The asymptotic spectrum of flipped multilevel Toeplitz matrices and of certain preconditionings

THE ASYMPTOTIC SPECTRUM OF FLIPPED MULTILEVEL
TOEPLITZ MATRICES AND OF CERTAIN PRECONDITIONINGS
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Abstract. In this work, we perform a spectral analysis of flipped multilevel Toeplitz sequences,
i.e., we study the asymptotic spectral behaviour of {YnTn(f)}n, where Tnh(f) is a real, square
multilevel Toeplitz matrix generated by a function f € L'([—m, 7]%) and Y, is the exchange matrix,
which has 1s on the main anti-diagonal. In line with what we have shown for unilevel flipped
Toeplitz matrix sequences, the asymptotic spectrum is determined by a 2 X 2 matrix-valued function
whose eigenvalues are =+|f|. Furthermore, we characterize the eigenvalue distribution of certain
preconditioned flipped multilevel Toeplitz sequences with an analysis that covers both multilevel
Toeplitz and circulant preconditioners. Finally, all our findings are illustrated by several numerical
experiments.
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1. Introduction. In [5, 11] it was independently shown that when T,,(f) € R™*"
is a Toeplitz matrix generated by a function f € L'([—m,]) then the eigenvalues of
Y, T, (f) are distributed like £|f|, where

Y, =
1

In this note, we show that this result also holds true when the Toeplitz matrix T, (f)
is replaced by a multilevel Toeplitz matrix T, (f) € R4>*4» and Y, is replaced by

Yn:Yn1®"'®Ynd7

where f € LY([-m,7]¢), n = (n1,...,nq) and dy, = ny---ng. More specifically, we
prove that the eigenvalues of Y,, T, (f) behave like the eigenvalues of the matrix-valued
symbol

(1.1) g= [f* f],

where f* is the conjugate of f, i.e., the eigenvalues of the flipped multilevel Toeplitz
matrix Y, T, (f) are distributed like +|f].

Describing the spectra of these flipped matrices is important for solving linear systems
with T, (f) as coefficient matrix. Since a (multilevel) Toeplitz matrix can be sym-
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metrized by the flip matrix, the resulting linear system may be solved by MINRES or
preconditioned MINRES, with its short term recurrences and descriptive convergence
theory based on eigenvalues [14, 15]. Hence, knowledge of the spectrum of Y,, T,,(f) is
critical for accurately estimating the MINRES convergence rate, and developing and
analysing effective preconditioners. With this in mind, we characterize the eigenvalue
distribution of certain preconditioned flipped multilevel Toeplitz sequences with an
analysis that covers both multilevel Toeplitz and circulant preconditioners.

The paper is organized as follows. Section 2 provides background material and pre-
liminary results. The key results are then presented in section 3, and illustrated by
numerical experiments in section 4. Our conclusions can be found in section 5.

2. Preliminaries. In this section we formalize the definition of multilevel
(block) Toeplitz sequences associated with a Lebesgue integrable (matrix-valued)
function. Next, we define the spectral distribution, in the sense of the eigenvalues
and of the singular values, of a generic matrix sequence. To deal with the spectral
distribution of preconditioned flipped multilevel Toeplitz matrices, we introduce a
class of matrix sequences (the multilevel block GLT class) that contains multilevel
block Toeplitz sequences.

2.1. Notation. To describe multilevel matrices we require multi-indices, k =
(k1,...,kq), that we denote by bold letters. Whenever we use the expression
k — oo, we mean that every component of the vector k tends to infinity, that is,
ming—,... q ke — 0.

The complex conjugates of a scalar «, and scalar-valued function f(0), where 8 =
(61,02,...,04), d > 1, are denoted by o* and f*(0), respectively. Similarly, the
conjugate transpose of a vector x is x*, and the conjugate transpose of a matrix X
is X*. Additionally, by |f(0)| we mean |f(0)] = (f(@)f*(@))l/Q. The n x n identity

matrix is I,,.

Throughout, by d-level s x s-block matrix sequences we mean sequences of matrices of
the form {A,,},, where the index n varies in an infinite subset of N and n = n(n) is a
d-index with positive components that depends on n and satisfies n — oo as n — oo.
The size of A, is s-dy, = sny---ng. We will equivalently use the notation “{A;,},”
to mean “{A,},”.

2.2. Multilevel block Toeplitz matrices and their spectral properties.
In Definition 2.1 we introduce the notion of multilevel block Toeplitz matrix sequences
generated by f.

DEFINITION 2.1. Let f : [-m,@]* — C**¢, d,s > 1, where f = [fi;]{ ;_, is such that
fij € LY([—m,m]%). Let the Fourier coefficients of f be given by

1 .
th = —— 0)e k0 49 € C°*°, k= (ki,...,kq) € Z°
* (27T>d /[ﬂ',fr]d f( )e € ) ( 1, ’ d) € )

where the integrals are computed componentwise and (k,0) = 22:1 k¢By. The m-th
d-level s x s-block Toeplitz matriz associated with f is the matriz of order s - dn,
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dp =mn1 -+ ng, given by

Ta(f)= 22 = >0 T eeuid o,

[k1|<na |kq|<ng

where Jff) is the matriz of dimension n whose (i,j) entry is 1 if i —j = £ and is zero
otherwise. The set {Tyn(f)}n is called the family of multilevel block Toeplitz matrices
generated by f. The function f is referred to as the generating function of {Tp(f)}n.

We now discuss the spectra of multilevel block Toeplitz matrices. To clarify the sense
in which the function f provides information on the spectrum for these problems, we
need to introduce the following definition.

DEFINITION 2.2. Let f : G — R%*® be a measurable function, defined on a measurable
set G C RY with d > 1, 0 < my(G) < oo. Let Co(K) be the set of continuous
functions with compact support over K € {C,Ry} and let {An}n, n € NV v > 1,

be a sequence of matrices with eigenvalues \j(An), 7 =1,...,dn and singular values
0i(An), j=1,...,dy, where dp, = dim(A,,) is a monotonic function with respect to
each variable n;, i =1,...,v.

o We say that { Ay }n is distributed as the pair (f, G) in the sense of the eigen-
values, and we write {An}tn ~x (f,G), if the following limit relation holds
for all F € Co(C):

N - N 1 tr(F(£(8)))
(2.1) T}gnm%;F(/\j(An))—mz(G)/G ; de.

In this case, we say that f is the symbol of the matriz sequence { Ay }n.

o We say that { An }n is distributed as the pair (f, G) in the sense of the singular
values, and we write {Aptn ~o (f,G), if the following limit relation holds
for all F € Co(RY):

d
. 1 tr(F(1f(0)]))
2.2 lim — F(oj(An)) = de.
RN — L
Recall that in this setting the expression n — co means that every component of the
vector m tends to infinity, that is, min,— ., n; — oo.

REMARK 1. If f is smooth enough, an informal interpretation of the limit relation
(2.1) (resp. (2.2)) is that when n is sufficiently large, dp /s eigenvalues (resp. singular
values) of Ay can be approzimated by a sampling of M\ (f) (resp. o1(f)) on a uniform
equispaced grid of the domain G, and so on until the last d,/s eigenvalues (resp.
singular values), which can be approximated by an equispaced sampling of As(f) (resp.
os(f)) in the domain.

The above definitions are applicable to multilevel Toeplitz matrix sequences, as the
following theorem (due to Szegé, Tilli, Zamarashkin, Tyrtyshnikov, ...) shows.
THEOREM 2.3 (see [10, 17, 18]).  Let {Tn(f)}n be a multilevel Toeplitz sequence
generated by f € L'([—m,m]%). Then, {Tn(f)},, ~o (f,[—m.7]%). Moreover, if f is
real-valued, then {Ty(f)},, ~x (f,[—m,7]%).
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In the case that f is a Hermitian matrix-valued function, the previous theorem can
be extended as follows:

THEOREM 2.4 (see [17]). Let f : [-m @] — C**, d > 1, with f = [fi;]{ =, such
that fi; € LY([—m,7]%), be a Hermitian matriz-valued function. Then, {Tn(f)}n ~x

(fv [_ﬂ'v ﬂ-}d)'

The following theorem is a useful tool for computing the spectral distribution of a
sequence of Hermitian matrices. For its proof, see [12, Theorem 4.3].

THEOREM 2.5. Let f : G C R? — C***, let {Xn}n be a sequence of matrices with
Xn Hermitian of size dp, and let {Pp}n be a sequence such that Pp € CllnX0n
PiPp =15, 0n <dp and 0n/dp — 1 asn — 0o. Then {Xp}n ~x (f,G) if and only
f{P: XpnPnln ~x (f,G).

2.3. Multilevel block generalized locally Toeplitz class. In the sequel, we
introduce the *-algebra of multilevel block generalized locally Toeplitz (GLT) matrix
sequences [6, 7]. The formal definition of this class is rather technical and involves
somewhat cumbersome notation: therefore we just give and briefly discuss a few
properties of the multilevel block GLT class, which are sufficient for studying the
spectral features of preconditioned flipped multilevel Toeplitz matrices.

Throughout, we use the notation
{An}n ~crr k(x, 0), K [0, l]d N [—7T’7T]d _y 5%

to indicate that the sequence { Ay} is a d-level s x s-block GLT sequence with GLT
symbol k(zx, 6).

Here we list five of the main features of multilevel block GLT sequences.

GLT1 Let {Ap}n ~crr £ with K : G — C***, G = [0,1]¢ x [-m,7]?. Then
{An}n ~o (k,G). If the matrices A,, are Hermitian, then it also holds that
{An}tn ~x (K, G).

GLT2 The set of block GLT sequences forms a x-algebra, i.e., it is closed under
linear combinations, products, inversion and conjugation. In formulae, let
{An}n ~crr K1 and {Bp}n ~crr K2, then

{aAn + ﬁBn}n ~QLT K1 + ﬁ'%% «, 6 S (C;

hd {Aan}n ~GLT R1K2;
o {A 1Y, ~arr nl_l provided that k; is invertible a.e.;
o {AL}n ~cLr KT

GLT3 Any sequence of multilevel block Toeplitz matrices {T5,(f)}n generated by a
function f : [—m, 7|4 — C***, with f = [fi;]{ ;_; such that fi; € L' ([-=,7]?),
is a d-level s x s-block GLT sequence with symbol «(x,0) = f(0).

GLT4 Let {An}n ~» 0. We say that {An}y is a zero-distributed matriz sequence.
Note that for any s > 1 {An}n ~o Os, with Os the s x s null matrix,
is equivalent to {An}n ~s 0. Every zero-distributed matrix sequence is a
block GLT sequence with symbol O, and viceversa, i.e., {Ap}tn ~o 0 <=
{An}n ~GLT Os~

GLT5 Let {A,}n be a d-level matrix sequence and let {By, ,,}n be a sequence of
matrix sequences that satisfies the following condition: for each m there exists
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N, such that for m > n,,

An = Bn,m + Rn,m + En,m
with

rank(Ry, m) < c(m)dyp, |[|Enm| <w(m), lm c(m),w(m)=0.

m— o0

We say that {Bn .} is an “a.c.s.” (approximating class of sequences) for
{An}n, and we write {Bp mIn LN {An}n. Moreover, {A,}n ~cLr K if
and only if there exist GLT sequences {Bpn.m}n ~cLT km and K, — Kk in

measure.

The following proposition provides an a.c.s. for a sequence of multilevel block Toeplitz
matrices (see [9]).

PROPOSITION 2.6. Let {fn}m be a sequence of d-variate trigonometric matriz-valued
polynomials with fp, : [—m,m|% = C**, foo = [(fm)ijli =1 such that (fm)i; €
LY([=m, 7). If (fm)ij — (f)ij in LY([—m, 7)), then the sequence {Tp(fm)}n satisfies

{Tn(fu) =T ()} n-

We also give an additional characterization of zero-distributed matrix sequences that
will prove useful:.

THEOREM 2.7 (see [9, Theorem 2.2]). Let {An}rn be a sequence of matrices with Ay,
of dimension dp,. Then {An}n ~ 0 if and only if, for every n,

rank(Ry,)

n

Ap = Ry + By, lim

=0, lim ||Eyn| = 0.
n— 00 n— 00

We next recall a result on the spectral distribution of Hankel sequences associated
with f: [-m, 7|4 — C***, where f = [fi;]{ ;—; is such that f;; € L'([-m,7]?).
THEOREM 2.8 (see [4]). Let {Hn(f)}n be the m-th s x s-block multilevel Hankel
matriz associated with f : [—m,7]" — C**%, where f = [fy]5,_, is such that f;; €
LY([~m,7]%). If Ho(f) is the sdy, x sdy, matriz

Hp(f) = [tivj—2]i j—1 -

with ty, € C°*° the Fourier coefficients of f, then {Hpn(f)}n ~o 0.

REMARK 2. Note that one can equivalently take H,(f) = [tg,i,j]?jzl in Theo-
rem 2.8.

Together, Theorem 2.8 and GLT4 tell us that {H,(f)}n is an s x s-block GLT
sequence with symbol O;.

We end this subsection with a theorem that is very useful in the context of pre-
conditioning involving GLT matrix sequences. It is obtained as a straightforward
extension of Theorem 1 in [8] to the multilevel block GLT case, provided the symbol
of the preconditioning sequence is a multiple of the identity.
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THEOREM 2.9. Let {An}n be a sequence of Hermitian matrices such that
{Ap}tn ~aur K, with K : G — C°, G = [0,1]¢ x [-m,7]%, and let {Pp}n be a
sequence of Hermitian positive definite matrices such that {Pp}n ~crr h - Is, with
h:G — C, such that h # 0 a.e. Then,

(Pt Antn ~on (R 715, G).

3. Main result. In this section we prove the main result, namely that
{YuTon(f)}n~a(g, [, 7]%), where g is given in (1.1) and the dimension of T, (f)
is given by the multi-index n = (ny,...,ngq).

We first introduce the following matrices:

o II, =1I,, ® I, ® --- ® II,,, with I, , n, even, such that its j-th column

T, g =1,...,n,is
= €251, jzla"'vnk/2a
! €2(j—ny/2)> j:nk/2+17"'7nk>
where e, j = 1,...,ny, is the j-th column of the identity matrix of dimension
Ng;

eV, =Y, ®Y, ®  --®Y,, withY,, defined as

1

Nk XNk

o U,=U, ®U,, ® - ®U,, with U, such that

Unk = |:Y|—nk/2] :| .
Iy s2)
We now state an important preliminary result.
PROPOSITION 3.1. Assume that n = (nq,...,nq) with ng = 2my, my € N. Then, for

any f € L*([—=m, 7]%),
(L Un Yo T ()UnIIL Y ~arr (9, [—mw]d) with g := []9* ﬂ :

Proof. Let us first assume that f(0) = f4(8) = ?z_q t;€49:9) Then,
6
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HnUnYn T (fq)Unllh
q d ]
=T UnYp | Y 5T (H e%@k> UnII%
j=—q k=1
q . .
=T UnYp | Y 5T, () @ - @ Ty, (€99%) | ULITE
Jj=—-a

q
= Yty W, Up, Yo, Ty (€99 U, T, @ -+ @ T, Upy Yo Ty (€949) U, TIE
j=-q
Now, by using Lemmas 3.1 and 3.2 in [11] applied to f(6;) = e¥*% we find that

i 0 elikOk
L, Un, Yo, Ty, (959U, TIT =T, <|:eijk6k 0 D + En, + Ry,

with
k(R;,
i ) o B | =0,
Nk —>00 ng N —» 00
Therefore,
M, Un Y T (fq)Uny,
a 0 elinf1
= Z t] (Tnl <|:eij191 O :|>+ETL1+RYL1>®
j=—q
0 eljafa
S (Tnd (|:eijd9d 0 :|) + By, Jard)
q ij16 ija0
0 el 0 eljaba
=Y t; T, ({e_wl 0 D ® @ Th, ([e_wd 0 D + R, + E,
j=—q
0
(31) =T, ([f {;’D 4 R+ En
q
with

rank(Ry,)

n—0o0

=0, lim ||[E,| =0,
n—00

or equivalently

{Tn({o* qu} L M UnYn T (fg) UnlIL Y.
fq 0 n

Thanks to GLT2-4 and Theorem 2.7 the thesis is proven for f = f; a trigonometric
polynomial.

Let us now switch to a generic f € L'([—m, 7). It is well known that the set of
d-variate polynomials is dense in L'([—7,7]|?). Therefore, there exists a sequence of
polynomials f,, : [-7,7]% — C such that f,, — f € L*([-=,7]|%). By Proposition 2.6
{Tn(fm)}nﬂ){Tn(f)}n i.e., for every m there exists n,, such that, for n > n,,,

Tn(f) = Tn(fm) + Rn,m + En,m
7
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with

rank(Ry, m) < c(m)dyp, |[|Enm| <w(m), lm c(m),w(m)=0.

m— o0

Now, by (3.1) we have
Uy Y T (f)Un T2
= UnYn T (i) Un I + 1, Un Yo Ry o Un 1T + T, Up Y By i Un 1T

_T, ([ f(l f(’)”]) 4 R+ T Un Y R Un 1T + Epy + T Un Yoy Evy n Un1E
m

R E
with

rank(R) < &(m)dn, ||E| <@(m), lim é&m),o(m) = 0.

m—o0

Then,
{m ([ )} = iyt (DU

This together with {Lﬂ fé”}} — [;* ﬂ with f € L'([-m,n]¢), and GLT3
and GLT5, concludes the proof. "
REMARK 3. Assume that ng = 2my + 1 with my, € N. Then, U, Y, Ty, (eijke’“)Unk
can be embedded into the (2my + 2) x (2my, + 2) matriz

A’nkJrl

Hmk+1 (eijk ek) kaJrl (eijkek)
Ty (€7 V0%) - Hyyy g (e780%)

0 @ik Ok
= H;I’L—‘k—‘rlTka"l‘Q <|:eijk9k 0 :|> an"t‘l
el7k Ok 0
03, Hoy 1o ({ 0 eijkekD 41

0 elik Ok
= HZ;@—O—lT?mk-FQ <|:eijk9k 0 :|> an‘"{‘l

+ R2mk+2 + E2mk+2

where H(-) is the (block) Hankel matriz generated by the function specified by the
brackets and the last equality follows from Theorem 2.8 combined with Theorem 2.7.
Specifically,

UnkYnank (eijk0k>U’ﬂk = PAnk+1PT7
with
_ [m—i-l 0 O(m+1)><m _ T
P = Omimss) 0 I, and 0 = (0,...,0)".

On this basis, using the same line of proof as for Proposition 3.1 shows that the matriz
UnYnTn(f)Un is a principal submatriz of a matriz that, after a proper permutation,
gives rise to a GLT sequence whose symbol is g.
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REMARK 4. Assume that n = (ny,...,nq) with ngy = 2my, my € N. Then, the line
of proof used for Proposition 3.1 shows that

(LW (D)~ ] 4]

and
T /70
(3'2) {HnUnTn(f)Uan} ~GLT 0 f .
REMARK 5. Assume that n = (ny,...,nq) with nxy = 2my, my € N. Then,

I Up Yo UpIlh =11, Uy, Yo Up 1L @ -+ - @ 11, U, Yro Un  IIT

e i)
()

Hence, using (3.2) we arrive at the same result as in Proposition 3.1, i.e.,
(L, Un Yo T (f)URILL}

1 *
= (I UnYaUn 5T Un T ()UnTIR} ~ir [(1) o} [{) ;3] —

We can now state the main theorem of this section, which describes the spectral
distribution of {Y,, T (f)}n-

THEOREM 3.2. Let {Tpn(f)}n, Tn(f) € Rén>dn be the multilevel Toeplitz sequence
associated with f € L'([-m,7]?), where n = (ny,...,nq) and dp = ny---ng. Let
{YoT0n(f)}n be the corresponding sequence of flipped Toeplitz matrices. Then,

(33 TaTulDhn o s fomnl®), witn 9= | 1],

Proof. In the case that ny = 2my, my € N for each k, we see from Proposition 3.1
that {I,UpYnTpn(f)UnlIL} ~qrr g. Hence, recalling that I1,,Uy, Y, Ty (f)Unlly is
real symmetric, by GLT1, {Y,,T,,(f)} ~a g. In all other cases, by recalling Remark 3
and using Theorem 2.5 we find that the thesis follows as well. ]

We end this section by providing the spectral distribution of a preconditioned sequence
of flipped multilevel Toeplitz matrices.

THEOREM 3.3. Let {Tn(f)}n, Tn(f) € Rén*dn with ny = 2my, my € N be the
multilevel Toeplitz sequence associated with f € LY([—m,7|?), let {YnTn(f)}n be
the corresponding sequence of flipped multilevel Toeplitz matrices, and let {Pp}rn be

a sequence of Hermitian positive definite matrices such that {Pp}n ~crr h, and
{,UpPrU LY, ~crr h - Iy with b : [—7,71]* = C and h # 0 a.e. Then,

(34) {P;IYnTn(f)}n ~A (hilga [77“ ’/T]d)'
9
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Proof. The thesis follows from the combination of Theorem 2.9 and Proposition 3.1
by noticing that

(M Un PrUnlly) ~ Unlln Yo T (/) Unlly, = M Un Py Yo Tn () Unlly,

and by recalling that Y,, Ty, (f) is real symmetric and that II,,U,, is orthogonal. ]

Note that, thanks to Remark 4, the hypotheses of Theorem 3.3 are satisfied in the
case where P, = Ty, (h), with h > 0 and h # 0 a.e. Moreover, it easy to see that if
we take the following circulant preconditioner

Pn:Cn:‘Cnd|®"'®jn1+"'+Ind®"'®|cn1|

with |Cp, | = (CF C,,)? where C,,, is the optimal preconditioner for T,,, = T},, (f¢), the
condition {IL,,U,,C,UnIIL},, ~arr h- I3 holds as well. This is because both {|Cy,, |}n,
and {T'(| f¢|) }n, are GLTs with symbol | f;| and then |Cy,,| = T(| fe|) + Rn, + En, which
allows us to apply the same reasoning as in Remark 4 to prove the desired relation.

4. Numerical results. In this section we illustrate the theoretical results from
section 3, that is, we check the validity of Theorems 3.2 and 3.3. We start by defining
the following equispaced grid on [0, 7]%:

ki= 0,...,[%] -1
k k k L2 ’
=236, . ) .= ( PP ) C k= 0,....m;—1,
e e A

)

Then, we denote by A; and A, the set of all evaluations of A1 (g), A2(g) (resp. A1 (h™1g),
A2(h7tg)) on T, and by A the union A; U Ay ordered in an ascending way. In the
following examples we numerically check relation (3.3) (resp. (3.4)) by comparing the
eigenvalues of Y, Ty, (f) (vesp. P, 1Y, T (f)) with the values collected in A. Note that
it suffices to consider only [0, 7]? in place of [, 7|? because the eigenvalue functions
of the considered symbols are even.

In the two-dimensional Examples 1 and 2 we also compare the eigenvalues of Y, T, (f)
directly with the spectrum of g over the whole domain [—n, 7]2. Precisely, we define
the following grid on [—m, ]2

2 2 _ _
A={<9§‘%9§“>:=(—w+“ r+ 7”‘”"), {=0,...,m 17}

nl—l’_ n2—1 R = 0,...,’]12—1

and again we denote by A; and Az the sets of all evaluations of Ai(g), A2(g) on A,
and by A the union A; U Ay ordered in an ascending way. Therefore, we employ the
following matching algorithm: for a fixed eigenvalue A of Y, 75, (f)

1. we find 7 € A such that [|A — 7|| = min,ea ||A —n]|, and
2. we associate A to the couple in A that corresponds to 7.

EXAMPLE 1. The first example we consider is the 2-level banded Toeplitz matriz gen-
erated by f(01,02) = 4+ e'% + %, We see from Figure 4.1 that the uniform sam-
pling of eigenvalue functions of g collected in A accurately describes the eigenvalues of
YuTn(f), even for very small matrices. Moreover, as shown in Figure 4.2 (obtained
using the aforementioned matching algorithm), the eigenvalues of Y, T (f) accurately
mimic the shape of the eigenvalue functions of g when n; = 20,n, = 40.
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6 — , , , , , , — 6 :
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Fig. 4.1: Comparison of the eigenvalues of Y, T,,(f) (o) with A collecting the uniform
samples of the eigenvalue functions of g for Example 1 (x) when ny = ny = 10 (left)
and ny = ng = 30 (right).

(a) Ai(g) = —If| (b) A2(g) = |f]

Fig. 4.2: Eigenvalues of Y,, T, (f) (red dots) and the spectrum of g (colored surfaces)
for Example 1 when n; = 20 and ny = 40.

EXAMPLE 2. In this example we consider the dense 2-level Toeplitz matrixz obtained
by discretizing a certain time-dependent initial-boundary fractional diffusion problem
by means of a second-order finite difference approzimation that combines the Crank-
Nicolson scheme and the so-called weighted and shifted Grinwald formula (see [16]).
Precisely, we start from

ou(z,y, 0%u(x,y, 0P u(x,y,

Copt) — Suleap ) 4 S0 D) (g, 1), (., 1) € 2 x (0,1],
u(z,y,t) =0, (z,y,t) € R2\Q x [0,1],
U(.’I},y,O) = U0($,y), (l‘,y) € Qv

where Q = (0,1) x (0,1), o, B € (1,2), and aagii’f’t), aagi”;’gf’” are fractional deriva-
tives defined in Riemann-Liouville form (see again [2]). Then, for fized ny,nq, M € N,
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we take the following equispaced partition of Q x [0, 1]

) 1 )
x; = thy, hx=n1+1, 1=0,1,...,nq,
. 1 .
Y; = jhy, hy:n2+1, j=0,1,...,n9,
1
M = mAt, At=— =0,1,...,. M
m ) M’ m b b b )

and we arrive at a linear system whose coefficient matrix is the 2-level Toeplitz matriz

a 2h3 hg
ng A = thmna +1n, ® Tnl(fa) + }Tnga (fﬁ) ® In,,

with n = (ny,na),

N B ke [2(1 =) i(0+m))"
J4(0) = —k_z_lwkﬂe = —[2 <1+e( + )) 7
v e{a, B}, 0 € {61,602}, and w,(f) defined as in [16]. Both T,,(fs) and T,,(fg) are
lower Hessenberg, and so Msla’ﬁ) 1S mon-symmetric.

It has been shown in [13] that, whenever Z—Z =0(1) and 2£§ = o(1), it holds that

@

{Mglaﬁ)}n ) fa,ﬁ = fa(el) + %fﬁ(gQ)’

ie, MY =T (fup).

In the following tests we fit « = 1.8 and = 1.6. Figure 4.3(a) shows that when
M =ny =30 and ny = 35 the eigenvalues of the flipped Toeplitz matriz Y, T, (f) are
well described by the sampling of the eigenvalue functions of g given in A. Similar
results can be inferred from Figure 4.4 when comparing the eigenvalues of Yo Tn (f)
directly when the spectrum of g with n; = 20, ny = 40.

For this example we also show how the results in section 3 can be used to describe the
convergence rate of preconditioned MINRES, which depends heavily on the spectral
properties of the coefficient matriz (see, e.g., [3, Chapters 2 & 4]). With this aim we
focus on the solution of the following linear system

Tn(fa,ﬁ)un = bn,

with by, = 231, and we define the following preconditioners for YnTn(fop):

o P =T,(fr), with fr = % Of course, in this case the symbol of the
preconditioning matrix sequence is h = fgr;

o P, = P22 obtained from MEP) replacing Ty, (fo), Tn,(f5), with T, (2 —
2cos6y), Th,(2 — 2cosby), respectively (see [13] for more details). In this
case, the symbol of the preconditioning matrix sequence is h = 2 — 2cosfy +
%(2 —2cosbs);

12
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Table 4.1: Preconditioned MINRES iteration counts for Example 2.

dn  Ta(fr) Pp* P37
102 12 29 22
202 13 35 26
402 14 41 27
802 14 43 29

e P, = P28 obtained from M) replacing T, (fo) with Ty, (2 — 2cos(0y)),
and T,,(fs) with the real part of its tetra-diagonal band truncation
T, (ps(02)), where

2
ps(02) = = 3 wif e,
k=-1

In this case, the syn}bol of the preconditioning matriz sequence is h = 2 —
2cos 0 + Z—EM.

All of the aforementioned preconditioners are symmetric positive definite matrices
that satisfy the conditions of Theorem 3.3 when n = (n1,nq) has even components.
Figure 4.3(b)—(d) show that the eigenvalues of P, YTy (f) are well described by
the sampling of the eigenvalue functions of h~1g contained in A even though not all
components of n are even, as required by Theorem 3.3 (here ny = 30 and ny = 35).
Moreover, in all the given cases the eigenvalues of the preconditioned matrices lie
close to 1 and —1. This is particularly evident for Pn = Tyn(fr). Note that, when
P, = P28 the eigenvalue functions of h™1g assume values around zero (while the

eigenvalues of PptYpTn(f) do not); this is because pg(fs) does mot have a zero at
02 =0 but fz(62) does.

From Figure 4.3(b)—(d) and since \1(h~tg), A\a(h™1g) are clustered at +1, we expect
that preconditioned MINRES applied to the flipped version of Example 2 with precon-
ditioners Tp,(fr), P22 or P2# will converge at a fast rate. In Table 4.1 the iterations
of preconditioned MINRES are stopped when the residual norm is reduced by eight
orders of magnitude, i.e, when ||ri||2/||roll2 < 1078, We see from these results that
for all three preconditioners convergence is rapid, with T, (fr) resulting in the lowest
iteration counts. Neither P22 nor P2" is optimal and this is in line with the spectral
analysis performed in [13, 2]. On the other hand, both are block banded with banded
block matrices, and so are computationally affordable unlike the dense preconditioner

Tn(fR)'

EXAMPLE 3. In our final example we consider the 3-level Toeplitz matriz arising from
an upwind finite difference discretization of the convection-diffusion equation

—Au(z,y,2) +w - Vu(z,y,z) = f(z,y,2), (w,y,2) €9,
u('r? y’ Z) = 0’ (z7y7 Z) e 897

where Q = (0,1)3 and w = [2, 1, 1.5]T.
13
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5 1.5
o Eigs o Eigs
* A 1H + A J
0.5
0 0
-0.5
-1 F
5 -1.5
200 400 600 800 1000 200 400 600 800 1000
(a) Unpreconditioned (b) Prn = Tn(fr)
2 1.5
o Eigs o Eigs
+ A 7 1L+ A
1
0.5
0 0 *
-0.5
1 /
-1
*
-2 -1.5
200 400 600 800 1000 200 400 600 800 1000
2,2 2
(C) Pn = Pn’ (d) Pn = Pnﬁ

Fig. 4.3: Comparison of the eigenvalues of Y, Ty (fa,5) or Pp YT (fa,) (o) with A
collecting the uniform samples of the eigenvalue functions of g or h~'g for Example 2
() when M = n; = 30, ny = 35.

(a) Mi(g) = —Ifl (b) A2(g) = /]

Fig. 4.4: Eigenvalues of Y,,T,,(f) (red dots) and the spectrum of g (colored surfaces)
for Example 2 when ny = 20 and ny = 40.

14

14



The asymptotic spectrum of flipped multilevel Toeplitz matrices and of certain preconditionings

For fixed ni,n9,n3 € N, we take the following equispaced partition of

1

x; =1thg, hg = , 1=0,1,...,n,
’/l1+1
) 1 .

yj:Jhyv hy:n2+17 ]:0717“'7”27

1
— kh,, h, = . k=0,1,...,n,
2k ns + 1 ng

and apply the discretization in [1]. The resulting coefficient matriz is Ty, = Tpy, @
Iy, @I, + 1y @Thy, @Iy + Iy ® Iy, @ Ty, where n= (nq,n2,n3),

a ¢ 0 e
b c 0 0 ¢
Tnl_ ) Tnz_ .
b a ¢ 0 0 e
b 0o 0
0 g
f 0 g
Tns_ - . c.
f 0 g
f0

with @ = 6+ 2hg + hy + 1.5h, b= —1—2hy, c = —1,0=—1—hy, e=—1,f=—1—
1.5h,, and g = —1. The associated symbol is f(01,02,03) = f1(01) + f2(62) + f3(03),
where f1(0) = a+be'? +ce™?, £(0) = 0e? + ec™? and f3(0) = fe'¥ + ge™?.

Also for this example we check the performance of the preconditioned MINRES method
for solving the linear system Tpu, = by with b, = 1. As preconditioners we choose
Pr. = Tn(fr) and the positive definite 3-level circulant preconditioner defined as

Pn = Un = |Cn3| ®In2 ®In1 +In3 Y |Cn2| ®In1 +ITL3 ®ITL2 ® |Cn1|

with |Cy,| = (CZLCW)%, where Cy, is the optimal circulant preconditioner for T,,,
with £ = 1,2,3. In the latter case, h = |f1| + |f2| + |f3|. These symmetric positive
definite preconditioners satisfy the conditions of Theorem 3.3.

Figure 4.5(a)—(c) shows the matching between the eigenvalues of YTy or P Y, Th
and the sampling of the eigenvalue functions of g or h~'g contained in A. From these
pictures we infer that, as in previous example, Tn(fr) s a good preconditioner. On
the contrary, we expect that since A (h~tg), \2(h™1g) are not clustered away from 0,
Chr is not able to ensure fast convergence. This is confirmed by the iteration counts
in Table 4.2.

5. Conclusions. We have shown that the asymptotic eigenvalue distribution of
{YoTn(f) }n, where T,,(f) is a square real multilevel Toeplitz matrix generated by
f € LY([-m,7]%) and Y, is the exchange matrix, is governed by a 2 x 2 matrix-
valued function whose eigenvalues are +|f|. We have also investigated the asymptotic
eigenvalue distribution of preconditioned sequences {P;; 'Yy, Ty (f)}n, where P, is
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o g

15 15
1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000

) Unpreconditioned (b) Pr. = Tn(fr) (€) Pn =Chn

Fig. 4.5: Comparison of the eigenvalues of Y,, Ty, or P, 'Y, T, (o) with A collecting
the uniform samples of the eigenvalue functions of g or h=!g for Example 3 (%) ny =
Ng = N3 = 20.

Table 4.2: Preconditioned MINRES iteration counts for Example 3.

dn TTL (fR) Cn
53 8 61
103 9 198
20° 9 724

Hermitian positive definite, {Pp}, ~crr h, and {[1,Up,PrU, 1L}, ~crr h - I with
h:[—m m]¢ — Cand h # 0 a.e. The latter result enables us to analyse the convergence
of preconditioned MINRES for this problem at least in the two quite common cases
where the preconditioners are multilevel circulant or multilevel Toeplitz matrices.
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