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Abstract. A novel encoder-decoder deep learning network called TwoPath U-
Net for multi-class automatic brain tumor segmentation task is presented. The 
network uses cascaded local and global feature extraction paths in the down-sam-
pling path of the network which allows the network to learn different aspects of 
both the low-level feature and high-level features. The proposed network archi-
tecture using a full image and patches input technique was used on the 
BraTS2020 training dataset. We tested the network performance using the 
BraTS2019 validation dataset and obtained the mean dice score of 0.76, 0.64, and 
0.58 and the Hausdorff distance 95% of 25.05, 32.83, and 37.57 for the whole 
tumor, tumor core and enhancing tumor regions. 
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1 Introduction 

Glioma is a type of brain tumor that abnormally grows from glial cells of the brain 
and it is the most common type of brain tumor that is found in both adults and children. 
Early and accurate diagnosis are important keys to patients’ survival rate [1].  Because 
the tumor appearances vary from patient to patient, brain tumor segmentation represents 
a particular challenging image segmentation problem. MRI is currently the imaging 
modality of choice for brain tumor assessment because of its superior soft-tissue con-
trast. The brain tumor segmentation (BraTS) challenge has been publishing the BraTS 
datasets that are widely used for the brain tumor segmentation study for almost a decade 
[2]. The dataset provided multimodal MRI scans which were acquired from different 
MRI sequence setting. The multimodal dataset consists of a T1-weighted (T1) scan, a 
post-contrast T1-weighted (T1+Gd) scan, T2-weighted (T2) scan and a T2 Fluid Atten-
uated Inversion Recovery (FLAIR) scan. Since the tumor appears differently on each 
MRI modality, it is important to use multimodal MRI for brain tumor segmentation [3].  

 
Deep learning based models have been reported and proven to be the state-of-the-

art method for brain tumor segmentation task in the previous BraTS challenges [2, 4]. 
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Convolutional neural networks using small kernels to extract the essential features from 
the multimodal MRI data and the technique of increasing the depth of the networks 
were presented in [5]. Two-pathways CNNs [6] included a cascaded local and global 
feature extraction paths using different size of the kernels. These local and global fea-
ture extractions introduced the idea of giving the network different aspects of the input 
data to learn. However, these conventional convolutional neural network use fully con-
nected layers as a tumor classification and required post-processing to construct the 
prediction probability maps of tumor segmentation. U-Net [7] was originally intro-
duced for biomedical image segmentation. The encoder-decoder network architecture 
that proposed skip connection or concatenation of feature maps from contraction or 
down-sampling path to the corresponding up-sampling result features in the same block 
level to provided more precise localization information back into the dense feature 
maps levels. The up-sampling path of the U-Net restores the dense feature maps back 
to the original input data dimension with the prediction of the segmentation mask and 
background of the images. This up-sampling process eliminates the fully connected 
layers in the conventional convolutional neural network. Furthermore, U-Net is able to 
give a precise segmentation results using only a few hundreds of annotated training 
data. Hence, U-Net has become the powerful baseline method for medical imaging seg-
mentation problems including automatic brain tumor segmentation [8–10]. The data 
augmentation is often used to increase the number of training data [7–9, 11]. However, 
the previous U-Net based models [9, 10] produced binary segmentation of tumor mask 
and background of the images. To obtain all tumor sub-regions, the process involves 
the network training for each sub-regions segmentation separately and then post-pro-
cessing was applied to obtain all tumor structures segmentation.  

 
In this paper, we present a novel encoder-decoder network architecture that is based on 
U-Net for multi-class brain tumor segmentation. We replaced the contraction or down-
sampling paths of the U-Net with the local and global feature extraction paths inspired 
by cascaded Two-pathways CNNs and applied the random flipping along axis for data 
augmentation. We also implemented the proposed network using different input strat-
egies by comparing the segmentation results of full-size images input training and 
patches input training approach.  

  
 The remainder of the paper is organized as follows. Data pre-processing and method-
ology are presented in Section 2. Experimental results are reported in Section 3. Finally, 
the discussion is presented in Section 4.  

2 Methods 

2.1 Data pre-processing and Augmentation 

BraTS2020 training dataset consists of multimodal MRI scans from 369 patients that 
come from 293 high-grade glioma (HGG) and 76 low-grade glioma (LGG) patients. 
Each patient has 4 MRI scans; T1-weighted (T1), T1-weighted with gadolinium en-
hancing contrast (T1+Gd), T2-weighted (T2) and FLAIR image volumes. Each type of 



3 

the MRI scan obtained by using different MRI sequence setting acquisition. These im-
ages were resampled and interpolate into 1x1x1 m3 with the size of 240x240x155. The 
data set provides segmentation ground truth annotated by expert neuro-radiologists [2, 
12–14]. Annotation label comprises of label 1 for the necrotic and non-enhancing tumor 
(NCR/NET), label 2 for the peritumoral edema (ED), and label 4 for the enhancing 
tumor (ET). Fig. 1 illustrates original FLAIR images and overlaid of annotated ground 
truth labels. Red, yellow and blue contours are NCR/NET, ED and ET tumor regions, 
respectively.  

Data normalization was performed on each MRI scan by subtracting the mean of 
each MRI scan and dividing by its standard deviation. We also applied random flipping 
along the axis to increase training data as shown in Fig. 1. We split data into the ratio 
of 0.9:0.1 for cross-validation during the training phase.  
 

 
Fig. 1. An example of original image (left) and random flipping results (middle and right) from 
training dataset with overlaid ground truth labels; NCR/NET (red), ED (yellow), and ET (blue).  

 
2.2 Network Architecture 

Fig. 2. shows an illustration of the proposed TwoPath U-Net, which is the encoder-
decoder model based on U-Net [7]. It comprises 3 down-sampling blocks, a bottleneck 
layer and 3 up-sampling blocks with the multimodal MRI input data. Two feature ex-
traction paths which are 3x3 convolution layers with ReLU and 12x12 follows by 9x9 
convolution layers with ReLU are used as local and global feature extractions paths. 
These local and global feature extraction paths capture low-level essential features from 
the input. The concatenated local and global features provide multi-perspective of the 
essential context from the input to the model. Then, 2x2 max-pooling operator is per-
formed to halve the size of the feature maps dimension and these features maps become 
the input of the next down-sampling block. The feature extractions are repeated until 
the feature maps increase from 4 to 512 dense features. Then two repeated 3x3 convo-
lution layers followed by ReLU are performed in the bottleneck block of the network 
architecture. 

For up-sampling blocks, a 3x3 convolution with bilinear interpolation with stride of 
2 is used to double images resolution in both dimensions and to halve the feature maps, 
followed by 3x3 convolution with ReLU. The result of the up-sampling is then concat-
enated with the corresponding features from the down-sampling side of the same block 
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level as shown in Fig. 2. These concatenations or skip connections provide the higher 
resolution features with local and global localization contextual information to the up-
sampling process. The process repeated until the feature resolution increase back to 
original resolution with 64 feature maps. Finally, 1x1convolution layer [15] of length 
1x1x64 with softmax function is employed to produce the output of segmentation mask 
with 4 classes prediction of all tumor regions. 
 

 
Fig. 2. TwoPath U-Net network architecture.  

2.3 Experiments 

We performed two experiments using a full-image training and patches training ap-
proach. For full-size image training, input image of the size 240x240x4 were fed 
through 3 blocks of the proposed networks as shown in Fig. 2. At the end of the down-
sampling path, the resolution of the input data were halved in both dimension from 
240x240 to 30x30 and the feature maps were increase from 4 to 512. For up-sampling 
path, the dense feature maps resolution from bottleneck of the network were doubled 
in each block back to original image resolution and final output was the prediction of 4 
classes tumor regions segmentation.  

Since the majority of the segmentation results are the background of the images. We 
wanted to eliminate the background of the images that do not contain the brain and the 
tumor extents during the network training process. Hence, we performed another ex-
periment using patches training. We cropped the original image in to the size of 
160x160x4 and then trained the network using cropped input data in the same manner 
as the full-size images training. The summary of the operations and its output dimension 
of the patches training approach are illustrated in Table. 1.  
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Table 1. Model summary for patches segmentation training approach. 

Layer  Operations  Output Shape 

Input -  (160,160,4) 
Down  
Sampling 1 

12x12 Conv2D+ReLU, 9x9 Conv2D+ReLU 
3x3 Conv2D+ReLU Concatenation 

(80,80,128) 

Pool 1 Max Pooling 2D  (80,80,128) 
Down  
Sampling 2 

12x12 Conv2D+ReLU, 9x9 Conv2D+ReLU 
3x3 Conv2D+ReLU Concatenation 

(80,80,256) 

Pool 2  Max Pooling 2D  (40,40,256) 
Down  
Sampling 3 

12x12 Conv2D+ReLU, 9x9 Conv2D+ReLU 
3x3 Conv2D+ReLU Concatenation 

(40,40,512) 

Pool 3 Max Pooling 2D  (20,20,512) 

Bottleneck Dropout, 3x3 Conv2D+ReLU, 3x3 
Conv2D+ReLU, Dropout  

(20,20,512) 

Up 
Sampling 1 

UpSampling stride of 2, 3x3 Conv2D+ReLU 
 

(40,40,256) 

Skip  
Connection 1 

Up Sampling 1  
Down Sampling 3 Concatenation 

(40,40,768) 

Up  
Sampling 2 

UpSampling stride of 2, 3x3 Conv2D+ReLU 
 

(80,80,128) 

Skip  
Connection 2 

Up Sampling 2 
Down Sampling 2 Concatenation 

(160,160,384) 

Up  
Sampling 3 

UpSampling stride of 2, 3x3 Conv2D+ReLU 
 

(160,160,64) 

Skip  
Connection 3 

Up Sampling 3  
Down Sampling 1 Concatenation 

(160,160,192) 

Prediction 1x1 Convulution+Softmax  (160,160,4) 

2.4 Network Training 

An Adam optimizer [16] was used with a learning rate of 0.00001, 𝛽1 = 0.9, 𝛽2 = 0.99, 
all weights were initialized using a normal distribution with mean of 0 and standard 
deviation of 0.01, and al biases were initialized as 0. We used training batch size of 16 
and trained the network for 50 epochs for each segmentation experiment. Categorical 
cross-entropy for multiclass segmentation was used as a loss function and can be de-
fined as 

  
1

log
N

c cn
Loss y p


                                        (1) 

where N is the number of classes which are 4 including the background for this 
study. 𝑦𝑐 is the ground truth of the nth class and 𝑝𝑐  is the prediction from softmax 
function . We implemented the proposed network using Tensorflow and Keras library 
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on PC equipped with NVIDIA GeForce GTX 1070 GPU, an Intel® Core™ i5-8400 
CPU 2.80 GHz processor, 16 GB of RAM.   

3 Results 

3.1 Evaluation metrics 

We reported the Dice Similarity Coefficient which gives the similarity between pre-
dicted tumor regions segmentation and ground truth by comparing the overlapped area 
and can be defined as 

 2
2

TPDSC
FP TP FN


 

 (2) 

where TP, FP and FN denote the number of true positive, false positive and false neg-
ative counts, respectively.  
We also reported the model performance using Hausdorff Distance measure. Given two 
finite point sets  1,..., pA a a and  1,..., qB b b , the Hausdorff Distance can be de-

fined as  

 ( , ) max( ( , ), ( , ))H A B h A B h B A  (3) 

 ( , ) max min( ( , ))
b Ba A

h A B d a b


                                          (4) 

 ( , ) max min( ( , ))
a Ab B

h B A d b a


                                          (5) 

 
where d(a,b) is the Euclidean distance between a and b. h(A,B) is called the directed 
Hausdorff distance from A to B, which identifies the point a ∈ A that is farthest from 
any point of B and measures the distance from a to its nearest neighbor in B. This means 
that h(A, B) first looks for the nearest point in B for every point in A, and then the largest 
of these values are taken as the distance, which is the most mismatched point of A. 
Hausdorff distance H(A, B) is the maximum of h(A, B) and h(B, A). Hence, it is able to 
measure the degree of mismatch between two sets from the distance of the point of A 
that is farthest from any point of B, and vice versa [17].  

3.2 Preliminary results 

We used BraTS2019 validation dataset which provided multimodal MRI scans of 125 
patients as unknown testing data for our proposed network. The BraTS2019 validation 
dataset does not provide ground truth. Hence, we uploaded the prediction masks to 
CBICA image processing portal for BraTS 2019 validation segmentation task and ob-
tained the evaluation results. We evaluated the proposed network performance on 3 
segmentation tasks; segmentation of whole tumor region (WT) which is the union of 
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all annotated tumor labels (ED+NCR/NET+ET), segmentation of the gross tumor core 
(TC) which is the union of annotated label 1 and 4 (NCR/NET + ET), and segmentation 
of annotated label 4 (ET) [4].  
 Table 2 shows that the proposed network with full-images training obtained the seg-
mentation accuracy of mean dice score of 0.57, 0.75 and 0.64, and Hausdorff distance 
(95th percentile) of 37.56, 25.05 and 32.83 for enhancing tumor, whole tumor and tumor 
core segmentation tasks. Table 3 shows that the proposed network with middle cropped 
images training obtained the segmentation accuracy of mean dice score of 0.55, 0.73 
and 0.62, and Hausdorff distance (95th percentile) of 39.82, 64.43 and 49.75 for enhanc-
ing tumor, whole tumor and tumor core segmentation tasks. Table 4 shows that the 
proposed network with overlapping cropped images training obtained the segmentation 
accuracy of mean dice score of 0.50, 0.68 and 0.56, and Hausdorff distance (95th per-
centile) of 53.10, 66.26 and 59.42 for enhancing tumor, whole tumor and tumor core 
segmentation tasks. We can also see from Table 2-4 that for 75% quantile, our proposed 
network has the potential of reaching >80% dice score accuracy for whole tumor and 
tumor core and >75% dice score accuracy for enhancing tumor regions for all experi-
mental approaches. These results means that with further improvement training strat-
egy, the proposed method could give better performance across whole dataset.   
 Finally, we compared our experimental results from the proposed network to the 
segmentation results using the original U-Net in Table 5. We can see that the segmen-
tation results using TwoPath U-Net with full-images training approach achieved the 
highest dice score for all tumor segmentation tasks. TwoPath U-Net with full-images 
training approach also obtained lowest Hausdorff distance (95th percentile) which 
means it obtained the lowest degree of mismatch between the ground truth and the pre-
diction results. An example of the comparison results between the proposed method 
and ground truth segmentation of all tumor regions from the training dataset is shown 
in Fig. 3.  
 

Table 2. Segmentation results from full-image training.  

Metrics/ 
Tumor regions 

Dice Score Hausdorff Distance 95% 
ET WT TC ET WT TC 

Mean 0.57758 0.7586 0.6414 37.56539 25.04765 32.82901 
Median 0.73927 0.80849 0.7432 3.52914 43.00697 9.89949 
25% quantile 0.30451 0.70338 0.48014 64.24719 70.00714 69.31666 
75% quantile 0.82914 0.87162 0.86007 37.56539 25.04765 32.82901 
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Table 3. Segmentation results from patches training. 

Metrics/ 
Tumor regions 

Dice Score Hausdorff Distance 95% 
ET WT TC ET WT TC 

Mean 0.55216 0.73045 0.61785 39.82449 64.42918 49.75158 
Median 0.69698 0.77228 0.71616 25.11967 61.22908 52.33546 
25% quantile 0.32106 0.67741 0.44093 4.50848 52.02259 18.62794 
75% quantile 0.80972 0.84034 0.84906 72.59666 79.0231 76.84693 

Table 4. Segmentation results from overlapping patches training. 

Metrics/ 
Tumor regions 

Dice Score Hausdorff Distance 95% 
ET WT TC ET WT TC 

Mean 0.50895 0.67751 0.56053 53.09798 66.26139 59.41933 
Median 0.61275 0.73703 0.64553 55.17246 63.97656 60.3034 
25% quantile 0.2444 0.58653 0.37928 21.54167 52.20153 40.2368 
75% quantile 0.75477 0.80855 0.80325 79.04524 77.13365 79.45817 

Table 5. The comparison of segmentation results using different training methods on BraTS 2019 
validation dataset.  

Metrics/ 
Tumor regions 

Dice Score Hausdorff Distance 95% 
ET WT TC ET WT TC 

Original U-Net 0.37982 0.66885 0.46319 58.26046 64.16464 60.10336 

TwoPath U-Net  
Full-images 0.57758 0.7586 0.6414 37.56539 25.04765 32.82901 

TwoPath U-Net 
middle crop 0.55216 0.73045 0.61785 39.82449 64.42918 49.75158 

TwoPath U-Net 
overlapping crop 0.50895 0.67751 0.56053 53.09798 66.26139 59.41933 
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Fig. 3. Comparison between ground truth (left) and prediction (right) segmentation results on 
original FLAIR images from training dataset with overlaid labels NCR/NET (red), ED (yellow), 
and ET (blue) regions. 

3.3 BraTS 2020 Challenge 

We submitted the BraTS 2020 segmentation task using TwoPath U-Net on BraTS 
2020 testing dataset. The dataset contains multimodal MRI volumes of 166 patients. 
The segmentation results validated by the challenge are shown in table 6. We obtained 
mean dice score of 0.72, 0.66, and 0.64 for the whole tumor, tumor core, and enhancing 
tumor segmentations. The results from BraTS 2020 Challenge has a similar profile to 
the preliminary results. At 50% and 75% quantile of dataset, the proposed method 
achieved over 70% and 80% mean dice score accuracy for all tumor regions segmenta-
tion. With an improvement of hyperparameters tuning, the proposed method could per-
form better across the entire dataset.   

Table 6. Segmentation results from BraTS 2020 testing dataset. 

Metrics/ 
Tumor regions 

Dice Score Hausdorff Distance 95% 
ET WT TC ET WT TC 

Mean 0.63615 0.71819 0.65697 57.982 56.15457 61.4418 
Median 0.74136 0.79081 0.78923 18.40394 57.05636 49.08382 
25% quantile 0.60252 0.64168 0.55418 4.12311 38.90559 15.141 
75% quantile 0.81023 0.85834 0.85119 73.6825 74.62648 76.6368 
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4 Conclusion 

In conclusion, we developed a novel network architecture for fully automatic multi-
class brain tumor regions segmentation. The proposed network consists of cascaded 
local and global feature extraction paths to improve segmentation accuracy. We imple-
mented the proposed network architecture using different input data strategies on the 
BraTS2020 training dataset and tested the network performance using the BraTS2019 
validation dataset as unknown testing data. The proposed network gives better segmen-
tation accuracy than the original U-Net and obtained the mean dice score of 0.76, 0.64 
and 0.58 on the validation data and 0.72, 0.66, and 0.64 on the testing data for the whole 
tumor, tumor core and enhancing tumor regions.  
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