separability. Thus the
Cauchy completion functor C : Met → CMet restricts to separable
spaces. By Lemma 2.2 and the fact that CC � C, one can verify that
the canonical monad structure on CΠ is isomorphic to the one on ∆
in CSMet. In [14], it has been proven thatTB preserves separability.
Hence, by Theorem 5.2, we obtain the following.

Theorem 5.3. The monads CTB and ∆ in CSMet are isomorphic.

Note that, since B is axiomatised by a continuous schema of
quantitative inferences, the free monad on B in CSMet is exactly
given by CTB . Therefore, Theorem 5.3 provides an algebraic char-
acterisation of the metric Giry monad.

6 Algebras of Contractive Operators
A signature of contractive operators Σ is a signature of function
symbols f : n ∈ Σ with associated contractive factor 0 < c < 1. We
write this as f : ⟨n, c⟩ ∈ Σ.

The quantitative equational theory of contractive operators asso-
ciated to a signature Σ, written O(Σ), is the quantitative equational
theory satisfying, for each f : ⟨n, c⟩ ∈ Σ, the axioms

(f -Lip) {x1 =ε y1, . . . ,xn =ε yn } ⊢ f (x1, . . . ,xn ) ≡δ f (y1, . . . ,yn ) ,

for all rationals δ ≥ cε . The axiom (f -Lip) requires the interpreta-
tion of f to be c-Lipschitz continuous.

6.1 On Metric Spaces
For a contractive signature Σ, we define a modification of the sig-
nature endofunctor onMet by:

Σ̃ =
∐

f : ⟨n,c ⟩∈Σ
c · Idn

where c · Id is the rescaling functor, mapping a metric space (X ,dX )
to (X , c · dX ).

Next we show that quantitative Σ-algebras satisfying O(Σ) are
in one-to-one correspondence with universal Σ̃-algebras; moreover,
this correspondence lifts the identity functor onMet (cf. [12]).

Lemma 6.1. There exists an isomorphism of categories between
Σ̃-Alg and K(Σ,O(Σ)) making the following diagram commute

Σ̃-Alg � K(Σ,O(Σ))

Met
UΣ̃ UΣ

The proof is given in the appendix.
In virtue of Lemma 6.1, by an abuse of notation, we will denote

by the same name the algebras in Σ̃-Alg and K(Σ,O(Σ)).
Next we show that the free monad TO(Σ) is isomorphic to the

free monad on Σ̃. For this result, we first need some discussion of
free and initial algebras and free monads.

Given any endofunctorH on a category C, we write (µy.Hy,αH )

for the initial H -algebra, if it exists. If C has binary coproducts,
the free H -algebra on X ∈ C with its unit can be identified with
(µy.(Hy +X ),αH+X ), and the one exists if and only the other does.
These free algebras exist if, for example, C is locally countably
presentable and H has countable rank.

A free monad onH is a monadH∗ on C and a natural transforma-
tion γ : H ⇒ H∗ that is initial among all such pairs (S, λ : H ⇒ S).
If the forgetful functor from H -Alg to C has a left adjoint (equiv-
alently, any C-object has a free H -algebra with unit), then the
resulting monad on C is free on H and is said to be algebraic [3]. If
H∗ exists and is algebraic, the categoryH∗-Alg of Eilenberg-Moore
algebras for the monad H∗ is isomorphic to the category H -Alg of
universal algebras for the endofunctor H .

We see from the above that, if C has binary sums, then H∗ can
be identified with µy.(Hy + −) and the former exists if and only
if the other does. We further see that if C is locally countably

6
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presentable and H has countable rank, then H∗ exists and has
countable rank [13].

Therefore, sinceMet is locally countably presentable [2] and Σ̃
has countable rank, the free algebra for Σ̃ exists and so does the
free monad Σ̃∗. Let κX : Σ̃Σ̃∗X → Σ̃∗X be the free Σ̃-algebra on
X ∈ Met with unit χ : Id ⇒ Σ̃∗.

Then, the next result follows by Lemma 6.1 and freeness of Σ̃∗.

Corollary 6.2. Let Σ be a signature of contractive operators. Then,
for any quantitative Σ-algebra (A,α) satisfying O(Σ) and non-expan-
sive map β : X → A, there exists a unique homomorphism h : Σ̃∗X →

A of quantitative Σ-algebras making the diagram below commute

X Σ̃∗X ΣΣ̃∗X

A ΣA
β

χX

h

κX

Σh
α

By freeness of TO(Σ) and Corollary 6.2, the following holds:

Theorem 6.3. The monads TO(Σ) and Σ̃∗ in Met are isomorphic.

6.2 On Complete Metric Spaces
The category CMet has coproducts and finite products. Moreover,
since rescaling a metric by a factor 0 < c < 1 preserves Cauchy
completeness, the rescaling functor c · Id can be restricted to an
endofunctor on CMet. Hence, for any contractive signature Σ, the
endofunctor Σ̃ =

∐
f : ⟨n,c ⟩∈Σ c · Id

n is well defined in CMet.
By repeating the construction in Lemma 6.1 we get the following.

Lemma 6.4. There exists an isomorphism of categories between
Σ̃-Alg and K(Σ,O(Σ)) making the following diagram commute

Σ̃-Alg � CK(Σ,O(Σ))

CMet
UΣ̃ UΣ

Because O(Σ) is a continuous quantitative theory, by Theo-
rem 3.4, the free monad on O(Σ) in CMet is given by CTO(Σ).

Note that, also CMet is locally countably presentable [2], and
since Σ̃ is of countable rank, we have that the free monad on Σ̃
exists in CMet too. Therefore, by repeating the same argument we
used before, by Lemma 6.4 and freeness of Σ̃ and CTO(Σ) we obtain:

Theorem 6.5. The monads CTO(Σ) and Σ̃∗ in CMet are isomorphic.

6.3 On Complete Separable Metric Spaces
The category CSMet has countable coproducts and finite products.
Moreover, since the operation of rescaling a metric by a constant
factor 0 < c < 1, preserves both Cauchy completeness and separa-
bility, the endofunctor c · Id can be restricted to CSMet.

Hence, provided that the contractive signature Σ consists of only
a countable set of operators, Σ̃ =

∐
f : ⟨n,c ⟩∈Σ c ·Id

n is a well defined
endofunctor on CSMet. Hereafter, we assume the signature Σ to be
countable.

Unlike CMet, the category CSMet is not locally countably pre-
sentable, because is not cocomplete (it does not have uncountable
coproducts). However, CSMet has all ℵ1-filtered colimits, and since
every separable space in CMet is a countably presentable (or ℵ1-
presentable) object [2, Corollary 2.9], CSMet is ℵ1-accessible. Since
Σ̃ is of countable rank (i.e., ℵ1-accessible), by [9, Lemma 3.4] the
free monad Σ̃∗ on Σ̃ exists in CSMet and is algebraic.

The functor Σ∗ inMet preserves separability of the metric spaces.
Thus, by Theorem 6.3, so does TO(Σ). Moreover, since the quantita-
tive equational theory O(Σ) is continuous, by Theorem 3.4, the free
monad on O(Σ) in CSMet is given by CTO(Σ). Thus, by freeness of
Σ̃∗ and Lemma 6.1, the following holds:

Theorem 6.6. The monadsCTO(Σ) and Σ̃∗ inCSMet are isomorphic.

7 Interpolative Barycentric Algebras with
Contractive Operators

In this section we study a variation of interpolative barycentric
quantitative algebras where we add operations from a contractive
signature Σ assumed to be disjoint from ΣB .

These are quantitative algebras for the signature

ΣB + Σ = {+e : 2 | e ∈ [0, 1]} ∪ Σ ,

satisfying the disjoint union of the axioms of interpolative barycen-
tric quantitative theory, namely (B1), (B2), (SC), (SA), and (IB), and,
for each f ∈ Σ, the axiom (f -Lip) from the quantitative theory of
contractive operators.

The quantitative equational theory induced by these axioms will
be called interpolative barycentric theory with contractive operators
in Σ, and it coincides with the disjoint union B + O(Σ) of theories.

7.1 On Metric Spaces
We have already noted that the quantitative theories B and O(Σ)
are simple. Thus, by Theorem 4.4, the free monad TB+O(Σ) on Met
induced by B + O(Σ) is the sum of TB and TO(Σ). Moreover, by
Theorems 5.2 and 6.3, it is also isomorphic to Π + Σ̃∗.

In the following we will prove an alternative characterisation of
TB+O(Σ), that will eventually reveal the connection between inter-
polative barycentric algebras with operators and Markov processes.

Depending on the type of monads, several specific conditions of
existence and constructions appear in the literature [1] for the sum
of monads. One of these, due to Hyland, Plotkin, and Power [10],
recalled below for convenience, characterises the sum of a monad
with a free one.

Theorem 7.1 ([10, Theorem 4]). Given an endofunctor F and a
monad T on a category C, if the free monads F ∗ and (FT )∗ exist and
are algebraic, then the sum of monads T + F ∗ exists in the category
of monads over C and is given by a canonical monad structure on the
composite T (FT )∗.

In terms of the above result, given that TB+O(Σ) is isomorphic
to Π + Σ̃∗, if we prove that the free monad (Σ̃Π)∗ inMet exists and
is algebraic, then TB+O(Σ) would be also isomorphic to Π(Σ̃Π)∗.
For this reason, in the following we characterise (and hence prove
the existence of) the free algebra on Σ̃Π. relevant For arbitrary
X ∈ Met, let PX be the smallest set such that
• if x ∈ X , then x ∈ PX ;
• if µ1, . . . , µn ∈ Π(PX ) and f : n ∈ Σ, then f ⟨µ1, . . . , µn⟩ ∈ PX .
We define the metric dPX : PX × PX → [0, 1] by induction on

the complexity on the structure of the elements in PX as follows2,
for arbitrary x ,x ′ ∈ X , µ1, . . . , µn ,ν1, . . . ,νk ∈ Π(PX ), and distinct
operators f ,д ∈ Σ of arity f : n and д : k such that n ≤ k , where

2The symmetric cases are omitted and defined as expected.
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we assume f : ⟨n, c⟩ ∈ Σ.

dPX (x ,x
′) = dX (x ,x

′) ,

dPX (f ⟨µ1, . . . , µn⟩, f ⟨ν1, . . . ,νn⟩) = c ·
nmax
i=1

K(dPX )(µi ,νi ) ,

dPX (f ⟨µ1, . . . , µn⟩,д⟨ν1, . . . ,νk ⟩) = 1 ,
dPX (x , f ⟨µ1, . . . , µn⟩) = 1 .

Proposition 7.2. For any X ∈ Met, dPX is a well defined metric.

For X ∈ Met, define ϱX : X → PX and ϑX : Σ̃ΠPX → PX as
follows, for arbitrary x ∈ X , f : n ∈ Σ, and µ1, . . . , µn ∈ Π(PX )

ϱX (x) = x , ϑX (inf (µ1, . . . , µn )) = f ⟨µ1, . . . , µn⟩ .

By definition of dPX , it is straightforward to show that both ϱX
and ϑX are non-expansive maps (actually, are isometric injections),
thus they are morphisms in Met. In particular, ϑX is a universal
Σ̃Π-algebra on PX inMet.

Theorem 7.3 (Free Algebra). For any X ∈ Met, Σ̃Π-algebra (A,α),
and non-expansive map β : X → A, there exists a unique Σ̃Π-homo-
morphism h : PX → A making the diagram below commute

X PX Σ̃ΠPX

A Σ̃ΠA
β

ϱX

h

ϑX

Σ̃Πh

α

The proof is given in the appendix.
Theorem 7.3 states that ϑX is the free Σ̃Π-algebra for X ∈ Met,

or equivalently, that the forgetful functor from the category of
Σ̃Π-algebras to Met has a left adjoint. Thus, the free monad (Σ̃Π)∗

on Σ̃Π inMet exists and is algebraic. Moreover, it acts on objects
X ∈ Met as (Σ̃Π)∗X = PX .

Corollary 7.4. The monads TB+O(Σ) and Π(Σ̃Π)∗ in Met are iso-
morphic.

Proof. Direct consequence of Theorems 4.4, 5.2, 6.3, 7.1, and 7.3. □

As observed in [10], the monadT (FT )∗ of Theorem 7.1 is simply
another form of the generalised resumptions monad transformer
of Cenciarelli and Moggi [5], sending T to µy.T (Fy + −). Hence, by
the characterisation above and guided by the same observations
that lead to [10, Corollary 2], we obtain the following isomorphism.

Theorem 7.5. The monad TB+O(Σ) in Met is isomorphic to the
canonical monad structure on µy.Π(Σ̃y + −).

Proof. By [23, Proposition 5.3], it is easy to show that µy.Π(Σ̃y +−)
exists if and only if (Σ̃Π)∗ does, and that Π(Σ̃Π)∗ and µy.Π(Σ̃y +−)
are then isomorphic. □

7.2 On Complete Separable Metric Spaces
We would like to apply Corollary 4.6 to provide a characterisation
of the free monad on B + O(Σ) in the category CSMet as the sum
of monads CTB + CTO(Σ).

To this end we have to verify that the conditions required by
the corollary are satisfied. We already noted that the quantitative
theories B and O(Σ) are continuous and that the functors TB and
TO(Σ) preserve separability of the metric spaces. We are only left
to prove that also TB+O(Σ) preserves separability.

Lemma 7.6. The functor TB+O(Σ) in Met preserves separability.

The proof is given in the appendix.
Thus, we can apply Corollary 4.6 to obtain the desired result.

Corollary 7.7. The monad CTB+O(Σ) in CSMet is the sum of CTB
and CTO(Σ).

An immediate consequence of the characterisation above and
Theorems 5.3 and 6.6 is the following.

Corollary 7.8. The monad CTB+O(Σ) in CSMet is isomorphic to
∆ + Σ̃∗.

According to the above and similarly to what we have done in
Section 7.1, we would like to prove for the free monad CTB+O(Σ)
on B + O(Σ) in CSMet corresponding results to Corollary 7.4 and
Theorem 7.5.

We will proceed again by using Theorem 7.1. Thus, as we did in
Section 7.1, we need to show that the free monad on Σ̃∆ in CSMet
exists and is algebraic. We already noted that the category CSMet
is accessible and that Σ̃ is an accessible endofunctor on it. Moreover,
by [26, Corollary 22], we also have that ∆ on CSMet is accessible,
so that their composition Σ̃∆ is accessible too. Therefore, by [9,
Lemma 3.4] the free monad (Σ̃∆)∗ exists and is algebraic.

This observation, then leads to the desired characterisations.

Corollary 7.9. The monad CTB+O(Σ) in CSMet is isomorphic to
the monads Π(Σ̃Π)∗ and µy.∆(Σ̃y + −) with the canonical monad
structures.

8 The Algebras of Markov Processes
In this section we show how interpolative barycentric quantitative
theories with operators can be used axiomatise the probabilistic
bisimilarity distance of Desharnais et al. [7] over Markov processes.

For any 0 < c < 1, we define the finite signature of contractive
operators

Mc = {0 : ⟨0, c⟩} ∪ {⋄ : ⟨1, c⟩} ,
consisting of one constant symbol 0, representing termination, and
a unary operator ⋄(t) expressing the capability of doing a transition
to t . Both operators are associated with the same contractive factor.

The interpolative barycentric quantitative theory with opera-
tors inMc , given as the disjoint union B + O(Mc ) of theories is
generated by the following set of axioms

(B1) ⊢ x +1 y ≡0 x ,

(B2) ⊢ x +e x ≡0 x ,

(SC) ⊢ x +e y ≡0 y +1−e x ,

(SA) ⊢ (x +e y) +e ′ z ≡0 x +ee ′ (y + e′−ee′
1−ee′

z) , for e, e ′ ∈ [0, 1) ,

(IB) {x ≡ε y,x
′ ≡ε ′ y

′} ⊢ x +e x
′ ≡δ y +e y

′, for δ ≥ eε + (1 − e)ε ′,
(⋄-Lip) {x =ε y} ⊢ ⋄(x) ≡δ ⋄(y) , for δ ≥ cε .

Note that, the constant 0 has no explicit associated axiom, since it
is derivable from (Refl).

8.1 Markov Processes over Metric Spaces
We briefly recall the definitions of Markov processes over metric
spaces and discounted probabilistic bisimilarity distance on them,
presented following the pattern proposed in [26, Section 6].

Definition 8.1. A (sub-probabilistic) Markov process over a metric
space is a tuple (X ,τ ) consisting of a metric space X of states and
non-expansive Markov kernel τ : X → ∆(1 + X ).
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It is clear that these structures correspond to the coalgebras for
the (sub-probabilistic) Giry functor ∆(1 + Id) inMet.

In [26], van Breugel et al. proved that the final coalgebra for
∆(1 + Id) in Met exists and they characterised the probabilistic
bisimilarity distance on Markov processes as the pseudometric
induced by the unique homomorphism to the final coalgebra.

We will do the same here slightly extended their approach for
dealing with the case when the probabilistic bisimilarity distance
is discounted by a factor 0 < c < 1. Explicitly, the only difference
consists in considering coalgebras for the functor ∆(1 + c · Id) in
Met. For simplicity we call these structures c-Markov processes.
Note that Markov processes is a proper subclass: one can turn any
Markov process into a c-Markov process as (X ,∆(1 + idcX ) ◦ τ ),
where idc : Id ⇒ c · Id is the obvious natural transformation acting
as the identity on the elements of the metric space and allowing
for the change of “type”.

The final coalgebra (Zc ,ωc ) for ∆(1 + c · Id) exists by similar ar-
guments of [26, Section 6]. Then, for an arbitrary c-Markov process
(X ,τ ), the c-discounted probabilistic bisimilarity pseudometric on
(X ,τ ) is defined as the function dcτ : X × X → [0, 1] given as

dcτ (x ,x
′) = dZc (h(x),h(x

′)) ,

where h : X → Zc is the unique homomorphism of coagebras from
(X ,τ ) to (Zc ,ωc ).

Since terminal objects are unique up to isomorphism, the defini-
tion of the distance function dcτ does not depend on which terminal
∆(1 + c · Id)-coalgebra is chosen. Clearly, since dZc is a 1-bounded
metric, then dcτ is a well defined 1-bounded pseudometric.

Proposition 8.2 ([26]). Let (X ,τ ) be a c-Markov process. Then, for
all x ,x ′ ∈ X , dcτ (x ,x ′) = 0, if and only if, x and x ′ are probabilisti-
cally bisimilar.

We can show that this distance has a characterisation as the
least fixed point of a monotone function on a complete lattice of
1-bounded pseudometrics.

Theorem8.3 ([26]). The c-discounted probabilistic bisimilarity pseu-
dometric dcτ on (X ,τ ) is the least fixed point of the following operator
on the complete lattice of 1-bounded pseudometrics d onX with point-
wise order ⊑, such that d ⊑ dX ,

Ψc
τ (d)(x ,x

′) = sup
f ∈Φ1+c ·X

����∫ f dτ (x) −
∫

f dτ (x ′)
���� ,

with supremum ranging over the set Φ1+c ·X of non-expansive positive
1-bounded real valued functions f : 1 + c · X → [0, 1].

8.2 On Metric Spaces
In this section we want to relate c-Markov processes and their
c-discounted probabilistic bisimilarity pseudometric with the free
monad arising from the quantitative theory B + O(Mc ) inMet.

First note that the functor associated to the signatureMc is

M̃c = 1 + c · Id .

where 1 is the terminal object in Met (i.e., the singleton metric
space)3. Thus, by Theorem 7.5, the free monad on B + O(Mc )

corresponds to the canonical monad structure on µy.Π(1+c ·y+−).

3Here we are implicitly applying the isomorphism 1 � c · 1.

Explicitly, this means that, the free monad onB+O(Mc ) assigns
to an arbitrary metric space M ∈ Met the initial solution of the
following functorial equation inMet

FPM � Π(1 + c · FPM +M) .

In particular, whenM = 0 is the empty metric space (i.e., the initial
object) the above corresponds to the isomorphism on the initial
Π(1+c · Id)-algebra. This gives rise to a Π(1+c · Id)-coalgebra struc-
ture on FP0, which in turn can be converted into a c-Markov process
via a post-composition with the subspace inclusion Π(−) ↪→ ∆(−).
Let us write this c-Markov process as

(FP,α : FP → ∆(1 + c · FP)) .

The following states that the metric on FP corresponds to the
c-discounted probabilistic bisimilarity (pseudo)metric on (FP,α).

Lemma 8.4. dFP = dcα

Proof. By Theorem 8.3 we need to prove that dFP is the least fixed
point of Ψc

α . This follows trivially by definition of the functor Π(1+
c · Id) and because (FP,α−1) is the initial Π(1 + c · Id)-algebra. □

Next we would like to give a more explicit characterisation of the
elements in FP. By recalling the characterisation of the metric term
monad in [14], the elements in FP can be represented by equivalence
classes of terms generated by the following grammar

f ::= 0 | ⋄(f ) | f +e f . for e ∈ [0, 1]

with respect to the kernel of the distance. In this specific case the
distance corresponds to dcα , with transition probability function α
defined as follows:

α(0) = δ⊥ , α(⋄(f )) = δf , α(f +e д) = α(f ) +e α(д) .

Thus, by Lemma 8.2, we can interpret the element in FP as pointed
(or rooted) Markov processes constructed over the above grammar
and quotiented by bisimilarity. It is not difficult to see that these
structures correspond to the class of rooted acyclic finite Markov
processes from [6].

8.3 On Complete Separable Metric Spaces
We would like to relate c-Markov processes and the c-discounted
probabilistic bisimilarity pseudometric with the free monad in
CSMet.

By Corollary 7.9, we know that the free monad on B + O(Mc )

in CMet corresponds to the canonical monad structure on µy.∆(1+
c · y + −).

Explicitly, this means that, for the case of complete metric spaces
the free monad on B+O(Mc ) assigns to any arbitrary metric space
M ∈ CSMet the initial solution of the following functorial equation
in CSMet

MPM � ∆(1 + c ·MPM +M) .

Observe that the map ωM : MPM → ∆(1 + c ·MPM +M) arising
from the above isomorphism is a coalgebra structure for the functor
∆(1 + c · Id + M). Next we show that (MPM ,ωM ) is actually the
final coalgebra in CSMet.

We will do this by using the following result from [25, Section 7].

Theorem 8.5 ([25]). Every locally contractive endofunctor H on
CMet has a unique fixed point which is both an initial algebra and a
final coalgebra for H .
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Note that if the fixed point lies in a subcategory of CMet, it is
unique also in that subcategory. Hence, our goal is to prove that, for
anyM ∈ CMet, the functor ∆(1 + c · Id +M) is locally contractive.

In CMet the homsets CMet(X ,Y ) are themselves complete sepa-
rable metric spaces, with distance

dX→Y (f ,д) = sup
x ∈X

dY (f (x),д(x)) .

An endofunctor H on CMet is locally c-Lipschitz continuous if for
all X ,Y ∈ CMet and non-expansive maps f ,д : X → Y ,

dHX→HY (H (f ),H (д)) ≤ c · dX→Y (f ,д) .

We say that H is locally non-expansive if is locally 1-Lipschitz con-
tinuous, and locally contractive if is locally c-Lipschitz continuous,
for some 0 ≤ c < 1.

Examples of locally contractive functors are the constant func-
tors and the rescaling functor c · Id , for 0 ≤ c < 1. Locally contrac-
tiveness is preserved by products and coproducts and composition.
Moreover, if H is locally non-expansive andG is locally contractive,
then FG is locally contractive.

Lemma 8.6. The endofunctor ∆ on CMet is locally non-expansive.

Thus, for the free monad on B+O(Mc ) in CSMet, the following
holds.

Theorem 8.7. For everyM ∈ CSMet, (MPM ,ωM ) is the final coal-
gebra of the functor ∆(1 + c · Id +M) in CSMet.

Proof. This is a direct consequence of Theorem 8.5 and Lemma 8.6,
since, 1 + c · Id +M is locally contractive and the composition of
a locally contractive functor with a locally non-expansive one is
locally contractive. □

Note that, whenM = 0 is the empty metric space, the coalgebras
of this functor correspond to the final c-Markov process we have
used in Section 8.1 to characterise the c-discounted probabilistic
bisimilarity distance. When M is not the empty space we have a
kind of Markov process that terminates in the states inM ; one can
view the states ofM as absorbing states.

Hence, in the light of the Theorem 8.7, we have shown that
B+O(Mc ), for the case of complete metric spaces, axiomatises the
c-probabilistic bisimilarity distance on the final Markov process.

9 Conclusions
The main contribution of this paper was extending the notion of
“sum of theories” from [10] to the quantitative setting. This, we
feel opens the way to developing combinations of quantitative
effects just as [10] did for combining effects in the ordinary sense.
The Markov process example developed in this paper is of interest
in its own right as it is the underlying operational semantics for
probabilistic programming languages.

A significant novelty of this paper is a treatment of Markov pro-
cesses that presents them both as algebras and as coalgebras. The
algebra structure arises by combining the quantitative equational
theory of probability distributions equipped with the Kantorovich
metric whereas the coalgebra structure corresponds to the final
coalgebra equipped with the discounted probabilistic bisimilarity
distance. Such algebra-coalgebra duality has been used before [4]
for automata but much more could be done and in future work we
hope to use this connection to reason about properties of proba-
bilistic programs.
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A Proofs from Section 4
Here is the proof of Proposition 4.1.

Proposition A.1. K(Σ + Σ′,U +U ′) � K((Σ,U) ⊕ (Σ′,U ′)).

Proof. The isomorphism is given by the following pair of functors

K(Σ + Σ′,U +U ′) K((Σ,U) ⊕ (Σ′,U ′))

H

K

defined, for an arbitrary quantitative (Σ + Σ′)-algebra (A,γ ) sat-
isfying U + U ′ and a ⟨U ,U ′⟩-bialgebra (B,α , β), respectively
as

H (A,γ ) = (A,γ ◦ inl ,γ ◦ inr ) , K(B,α , β) = (B, [α , β]) ,

where [α , β] is the unique map induced by α and β by couniversality
of the coproduct ΣA + Σ′A. On morphisms both functors map a
morphism to itself; it is easy to see that a homomorphism in one
sense is also a homomorphism in the other.

The fact that the functors are inverses is clear: H ◦ K = Id and
K ◦ H = Id follow immediately from the couniversal property of
coproducts. We are done, provided we show that the functors are
indeed well defined. In order to show that the functors are well
defined, we need to prove that the functors preserve the relevant
quantitative equations.

To show that H is well defined we need to prove that whenever
(A,γ ) satisfies U +U ′, then (A,γ ◦ inl ) and (A,γ ◦ inr ) satisfy U

andU ′, respectively. We will prove only that (A,γ ◦inl ) satisfiesU ,
since the other follows similarly. Let Γ ⊢ t ≡ε s ∈ U and ι : X → A
be an arbitrary assignment of the variables. Since U ⊆ U +U ′,
we have: (

for all t ′ ≡ε ′ s ′ ∈ Γ, dA(ι♯(t ′), ι♯(s ′)) ≤ ε ′
)

implies (3)

dA(ι
♯(t), ι♯(s)) ≤ ε ,

where ι♯ : T(Σ + Σ′,X ) → A is the homomorphic extension of ι
on (A,γ ).

Note that, by definition of coproduct of functors and homomor-
phic extension, we have that the following diagram commutes

X T(Σ,X ) ΣT(Σ,X )

T(Σ+Σ′,X ) (Σ+Σ′)T(Σ+Σ′,X ) ΣT(Σ+Σ′,X )

A (Σ+Σ′)A ΣA

ηΣ+Σ
′

X

ηΣX

ι

i

ψ Σ
X

Σi

ι♯

ψ Σ+Σ′

(Σ+Σ′)ι♯

inl

Σι♯

γ inl

where i is the canonical inclusion of Σ-terms in T(Σ + Σ′,X ). The
above implies also that ι♯ ◦ i is the homomorphic extension of ι
on (A,γ ◦ inl ). Recall that U is of type Σ. Thus in Γ ⊢ t ≡ε s can
occur only terms in T(Σ,X ). Therefore, (3) implies that (A,γ ◦ inl )
satisfies Γ ⊢ t ≡ε s . This argument is general so it applies to the
whole theoryU .

For K , we need to show that whenever (A,α) satisfies U and
(A, β) satisfies U ′, then (A, [α , β]) satisfies U +U ′. By the defi-
nition of the disjoint union of quantitative theories, it suffices to
prove that (A, [α , β]) is a model for bothU andU ′. We show the
former case, since the other follows similarly. Let Γ ⊢ t ≡ε s ∈ U

and ι : X → A be an arbitrary assignment of the variables. Since
(A,α) satisfiesU , we have that(

for all t ′ ≡ε ′ s ′ ∈ Γ, dA(ι♯(t ′), ι♯(s ′)) ≤ ε ′
)

implies (4)

dA(ι
♯(t), ι♯(s)) ≤ ε ,

where ι♯ : T(Σ,X ) → A is the homomorphic extension of ι on (A,α).
Note that, by definition of coproduct of functors and homomorphic
extension, we have that the following diagram commutes

X T(Σ,X ) ΣT(Σ,X )

T(Σ+Σ′,X ) (Σ+Σ′)T(Σ+Σ′,X ) ΣT(Σ+Σ′,X )

A (Σ+Σ′)A ΣA

ηΣ+Σ
′

X

ηΣX

ι

i

ψ Σ
X

Σi

ι♭

ψ Σ+Σ′

(Σ+Σ′)ι♭

inl

Σι♭

[α,β ] inl

where i is the canonical inclusion of Σ-terms in T(Σ+Σ′,X ), and
ι♭ is the homomorphic extension of ι on (A, [α , β]). Since [α , β] ◦
inl = α , the above implies also that ι♭ ◦ i = ι♯ . SinceU is of type
Σ, then Γ ⊢ t ≡ε s contains only terms in T(Σ,X ). Therefore, (4)
implies that (A, [α , β]) satisfies Γ ⊢ t ≡ε s; again this implies the
result for all ofU . □

This is the proof of Theorem 4.5

TheoremA.2. LetU ,U ′ be continuous quantitative theories. Then,
the monad CTU+U ′ in CMet is the sum of CTU and CTU ′ .

Proof. By Theorem 3.4, the monads CTU+U ′ , CTU , and CTU ′ are,
respectively, the free monads onU +U ′, U , and U ′ in CMet.

Similarly to Corollary 4.3, one obtains that CK(Σ + Σ′,U +U ′)

and ⟨CTU ,CTU ′⟩-biAlg are isomorphic. Thus, by Theorem 3.4
the forgetful functor from ⟨CTU ,CTU ′⟩-biAlg to Met has a left
adjoint, and the monad generated by this adjunction is isomorphic
to CTU+U ′ . Thus, by [13] (cf. also [1, Proposition 2.8]), CTU+U ′

is is the sum of CTU and CTU ′ . □

Lemma A.3. LetU be a quantitative theory of type Σ. If Σ is count-
able, then TU preserves separability of the metric spaces.

Proof. Let U 0 be the quantitative theory induced without extra
axioms (i.e., satisfying only the meta-axioms of quantitative equa-
tional theories). Hence, any quantitative Σ-algebra is a model of
U 0, that is, K(Σ,U 0) = Σ-Alg.

SinceMet is locally countably presentable [2] and Σ has count-
able rank the free monad Σ∗ exists and is algebraic. In particular,
Σ∗-Alg � Σ-Alg. By Theorem 4.2, TU 0 -Alg � K(Σ,U 0). Thus the
monads TU 0 and Σ∗ coincide. Since Σ is countable, it preserves
separability of the metric spaces. Thus, TU 0 does it too.

Let U be any quantitative theory. Since U 0 ⊆ U , any model
of U is of course a model of U 0. Thus, for any X ∈ Met, since
(TUX ,ψU

X ) ∈ K(Σ,U 0), by Theorem 3.3, there exist a unique
homomorphismh : TU 0X → TUX such that the following diagram
commute

X TU 0X ΣTU0X

TUX ΣTUX
ηU

ηU 0
X

h

ψU 0
X

Σh
ψU
X

11
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In particular, h is non-expansive (hence, continuous).
IfX is a separable metric space, then sinceTU 0 preserves separa-

bility, there exists a countable dense subsetD ⊆ TU 0X . Because h is
a continuous function, then h(D) is a dense subset inTUX . Clearly,
h(D) is countable, because D is so. Thus, TU preserves separability
of metric spaces. □

B Proofs from Sections 5, 7 and 8
This is the proof of Theorem 5.2.

Theorem B.1. The monads TB and Π in Met are isomorphic.

Proof. In the following we write ΣB and TB simply as Σ and T ,
respectively. Similarly, we drop the superscript B for the relevant
natural maps. We need to show that there exist a natural isomor-
phism σ : T ⇒ Π such that σ ◦η = δ and σ ◦ µ =m ◦σσ . We define
σ at X ∈ Met as the unique map σX that, by Theorem 3.3, makes
the following diagram commute

X TX ΣTX

ΠX ΣΠX
δX

ηX

σX

ψX

ΣσX
ϕX

That σ is an isomorphism follows by Theorem 3.3 and Theorem 5.1.
The equality σ ◦ η = δ follows by definition of σ . The equality
σ ◦ µ =m ◦ σσ follows by Theorem 3.3 and the commutativity of
the following diagrams

T TT ΣTT

T ΣT

Π ΣΠ

id

ηT

σ

µ

ψT

Σµ

σ

ψ

Σσ
ϕ

T TT ΣTT

Π ΠΠ ΣΠΠ

Π ΣΠ

ηT

σ σσ

ψT

Σµ

id

δΠ

m

ϕΠ

Σm
ϕ

All but one of the squares above commute by definition or by the
unit law of monads, whereas the equalitym ◦ϕΠ = ϕ ◦ Σm follows
by definitions ofm and ϕ and linearity of Lebesgue integral. □

This is the proof of Theorem 7.3

Theorem B.2 (Free Algebra). For any X ∈ Met, Σ̃Π-algebra (A,α),
and non-expansive map β : X → A, there exists a unique Σ̃Π-homo-
morphism h : PX → A making the diagram below commute

X PX Σ̃ΠPX

A Σ̃ΠA
β

ϱX

h

ϑX

Σ̃Πh

α

Proof. LetX ∈ Met. Given a Σ̃Π-algebra (A,α) and the non-expansive
map β : X → A, we define the function h : PX → A by induction of
the complexity of the structure of the elements in PX as follows,
for arbitrary x ∈ X , f : n ∈ Σ, and µ1, . . . , µn ∈ Π(X ),

h(x) = β(x) ,

h(f ⟨µ1, . . . , µn⟩) = α(inf (µ1 ◦ h
−1, . . . , µn ◦ h−1)) .

The equality h ◦ ϱX = β follows by definition, because ϱX (x) = x .

For arbitrary f : n ∈ Σ and µ1, . . . , µn ∈ Π(PX ), we have

h◦ϑX (inf (µ1, . . . , µn )) =

= h(f ⟨µ1, . . . , µn⟩) (def. ϑX )

= α(inf (µ1 ◦ h
−1, . . . , µn ◦ h−1)) (def. h)

= α(inf (Π(h)(µ1), . . . ,Π(h)(µn ))) . (def. Π)

By couniversality of the coproduct, from the above we get the
required equality h ◦ ϑX = α ◦ Σ̃Πh. If h′ : PX → A is another
homomorphism such that h′◦ϱX = β , then the following equalities
hold, for arbitrary x ∈ X , f : n ∈ Σ, and µ1, . . . , µn ∈ Π(PX ),

h′(x) = β(x) ,

h′(f ⟨µ1, . . . , µn⟩) = α(inf (Π(h
′)(µ1), . . . ,Π(h

′)(µn ))) .

Then, by an easy induction on the complexity of the structure of
the elements in PX we get that h = h′: the base case is trivial; the
inductive case follows by

h′(f ⟨µ1, . . . , µn⟩) =

= α(inf (Π(h
′)(µ1), . . . ,Π(h

′)(µn ))) . (h′ homomorphism)

= α(inf (µ1 ◦ (h
′)−1, . . . , µn ◦ (h′)−1)) (def. Π)

= α(inf (µ1 ◦ h
−1, . . . , µn ◦ h−1)) (by inductive hp.)

= h(f ⟨µ1, . . . , µn⟩) . (def. h)

It only remains to prove that h is non-expansive. We proceed by
induction. The base case follows trivially by definition h and dPX ,
and non-expansiveness of β . As for the inductive case, by definition
of dPX , as the metric dA is 1-bounded, the only interesting case to
check is the following, for f : ⟨n, c⟩ ∈ Σ

dPX (f ⟨µ1, . . . , µn⟩, f ⟨ν1, . . . ,νn⟩) =

= c ·
nmax
i=1

K(dPX )(µi ,νi ) (def. dPX )

≥ c ·
nmax
i=1

K(dPX )(µi ◦ h
−1,νi ◦ h

−1) (inductive hp.)

≥ dA(α(inf (µ1, . . . , µn )),α(inf (ν1, . . . ,νn ))) (α , inf non-exp.)
= dA(h(f ⟨µ1, . . . , µn⟩),h

′(f ⟨ν1, . . . ,νn⟩)) . (def. h)

This concludes the proof. □

This is the proof of Lemma 7.6 from Subsection 7.2.

Lemma B.3. The the functorTB+O(Σ) inMet preserves separability.

Proof. It is known that Π with Kantorovich metric preserves sepa-
rability (cf. [27, Theorem 6.18]). For convenience, we briefly recall
the argument here. Let X be a separable metric space and D ⊆ X a
countable dense subset of X . For any subset A ⊆ X , written Θ(A)
the set of Borel probability distributions expressed as finite convex
sums of the form

∑n
i=1 qi · δai , where δai is the Dirac distribution

at ai ∈ D, and
∑n
i=1 qi = 1 for qi ∈ Q≥0. Clearly, Θ(A) ⊆ Π(A) and,

if A is countable, so is Θ(A). By a standard limiting argument , if
A is dense in X , so is Θ(A) in Π(X ) w.r.t. the Kantorovich metric
K(dX ). Therefore Θ(D) is a countable dense subset of Π(X ).

Next we show that also (Σ̃Π)∗ preserves separability. Let X be
a separable metric space and D ⊆ X a countable dense subset of
X . From Section 7.1, we know that (Σ̃Π)∗X = PX . We define the
subsets SnX ⊆ PX , by induction on n ∈ N as follows

• if d ∈ D, then d ∈ S0X ;
• if µ1, . . . , µn ∈ Θ(SnX ) and f : n ∈ Σ, then f ⟨µ1, . . . , µn⟩ ∈ Sn+1X ,

12
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where Θ(−) is defined as above. By an easy induction on n ∈ N, one
proves that SnX is countable. The base case is trivial. Assume that
SnX is countable. Then Θ(SnX ) is countable and since the signature
Σ is assumed to be countable, we have that also Sn+1X is countable.

Consequently, the set SX =
⋃
n S

n
X is countable. Moreover, by an

easy induction on the complexity of the structure of the elements
in PX , the one shows that any element in PX is arbitrarily close to
some element in SX w.r.t. the metric dPX . Hence, (Σ̃Π)

∗ preserves
separability.

By Corollary 7.4, TB+O(Σ) � Π(Σ̃Π)∗. Thus, TB+O(Σ) preserves
separability of the metric spaces. □

Here is the proof of Lemma 8.6.

Lemma B.4. The endofunctor ∆ on CMet is locally non-expansive.

Proof. We need to check that for all f ,д ∈ CMet(X ,Y ),

sup
x ∈X

dY (f (x),д(x)) ≥ sup
µ ∈∆(X )

K(dY )(∆f (µ),∆д(µ)) . (5)

Write ΦY for the set of non-expansive functions k : Y → [0, 1], i.e.,
those functions such that ∀y,y′. |k(y) − k(y′)| ≤ dY (y,y

′). Then,
for any µ ∈ ∆(X ),

K(dY )(∆f (µ),∆д(µ)) =

= sup
k ∈ΦY

����∫ k d∆f (µ) −
∫
k d∆д(µ)

���� (def. K(dY ))

= sup
k ∈ΦY

����∫ k d(µ ◦ f −1) −

∫
k d(µ ◦ д−1)

���� (def. ∆)

= sup
k ∈ΦY

����∫ k ◦ f dµ −
∫
k ◦ д dµ

���� (change of var.)

= sup
k ∈ΦY

����∫ (k ◦ f ) − (k ◦ д) dµ
���� (linearity of

∫
)

≤ sup
k ∈ΦY

∫
|(k ◦ f ) − (k ◦ д)| dµ (subadd. of | · |)

≤

∫
dY ◦ ⟨f ,д⟩ dµ (monotonicity of

∫
)

≤

∫
sup
x ∈X

dY (f (x),д(x)) dµ (monotonicity of
∫
)

= sup
x ∈X

dY (f (x),д(x)) . (µ probability measure)

By the above, supx ∈X dY (f (x),д(x)) is an upper bound of the set
{K(dY )(∆f (µ),∆д(µ)) | µ ∈ ∆(X )}. Hence, this implies (5). □
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