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Abstract

The paper introduces the benchmarking of multivariable
systems using an offline optimal LQG approach.
Polynomial system optimal LQG control theory is used to
derive a solution to the multivariable restricted structure
controller computation. This solution theory is then
developed into an computational algorithm. The control
problems of the hotstrip finishing mill interstand looper as
found in the steel industry are used to demonstrate the
multivariable controller benchmarking and restricted
structure procedure developed.

1. INTRODUCTION

Single loop controller assessment techniques have
developed to the point where online procedures have been
used in industrial tests (Desborough and Harris, 1992;
Thornhill et al, 1999). For multivariable controller
assessment, the situation is not so forward. At the close of
the monograph due to Huang and Shah (1999) there is
strong indication that a successful multivariable procedure
would probably be based on optimal control theory.
Ideally, such a procedure should have an unconstrained
optimal benchmark value, a benchmark value for the
actual industrial control structure but with optimised
parameters and a benchmark value for the industrial
controller that has been implemented. Furthermore, the
benchmarks should be calculated directly from process
data.

However, the multivariable controller assessment problem
also has other features not present in the single loop
controller problem. Industrial multivariable controllers
have an internal structure with two components; first, an
input-output (matrix) structure which determines controller
elements are zero and which will have a controller element
and, a second structure where the actual form of the
controller element itself is determined(for example, a P, PI
or a PID controller element). Thus there is a need to be
able to assess the existing industrial controller against
potential options available in the multivariable controller
structure. This paper uses an optimal control restricted
structure formulation to address this extra structural

feature of the multivariable controller assessment problem.
For simplicity, denote benchmark cost function as, J and

the internal structure of restricted controller K¢ by the
symbol, S, so that the corresponding controller is,

K5 (S,), then the restricted structure optimisation

min_ J(S,) and with
wrt.Kps(Sy)

problem can be given as,
K ps (S;) closed loop stabilising.

If the optimal value of the restricted structure optimisation

problem for structure S, is denoted J %' (S,), then the

optimal cost function ordering for (say) a set of controller

structures S, < §,, < §,; will be,

TS TP(S,3) S TT(S,) < TT(Sy) M

This can be used in a benchmark inequality as,
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As can be seen the multivariable controller assessment
problem comprises several different requirements. A key
one is to establish an optimal control framework for the
comparison of different restricted structure multivariable
controllers. A companion paper by Greenwood et al
(2003) further presents a philosophy for different types of
benchmarking problems in process control and also
contributes to this work on the controller assessment
problem.

1.2 Layout and contributions of the paper

In section 2 of the paper, the LQG based restricted
structure controller computation principles are given. This
is the first time the polynomial system solution of the so-
called multivariable restricted structure problem has been
presented. In section 3, the new multivariable restricted
structure controller procedure is used on the example of
tension and angle control in a hotstrip rolling mill
interstand looper unit. Typically the industrial solution is
decentralised PID feedback control tuned manually. The
paper reports some results from using the polynomial



numerical algorithms to compute benchmark values.
Conclusions and references close the paper.

2.0 MULTIVARIABLE RESTRICTED STRUCTURE
CONTROLLER THEORY AND ALGORITHMS

The need for a multivariable benchmarking procedure
motivates the theoretical development of this paper. A
major assumption in this work is that the desired control
design for an industrial control system can be captured
adequately by LQG optimal control theory. A simple
procedure to setup the LQG controller design parameters
is presented by Greenwood (2003). The algorithm to
compute the benchmark or optimal cost value for different
industrial control structures but with optimised parameters
is one which computes optimal restricted structure
multivariable controllers. For this, new results are needed
and presented here. Finally, the adoption of the LQG cost
function as a benchmark ensures that the computation of
the benchmark for the implemented industrial controller is
a simple operation.

2.1 The LQG optimal control method
The theory is based on the continuous time, polynomial
one degree of freedom multivariable system.
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Figure 1 System configuration

Using Figure 1,

Plant v(s)=W(s)u(s)+d(s) (3)
Disturbance  d(s) =W, (s)®,(s) 4)
Reference r(s)=Wy(s)w,(s) (5)
Controller u(s) = K(s)e(s) (6)
Error e(s)=r(s)—y(s) (7

White noise signals, @, and @/, are zero-mean with

unit covariance matrix, and are mutually statistically
independent. The system transfer functions are given a
common denominator form, are coprime and may be
written as,

w w, w,=4"[B D E]| )

The benchmark is taken to be the steady state stochastic
LQG quadratic cost function given by,

00 =5 = racelQ. (90 )}+ racelR ()0, 9

(€))
Where @ (s) and @ (s) are rational matrix spectral

density transfer functions for the error e(s) and the control
u(s). The integration is around the usual D contour. The

multivariable dynamic weights are denoted Q. (S)

and R, (5) ; these are used to shape the response produced

by the controller. The fundamental framework for an LQG
benchmark procedure requires a decomposition of the
LQG cost function. Various polynomial system definitions
are given first. The polynomial matrix representations of
the error and control weights are, respectively,

_ —% * —1 _ *
0.(s)=4,B,B,A, =0.(s) (10)
R.(s)=A"B'B. A" =R (s) (11)
where, the polynomial matrices 4,, B,, 4,, B, make
Q.20 and R, >0 on the D-contour. The transfer
function for the weighted system is,

-1 4-1 -1

Wy = Aq A" BA, = B/ A, (12)
The control polynomial spectral factor D, is from,
Y)Y, =W'OW +R, =[D,(4,4)"1[D.(4,4)"]
with DD, = B/B,B, B, + A BB 4, (13)
Generalised spectral factor Y ’ is defined as,

q)TT :q)rr +q)dd

=Y,Y; =[4"'D,[4"'D,T (14)
and polynomial filter spectral factor D r obtains as,
D,D; = EE" + DD’ (15)

The following Diophantine equation solutions are needed
in the optimal solution. Solve for triple (H oaGano)

with F, of smallest row degree,

D.G,+F,A, =B, BquD2 (16a)
D H,-F,B, = 4'B;B,D, (16b)
With right co-prime decompositions,

A,D;' =D/ A4, ana B,D;' = D;'BA, (16¢)

Theorem 1 Multivariable LQG benchmark cost values
The LQG benchmark cost function J,,; may be
decomposed as follows,

Je =J 4+ +J¢ (17a)



J, = i ) trace{X:XA }ds (17b)

Jy = L trace{X;XB }ds (17¢)
27 ° P

Jo = L trace{X .. }ds (17d)
27 YD

and,

X,(s)=[ H,D;'4,'K, - G,D;'4,'K,, 1(4K, + BK,)"' D,

(17¢)
Xp(s)==Dc (s)Fy(s) (179

* * 71
Xc(9)=[0.-0OW (YCYC) Wo. 10, (17g)
Greenwood (2003) gives full details of the proof.

Corollary 1 Optimal LQG benchmark cost values
The optimal value of the multivariable LQG benchmark
cost is given by,

Jloe =J5+Jc (18a)
and the related optimal controller is derived as
K, ()= A4,(5)D;()H, ()G, (s)D;' (s)4, (s)

(18b)
Greenwood (2003) gives full details of the proof.

Design procedure for optimal LQG controller

After the main equations have been established, the second
component of the multivariable LQG controller
benchmark philosophy is a straightforward controller
design problem setup. This means that simple
multivariable controller tuning rules must be available in
order to set up the benchmark cost problem. It is the
structure of the optimal controller expression (18b) that
indicates how these rules should be established and full
details have been given by Greenwood (2003).

2.2 Restricted structure benchmark cost theory

It is now necessary to establish the benchmark cost for
optimal values of the control structure actually used by the
implemented industrial control system. In solving this
problem the theory can also be used to generate the
optimal fixed structure controller parameters and also
investigate the effectiveness of different configurations for
the restricted structure controller per se.

The development of the restricted structure cost function
benchmark begins from the results in Theorem 1 and
Corollary 1 from which it is easily shown that,

JLQG=JA+JB+JC:JA+J26’G (19a)
with

J, = 2%7!0 trace{XZXA }ds (19b)

and where equation (17¢) is re-written as,

X, () =|H,D; 4K K,' ~G,D,' 4|4+ BK K;')' D,
(19¢)

The internal structure of a restricted structure controller

has two components; a matrix structure which determines

which controller elements are zero and which will have a

controller element and a second structure where the actual

form of the controller element itself will be determined(for
example, a P, PI or a PID controller element). For

simplicity, denote the internal restricted structure of K ¢
by the symbol, §, and denote the corresponding

controller, K ;(S,), then the LQG restricted structure
optimisation problem can be given as,

min ) Js(S) = %WJDtmce{X:XA }ds

wrd K ps (S;
with X ,(5) = [H,D;" 4K 1 (5) - G, 4, [ 4+ BK 1 (5))) ' D,
and K (S,) closed loop stablising

(20)

The calculation for the optimal restricted structure cost
function value begins by assuming that a suitable set of
LQG cost function weighting matrices have been selected
and that these capture the essence of an ideal desired
design. Based on the given LQG cost function, it is then

assumed that the matrices D,, H,, G,, D,, D,

associated with the full optimal solution have been
computed using the appropriate equations of Section 2.1.

Denote the selected restricted structure controller as K 25
and its related vector of controller parameters as
0° € R"™ where the number of parameter is given by n,.

The restricted structure optimisation problem in the
equation of (20) is nonlinear in the restricted structure
parameters and the optimal solution is found from an
iterative scheme based on the scalar template algorithm
due to Grimble (2000). The starting point for this
algorithm is a known closed loop stable industrial
controller specified through the vector of controller

parameters, 0" € R"™ . The iterative step of the new
algorithm is given by the following equations.

Multivariable LQG restricted structure iteration
Let the number of restricted controller parameters be 7,
and let k be an iteration index. Denote the k™ closed loop



restricted structure controller as K ;fs and let its related
vector of controller parameters be 0" e R , so that:

X,(jo)=Xp(@]|0")+ jX,(0]0%) 21a)

and hence,

JRS(S[):z%g.IDtmce{XZXA}dS

:ljm{ﬁTP(col6”‘)6'+2Q(a>|6”‘)6’+C(a;|9k)}da;
T 0

=07 P(0")0 +20(0")0 + C(6%) @1b)
Then a (k+1)th update of restricted structure controller
K pg is given by, 6 e R where,

k+1 DrokN1—1 Arpnk
6" ={P@O")] 00") 2lc)
and the updated optimal restricted cost function value is,
Jrs (8)=C(0") - 00" [P(O")]"0(6") 219)
Greenwood (2003) gives full details of the nontrivial
derivation for the equations (21a-21d).

Algorithm 1 Optimal Multivariable LQG Restricted
Structure Controller

Step 1 Initialisation

Determine a set of LQG cost function weighting matrices
for the desired design and solve the LQG equations to

determine the matrices D ., H, G,,D,,D,

Define the controller, K , and 8 € R"™

Define K (@)=Y E 0, and K, (@)= E.0,
i=1 i=1

Set k=0

Define a convergence tolerance, tol, for HH’HI - 6F H2

Define initial controller values, K gs and 0° e R

Step 2 Loop Step
. ~ k 1 > k
Determine P(6") = _.[0 Pw|0" Yo,
T

~ L _i 0 P ~ _i o) p
00" =— | 0|00 .C0")=—[ "Cl|0*)w

Solve 8% = [P(6")17' 0(6%)

Evaluate

Jrs (8,)=C(0°) -0 [P(O)]"0(6")

Step 3 Convergence step

If HH’HI —t9kH2 <tol then stop with 8% =0**" and

JZ(S,)) =T (S,) else k: = k+1, goto Step 2

Comments on Algorithm I: The numerical experience with
the routine has been that it is very robust in terms of
convergence. This behaviour of the multivariable
controller routine reflects that of the scalar procedure
reported by Grimble (2000).

3.0 HOTSTRIP FINISHING MILL APPLICATION

3.1 The hotstrip finishing mill looper system

The hotstrip finishing mill is a tandem mill of six or seven
stands. Each rolling stand is usually a four-high rolling
stand. The purpose of the roll stands is to effect a gauge
(thickness) reduction in the strip as it travels through the
mill. Between each pair of stands is a looper arm as shown
in Figure 2. The looper arm can be raised or lowered to
maintain the steel strip in tension as it is rolled. The looper

arm angle is about 15, but this angle varies in reaction to
tension disturbances and weight changes. The control of
looper angle and strip tension is a multivariable problem
with considerable process interaction.

STRIP FLOW

6 T, = Looper motor torque

6 = Looper Angle

Vg =Roll Velocity

Figure 2 The hotstrip finishing mill looper system

Looper Model

A full description of the modelling of the finishing mill
inter-stand looper system and a small signal linear looper
system model was given by Johnson er al (1999). The
model variables were interstand strip tension, o , looper

angle, @, roll velocity, VR and looper motor torque, TL
The small signal model is,

Ac] [G, G,TAV,
AO| |G, G,|AT,
The physical variables under control in the looper system

are strip tension and looper arm angle. The tension is
measured in N/m? with numerical values of the order 105,

(22)



whereas angle is measured in degrees with a step change

being typically, +2.5° . The zero frequency gains of the
full order transfer function models reported by Johnson et
al (1999) lie in a range from 3.1 X107 to 10*. This range of
scaling was found to have serious detrimental effects in the
polynomial routines of spectral factorisation and
Diophantine equation solution. Spurious effects and
incorrect results occurred so that it was necessary to
construct a demonstration system based on the observed
physical behaviour of the full system but without the
extreme numerical range of the full transfer function
model. The results presented in this section use this (2X2)
demonstration looper system model,

—120  100s+9
GLS(S):|:G11(S) G12(S)}: s+12 24949
Gr1(s)  Gna(s) 24 09s5+9
s+1.2 §2+9+9
(23)

Controller Assessment Design Setup
The above basic system model, was augmented with
additions models to complete the LQG system description.

Reference Model: W, (s) = diag{% , m} (24)
S S

Disturbance Models: W, (s) = diag : , 01
10s+1 s+1
(25)
Cost function weights: B, (s) = diag{s +9,s +11}

A,(s) = diag{s,s}, B.(s) =diag{s+40,s+10}
A (s) = diag{40,10} (26)

Performance assessment of industrial controllers

The Table 1 shows optimal cost function values and the
benchmark index for a few of the control structures. These
are normalised with respect to the full optimal control cost
value. The results of the table show that the off-diagonal
controller structure is close to optimal and the Z-N tuning
to be highly non-optimal. As a sample of the results
possible, the response traces of Figures 2 and 3 show quite
different mechanism at work in the two types of controller
solutions.

Table 1 Hotstrip Finishing Mill Looper Assessment

Case & Control Structure | Cost Value | CPI

Decentralised Structure ZN Tuning

PI(1,1) P1(2,2) | 5001835 | 53.36
Decentralised Restricted Structure

PI(1,1) PI(2,2) 1987.746 2.12

PI(1,2) PI(2,1) 1175.139 1.25
Limited Interactive Restricted Structure

PI(LD)PI,HPI22) | 1927816 | 2.06

Full Interactive Restricted Structure

PI(LOPIL2)PI2,)PI22) [ 1110798 | 1.18

Full Optimal LQG Control Structure

KOLDK(I)KQDKR22) [ 937346 | |1

4.0 CONCLUSIONS

The paper opened with a brief introduction to the generic
features of benchmarking emphasising the desirability of
an optimisation framework. This motivated the idea of
benchmarking multivariable control systems using an
offline optimal LQG approach. Polynomial system optimal
LQG control theory was used to give an optimal cost
calculation, and to provide a solution to the multivariable
restricted structure control computation. The theory was
then developed into an appropriate algorithm.

The industrial control problem of the hotstrip finishing
mill interstand looper used in the steel industry was used
to demonstrate the multivariable controller benchmarking
and restricted structure procedure developed. Benchmark
comparisons between a Ziegler-Nichols and restricted
structure designs based on the optimal LQG index were
shown. The quite different looper control mechanisms
between a full optimal and a PI decentralised solution were
shown. The results demonstrated the utility of quantifying
the cost performance benefit obtained by introducing
different levels of structural complexity into the
multivariable controller.
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