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Abstract. In this work, we perform a spectral analysis of flipped multilevel Toeplitz sequences,
i.e., we study the asymptotic spectral behaviour of {YnTn(f)}n, where Tn(f) is a real, square
multilevel Toeplitz matrix generated by a function f ∈ L1([−π, π]d) and Yn is the exchange matrix,
which has 1s on the main anti-diagonal. In line with what we have shown for unilevel flipped
Toeplitz matrix sequences, the asymptotic spectrum is determined by a 2×2 matrix-valued function
whose eigenvalues are ±|f |. Furthermore, we characterize the eigenvalue distribution of certain
preconditioned flipped multilevel Toeplitz sequences with an analysis that covers both multilevel
Toeplitz and circulant preconditioners. Finally, all our findings are illustrated by several numerical
experiments.
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1. Introduction. In [5, 11] it was independently shown that when Tn(f) ∈ Rn×n
is a Toeplitz matrix generated by a function f ∈ L1([−π, π]) then the eigenvalues of
YnTn(f) are distributed like ±|f |, where

Yn =

 1

. .
.

1

 .
In this note, we show that this result also holds true when the Toeplitz matrix Tn(f)
is replaced by a multilevel Toeplitz matrix Tn(f) ∈ Rdn×dn and Yn is replaced by

Yn = Yn1 ⊗ · · · ⊗ Ynd ,

where f ∈ L1([−π, π]d), n = (n1, . . . , nd) and dn = n1 · · ·nd. More specifically, we
prove that the eigenvalues of YnTn(f) behave like the eigenvalues of the matrix-valued
symbol

(1.1) g =

[
f

f∗

]
,

where f∗ is the conjugate of f , i.e., the eigenvalues of the flipped multilevel Toeplitz
matrix YnTn(f) are distributed like ±|f |.

Describing the spectra of these flipped matrices is important for solving linear systems
with Tn(f) as coefficient matrix. Since a (multilevel) Toeplitz matrix can be sym-
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metrized by the flip matrix, the resulting linear system may be solved by MINRES or
preconditioned MINRES, with its short term recurrences and descriptive convergence
theory based on eigenvalues [14, 15]. Hence, knowledge of the spectrum of YnTn(f) is
critical for accurately estimating the MINRES convergence rate, and developing and
analysing effective preconditioners. With this in mind, we characterize the eigenvalue
distribution of certain preconditioned flipped multilevel Toeplitz sequences with an
analysis that covers both multilevel Toeplitz and circulant preconditioners.

The paper is organized as follows. Section 2 provides background material and pre-
liminary results. The key results are then presented in section 3, and illustrated by
numerical experiments in section 4. Our conclusions can be found in section 5.

2. Preliminaries. In this section we formalize the definition of multilevel
(block) Toeplitz sequences associated with a Lebesgue integrable (matrix-valued)
function. Next, we define the spectral distribution, in the sense of the eigenvalues
and of the singular values, of a generic matrix sequence. To deal with the spectral
distribution of preconditioned flipped multilevel Toeplitz matrices, we introduce a
class of matrix sequences (the multilevel block GLT class) that contains multilevel
block Toeplitz sequences.

2.1. Notation. To describe multilevel matrices we require multi-indices, k =
(k1, . . . , kd), that we denote by bold letters. Whenever we use the expression
k→∞, we mean that every component of the vector k tends to infinity, that is,
min`=1,...,d k` →∞.

The complex conjugates of a scalar α, and scalar-valued function f(θ), where θ =
(θ1, θ2, . . . , θd), d ≥ 1, are denoted by α∗ and f∗(θ), respectively. Similarly, the
conjugate transpose of a vector x is x∗, and the conjugate transpose of a matrix X

is X∗. Additionally, by |f(θ)| we mean |f(θ)| = (f(θ)f∗(θ))
1/2

. The n × n identity
matrix is In.

Throughout, by d-level s×s-block matrix sequences we mean sequences of matrices of
the form {An}n, where the index n varies in an infinite subset of N and n = n(n) is a
d-index with positive components that depends on n and satisfies n→∞ as n→∞.
The size of An is s · dn = sn1 · · ·nd. We will equivalently use the notation “{An}n”
to mean “{An}n”.

2.2. Multilevel block Toeplitz matrices and their spectral properties.
In Definition 2.1 we introduce the notion of multilevel block Toeplitz matrix sequences
generated by f .

Definition 2.1. Let f : [−π, π]d → Cs×s, d, s ≥ 1, where f = [fij ]
s
i,j=1 is such that

fij ∈ L1([−π, π]d). Let the Fourier coefficients of f be given by

tk :=
1

(2π)d

∫
[−π,π]d

f(θ) e−i〈k,θ〉 dθ ∈ Cs×s, k = (k1, . . . , kd) ∈ Zd,

where the integrals are computed componentwise and 〈k,θ〉 =
∑d
`=1 k`θ`. The n-th

d-level s × s-block Toeplitz matrix associated with f is the matrix of order s · dn,
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dn = n1 · · ·nd, given by

Tn(f) =
∑
|k1|<n1

· · ·
∑
|kd|<nd

J (k1)
n1
⊗ · · · ⊗ J (kd)

nd
⊗ tk,

where J
(`)
n is the matrix of dimension n whose (i, j) entry is 1 if i− j = ` and is zero

otherwise. The set {Tn(f)}n is called the family of multilevel block Toeplitz matrices
generated by f . The function f is referred to as the generating function of {Tn(f)}n.

We now discuss the spectra of multilevel block Toeplitz matrices. To clarify the sense
in which the function f provides information on the spectrum for these problems, we
need to introduce the following definition.

Definition 2.2. Let f : G→ Rs×s be a measurable function, defined on a measurable
set G ⊂ Rd with d ≥ 1, 0 < m`(G) < ∞. Let C0(K) be the set of continuous
functions with compact support over K ∈ {C,R+

0 } and let {An}n, n ∈ Nv v ≥ 1,
be a sequence of matrices with eigenvalues λj(An), j = 1, . . . , dn and singular values
σj(An), j = 1, . . . , dn, where dn = dim(An) is a monotonic function with respect to
each variable ni, i = 1, . . . , v.

• We say that {An}n is distributed as the pair (f,G) in the sense of the eigen-
values, and we write {An}n ∼λ (f,G), if the following limit relation holds
for all F ∈ C0(C):

lim
n→∞

1

dn

dn∑
j=1

F (λj(An)) =
1

m`(G)

∫
G

tr(F (f(θ)))

s
dθ.(2.1)

In this case, we say that f is the symbol of the matrix sequence {An}n.
• We say that {An}n is distributed as the pair (f,G) in the sense of the singular

values, and we write {An}n ∼σ (f,G), if the following limit relation holds
for all F ∈ C0(R+

0 ):

lim
n→∞

1

dn

dn∑
j=1

F (σj(An)) =
1

m`(G)

∫
G

tr(F (|f(θ)|))
s

dθ.(2.2)

Recall that in this setting the expression n→∞ means that every component of the
vector n tends to infinity, that is, mini=1,...,v ni →∞.

Remark 1. If f is smooth enough, an informal interpretation of the limit relation
(2.1) (resp. (2.2)) is that when n is sufficiently large, dn/s eigenvalues (resp. singular
values) of An can be approximated by a sampling of λ1(f) (resp. σ1(f)) on a uniform
equispaced grid of the domain G, and so on until the last dn/s eigenvalues (resp.
singular values), which can be approximated by an equispaced sampling of λs(f) (resp.
σs(f)) in the domain.

The above definitions are applicable to multilevel Toeplitz matrix sequences, as the
following theorem (due to Szegő, Tilli, Zamarashkin, Tyrtyshnikov, ...) shows.

Theorem 2.3 (see [10, 17, 18]). Let {Tn(f)}n be a multilevel Toeplitz sequence
generated by f ∈ L1([−π, π]d). Then, {Tn(f)}n ∼σ (f, [−π, π]d). Moreover, if f is
real-valued, then {Tn(f)}n ∼λ (f, [−π, π]d).
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In the case that f is a Hermitian matrix-valued function, the previous theorem can
be extended as follows:

Theorem 2.4 (see [17]). Let f : [−π, π]d → Cs×s, d > 1, with f = [fij ]
s
i,j=1 such

that fij ∈ L1([−π, π]d), be a Hermitian matrix-valued function. Then, {Tn(f)}n ∼λ
(f, [−π, π]d).

The following theorem is a useful tool for computing the spectral distribution of a
sequence of Hermitian matrices. For its proof, see [12, Theorem 4.3].

Theorem 2.5. Let f : G ⊂ Rd → Cs×s, let {Xn}n be a sequence of matrices with
Xn Hermitian of size dn, and let {Pn}n be a sequence such that Pn ∈ Cdn×δn ,
P ∗nPn = Iδn , δn ≤ dn and δn/dn → 1 as n→∞. Then {Xn}n ∼λ (f,G) if and only
if {P ∗nXnPn}n ∼λ (f,G).

2.3. Multilevel block generalized locally Toeplitz class. In the sequel, we
introduce the ∗-algebra of multilevel block generalized locally Toeplitz (GLT) matrix
sequences [6, 7]. The formal definition of this class is rather technical and involves
somewhat cumbersome notation: therefore we just give and briefly discuss a few
properties of the multilevel block GLT class, which are sufficient for studying the
spectral features of preconditioned flipped multilevel Toeplitz matrices.

Throughout, we use the notation

{An}n ∼GLT κ(x, θ), κ : [0, 1]d × [−π, π]d → Cs×s

to indicate that the sequence {An}n is a d-level s× s-block GLT sequence with GLT
symbol κ(x, θ).

Here we list five of the main features of multilevel block GLT sequences.

GLT1 Let {An}n ∼GLT κ with κ : G → Cs×s, G = [0, 1]d × [−π, π]d. Then
{An}n ∼σ (κ,G). If the matrices An are Hermitian, then it also holds that
{An}n ∼λ (κ,G).

GLT2 The set of block GLT sequences forms a ∗-algebra, i.e., it is closed under
linear combinations, products, inversion and conjugation. In formulae, let
{An}n ∼GLT κ1 and {Bn}n ∼GLT κ2, then
• {αAn + βBn}n ∼GLT ακ1 + βκ2, α, β ∈ C;
• {AnBn}n ∼GLT κ1κ2;
• {A−1

n }n ∼GLT κ−1
1 provided that κ1 is invertible a.e.;

• {A∗n}n ∼GLT κ∗1.
GLT3 Any sequence of multilevel block Toeplitz matrices {Tn(f)}n generated by a

function f : [−π, π]d → Cs×s, with f = [fij ]
s
i,j=1 such that fij ∈ L1([−π, π]d),

is a d-level s× s-block GLT sequence with symbol κ(x, θ) = f(θ).
GLT4 Let {An}n ∼σ 0. We say that {An}n is a zero-distributed matrix sequence.

Note that for any s > 1 {An}n ∼σ Os, with Os the s × s null matrix,
is equivalent to {An}n ∼σ 0. Every zero-distributed matrix sequence is a
block GLT sequence with symbol Os and viceversa, i.e., {An}n ∼σ 0 ⇐⇒
{An}n ∼GLT Os.

GLT5 Let {An}n be a d-level matrix sequence and let {Bn,m}n be a sequence of
matrix sequences that satisfies the following condition: for each m there exists
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nm, such that for m > nm

An = Bn,m +Rn,m + En,m

with

rank(Rn,m) < c(m)dn, ‖En,m‖ ≤ ω(m), lim
m→∞

c(m), ω(m) = 0.

We say that {Bn,m} is an “a.c.s.” (approximating class of sequences) for

{An}n, and we write {Bn,m}n
a.c.s.−−−→ {An}n. Moreover, {An}n ∼GLT κ if

and only if there exist GLT sequences {Bn,m}n ∼GLT κm and κm → κ in
measure.

The following proposition provides an a.c.s. for a sequence of multilevel block Toeplitz
matrices (see [9]).

Proposition 2.6. Let {fm}m be a sequence of d-variate trigonometric matrix-valued
polynomials with fm : [−π, π]d → Cs×s, fm = [(fm)ij ]

s
i,j=1 such that (fm)ij ∈

L1([−π, π]d). If (fm)ij → (f)ij in L1([−π, π]d), then the sequence {Tn(fm)}n satisfies

{Tn(fm)}n
a.c.s.−−−→{Tn(f)}n.

We also give an additional characterization of zero-distributed matrix sequences that
will prove useful:.

Theorem 2.7 (see [9, Theorem 2.2]). Let {An}n be a sequence of matrices with An
of dimension dn. Then {An}n ∼σ 0 if and only if, for every n,

An = Rn + En, lim
n→∞

rank(Rn)

dn
= 0, lim

n→∞
‖En‖ = 0.

We next recall a result on the spectral distribution of Hankel sequences associated
with f : [−π, π]d → Cs×s, where f = [fij ]

s
i,j=1 is such that fij ∈ L1([−π, π]d).

Theorem 2.8 (see [4]). Let {Hn(f)}n be the n-th s × s-block multilevel Hankel
matrix associated with f : [−π, π]d → Cs×s, where f = [fij ]

s
i,j=1 is such that fij ∈

L1([−π, π]d). If Hn(f) is the sdn × sdn matrix

Hn(f) = [ti+j−2]
n
i,j=1 ,

with tk ∈ Cs×s the Fourier coefficients of f , then {Hn(f)}n ∼σ 0.

Remark 2. Note that one can equivalently take Hn(f) = [t2−i−j ]
n
i,j=1 in Theo-

rem 2.8.

Together, Theorem 2.8 and GLT4 tell us that {Hn(f)}n is an s × s-block GLT
sequence with symbol Os.

We end this subsection with a theorem that is very useful in the context of pre-
conditioning involving GLT matrix sequences. It is obtained as a straightforward
extension of Theorem 1 in [8] to the multilevel block GLT case, provided the symbol
of the preconditioning sequence is a multiple of the identity.
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Theorem 2.9. Let {An}n be a sequence of Hermitian matrices such that
{An}n ∼GLT κ, with κ : G → Cs×s, G = [0, 1]d × [−π, π]d, and let {Pn}n be a
sequence of Hermitian positive definite matrices such that {Pn}n ∼GLT h · Is, with
h : G→ C, such that h 6= 0 a.e. Then,

{P−1
n An}n ∼σ,λ (h−1κ,G).

3. Main result. In this section we prove the main result, namely that
{YnTn(f)}n∼λ(g, [−π, π]d), where g is given in (1.1) and the dimension of Tn(f)
is given by the multi-index n = (n1, . . . , nd).

We first introduce the following matrices:

• Πn = Πn1
⊗ Πn2

⊗ · · · ⊗ Πnd with Πnk , nk even, such that its j-th column
πj , j = 1, . . . , nk, is

πj =

{
e2j−1, j = 1, . . . , nk/2,

e2(j−nk/2), j = nk/2 + 1, . . . , nk,

where ej , j = 1, . . . , nk, is the j-th column of the identity matrix of dimension
nk;
• Yn = Yn1

⊗ Yn2
⊗ · · · ⊗ Ynd with Ynk defined as

Ynk =

 1

. .
.

1


nk×nk

;

• Un = Un1
⊗ Un2

⊗ · · · ⊗ Und with Unk such that

Unk =

[
Ydnk/2e

Ibnk/2c

]
.

We now state an important preliminary result.

Proposition 3.1. Assume that n = (n1, . . . , nd) with nk = 2mk, mk ∈ N. Then, for
any f ∈ L1([−π, π]d]),

{ΠnUnYnTn(f)UnΠT
n}n ∼GLT (g, [−π, π]d) with g :=

[
0 f
f∗ 0

]
.

Proof. Let us first assume that f(θ) = fq(θ) =
∑q
j=−q tje

i〈j,θ〉. Then,
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ΠnUnYnTn(fq)UnΠT
n

= ΠnUnYn

 q∑
j=−q

tjTn

(
d∏
k=1

eijkθk

)UnΠT
n

= ΠnUnYn

 q∑
j=−q

tjTn1
(eij1θ1)⊗ · · · ⊗ Tnd(eijdθd)

UnΠT
n

=

q∑
j=−q

tj Πn1
Un1

Yn1
Tn1

(eij1θ1)Un1
ΠT
n1
⊗ · · · ⊗ ΠndUndYndTnd(eijdθd)UndΠT

nd
.

Now, by using Lemmas 3.1 and 3.2 in [11] applied to f(θk) = eijkθk we find that

ΠnkUnkYnkTnk(eijkθk)UnkΠT
nk

= Tnk

([
0 eijkθk

e−ijkθk 0

])
+ Enk +Rnk

with

lim
nk→∞

rank(Rnk)

nk
= 0, lim

nk→∞
‖Enk‖ = 0.

Therefore,

ΠnUnYnTn(fq)UnΠT
n

=

q∑
j=−q

tj

(
Tn1

([
0 eij1θ1

e−ij1θ1 0

])
+ En1

+Rn1

)
⊗ · · ·

· · · ⊗
(
Tnd

([
0 eijdθd

e−ijdθd 0

])
+ End +Rnd

)
=

q∑
j=−q

tj Tn1

([
0 eij1θ1

e−ij1θ1 0

])
⊗ · · · ⊗ Tnd

([
0 eijdθd

e−ijdθd 0

])
+Rn + En

= Tn

([
0 fq
f∗q 0

])
+Rn + En(3.1)

with

lim
n→∞

rank(Rn)

dn
= 0, lim

n→∞
‖En‖ = 0,

or equivalently {
Tn

([
0 fq
f∗q 0

])}
n

a.c.s.−−−→ {ΠnUnYnTn(fq)UnΠT
n}n.

Thanks to GLT2–4 and Theorem 2.7 the thesis is proven for f = fq a trigonometric
polynomial.

Let us now switch to a generic f ∈ L1([−π, π]d). It is well known that the set of
d-variate polynomials is dense in L1([−π, π]d). Therefore, there exists a sequence of
polynomials fm : [−π, π]d → C such that fm → f ∈ L1([−π, π]d). By Proposition 2.6

{Tn(fm)}n
a.c.s.−−−→{Tn(f)}n i.e., for every m there exists nm such that, for n > nm,

Tn(f) = Tn(fm) +Rn,m + En,m
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with

rank(Rn,m) < c(m)dn, ‖En,m‖ ≤ ω(m), lim
m→∞

c(m), ω(m) = 0.

Now, by (3.1) we have

ΠnUnYnTn(f)UnΠT
n

= ΠnUnYnTn(fm)UnΠT
n + ΠnUnYnRn,mUnΠT

n + ΠnUnYnEn,mUnΠT
n

= Tn

([
0 fm
f∗m 0

])
+Rn + ΠnUnYnRn,mUnΠT

n︸ ︷︷ ︸
R̃

+En + ΠnUnYnEn,mUnΠT
n︸ ︷︷ ︸

Ẽ

with

rank(R̃) < c̃(m)dn, ‖Ẽ‖ ≤ ω̃(m), lim
m→∞

c̃(m), ω̃(m) = 0.

Then, {
Tn

([
0 fm
f∗m 0

])}
n

a.c.s.−−−→{ΠnUnYnTn(f)UnΠT
n}n.

This together with

{[
0 fm
f∗m 0

]}
m

→
[

0 f
f∗ 0

]
with f ∈ L1([−π, π]d), and GLT3

and GLT5, concludes the proof.

Remark 3. Assume that nk = 2mk + 1 with mk ∈ N. Then, UnkYnkTnk(eijkθk)Unk
can be embedded into the (2mk + 2)× (2mk + 2) matrix

Ank+1

=

[
Hmk+1(eijkθk) Tmk+1(eijkθk)
Tmk+1(e−ijkθk) Hmk+1(e−ijkθk)

]
= ΠT

nk+1T2mk+2

([
0 eijkθk

e−ijkθk 0

])
Πnk+1

+ ΠT
nk+1H2mk+2

([
eijkθk 0

0 e−ijkθk

])
Πnk+1

= ΠT
nk+1T2mk+2

([
0 eijkθk

e−ijkθk 0

])
Πnk+1

+R2mk+2 + E2mk+2

where H(·) is the (block) Hankel matrix generated by the function specified by the
brackets and the last equality follows from Theorem 2.8 combined with Theorem 2.7.
Specifically,

UnkYnkTnk(eijkθk)Unk = PAnk+1P
T ,

with

P =

[
Im+1 0 O(m+1)×m

Om×(m+1) 0 Im

]
and 0 = (0, . . . , 0)T .

On this basis, using the same line of proof as for Proposition 3.1 shows that the matrix
UnYnTn(f)Un is a principal submatrix of a matrix that, after a proper permutation,
gives rise to a GLT sequence whose symbol is g.
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Remark 4. Assume that n = (n1, . . . , nd) with nk = 2mk, mk ∈ N. Then, the line
of proof used for Proposition 3.1 shows that

{ΠnTn(f)ΠT
n} ∼GLT

[
f 0
0 f

]
and

(3.2) {ΠnUnTn(f)UnΠT
n} ∼GLT

[
f∗ 0
0 f

]
.

Remark 5. Assume that n = (n1, . . . , nd) with nk = 2mk, mk ∈ N. Then,

ΠnUnYnUnΠT
n = Πn1

Un1
Yn1

Un1
ΠT
n1
⊗ · · · ⊗ ΠndUndYndUndΠT

nd

= Tn1

([
0 1
1 0

])
⊗ · · · ⊗ Tnd

([
0 1
1 0

])
= Tn

([
0 1
1 0

])
.

Hence, using (3.2) we arrive at the same result as in Proposition 3.1, i.e.,

{ΠnUnYnTn(f)UnΠT
n}

= {ΠnUnYnUnΠT
nΠnUnTn(f)UnΠT

n} ∼GLT

[
0 1
1 0

] [
f∗ 0
0 f

]
= g.

We can now state the main theorem of this section, which describes the spectral
distribution of {YnTn(f)}n.

Theorem 3.2. Let {Tn(f)}n, Tn(f) ∈ Rdn×dn be the multilevel Toeplitz sequence
associated with f ∈ L1([−π, π]d), where n = (n1, . . . , nd) and dn = n1 · · ·nd. Let
{YnTn(f)}n be the corresponding sequence of flipped Toeplitz matrices. Then,

{YnTn(f)}n ∼λ (g, [−π, π]d), with g =

[
0 f
f∗ 0

]
.(3.3)

Proof. In the case that nk = 2mk, mk ∈ N for each k, we see from Proposition 3.1
that {ΠnUnYnTn(f)UnΠT

n} ∼GLT g. Hence, recalling that ΠnUnYnTn(f)UnΠT
n is

real symmetric, by GLT1, {YnTn(f)} ∼λ g. In all other cases, by recalling Remark 3
and using Theorem 2.5 we find that the thesis follows as well.

We end this section by providing the spectral distribution of a preconditioned sequence
of flipped multilevel Toeplitz matrices.

Theorem 3.3. Let {Tn(f)}n, Tn(f) ∈ Rdn×dn with nk = 2mk, mk ∈ N be the
multilevel Toeplitz sequence associated with f ∈ L1([−π, π]d), let {YnTn(f)}n be
the corresponding sequence of flipped multilevel Toeplitz matrices, and let {Pn}n be
a sequence of Hermitian positive definite matrices such that {Pn}n ∼GLT h, and
{ΠnUnPnUnΠT

n}n ∼GLT h · I2 with h : [−π, π]d → C and h 6= 0 a.e. Then,

(3.4) {P−1
n YnTn(f)}n ∼λ (h−1g, [−π, π]d).

9

The asymptotic spectrum of flipped multilevel Toeplitz matrices and of certain preconditionings

9



Proof. The thesis follows from the combination of Theorem 2.9 and Proposition 3.1
by noticing that

(ΠnUnPnUnΠT
n)−1UnΠnYnTn(f)UnΠT

n = ΠnUnP−1
n YnTn(f)UnΠT

n

and by recalling that YnTn(f) is real symmetric and that ΠnUn is orthogonal.

Note that, thanks to Remark 4, the hypotheses of Theorem 3.3 are satisfied in the
case where Pn = Tn(h), with h ≥ 0 and h 6= 0 a.e. Moreover, it easy to see that if
we take the following circulant preconditioner

Pn = Cn = |Cnd | ⊗ · · · ⊗ In1 + · · ·+ Ind ⊗ · · · ⊗ |Cn1 |

with |Cn` | = (CTn`Cn`)
1
2 where Cn` is the optimal preconditioner for Tn` = Tn`(f`), the

condition {ΠnUnCnUnΠT
n}n ∼GLT h·I2 holds as well. This is because both {|Cn` |}n`

and {T (|f`|)}n` are GLTs with symbol |f`| and then |Cn` | = T (|f`|)+Rn` +En` which
allows us to apply the same reasoning as in Remark 4 to prove the desired relation.

4. Numerical results. In this section we illustrate the theoretical results from
section 3, that is, we check the validity of Theorems 3.2 and 3.3. We start by defining
the following equispaced grid on [0, π]d:

Γ =

(θ
(k1)
1 , . . . , θ

(kd)
d ) :=

(
πk1⌊
n1

2

⌋
− 1

,
πk2

n2 − 1
, . . . ,

πkd
nd − 1

)
,
k1 = 0, . . . ,

⌊
n1

2

⌋
− 1,

kj = 0, . . . , nj − 1,
j = 2, . . . , d

 .

Then, we denote by Λ1 and Λ2 the set of all evaluations of λ1(g), λ2(g) (resp. λ1(h−1g),
λ2(h−1g)) on Γ, and by Λ the union Λ1 ∪ Λ2 ordered in an ascending way. In the
following examples we numerically check relation (3.3) (resp. (3.4)) by comparing the
eigenvalues of YnTn(f) (resp. P−1

n YnTn(f)) with the values collected in Λ. Note that
it suffices to consider only [0, π]d in place of [−π, π]d because the eigenvalue functions
of the considered symbols are even.

In the two-dimensional Examples 1 and 2 we also compare the eigenvalues of YnTn(f)
directly with the spectrum of g over the whole domain [−π, π]2. Precisely, we define
the following grid on [−π, π]2

∆ =

{
(θ

(`)
1 , θ

(κ)
2 ) :=

(
−π +

2π`

n1 − 1
,−π +

2πκ

n2 − 1

)
,
` = 0, . . . , n1 − 1,
κ = 0, . . . , n2 − 1

}
and again we denote by Λ1 and Λ2 the sets of all evaluations of λ1(g), λ2(g) on ∆,
and by Λ the union Λ1 ∪ Λ2 ordered in an ascending way. Therefore, we employ the
following matching algorithm: for a fixed eigenvalue λ of YnTn(f)

1. we find η̃ ∈ Λ such that ‖λ− η̃‖ = minη∈Λ ‖λ− η‖, and
2. we associate λ to the couple in ∆ that corresponds to η̃.

Example 1. The first example we consider is the 2-level banded Toeplitz matrix gen-
erated by f(θ1, θ2) = 4 + eiθ1 + eiθ2 . We see from Figure 4.1 that the uniform sam-
pling of eigenvalue functions of g collected in Λ accurately describes the eigenvalues of
YnTn(f), even for very small matrices. Moreover, as shown in Figure 4.2 (obtained
using the aforementioned matching algorithm), the eigenvalues of YnTn(f) accurately
mimic the shape of the eigenvalue functions of g when n1 = 20, n2 = 40.
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Fig. 4.1: Comparison of the eigenvalues of YnTn(f) (◦) with Λ collecting the uniform
samples of the eigenvalue functions of g for Example 1 (∗) when n1 = n2 = 10 (left)
and n1 = n2 = 30 (right).
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Fig. 4.2: Eigenvalues of YnTn(f) (red dots) and the spectrum of g (colored surfaces)
for Example 1 when n1 = 20 and n2 = 40.

Example 2. In this example we consider the dense 2-level Toeplitz matrix obtained
by discretizing a certain time-dependent initial-boundary fractional diffusion problem
by means of a second-order finite difference approximation that combines the Crank-
Nicolson scheme and the so-called weighted and shifted Grünwald formula (see [16]).
Precisely, we start from


∂u(x,y,t)

∂t = ∂αu(x,y,t)
∂+xα

+ ∂βu(x,y,t)
∂+yβ

+ v(x, y, t), (x, y, t) ∈ Ω× (0, 1],

u(x, y, t) = 0, (x, y, t) ∈ R2\Ω× [0, 1],

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω̄,

where Ω = (0, 1)× (0, 1), α, β ∈ (1, 2), and ∂αu(x,y,t)
∂+xα

, ∂αu(x,y,t)
∂+yβ

are fractional deriva-

tives defined in Riemann-Liouville form (see again [2]). Then, for fixed n1, n2,M ∈ N,
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we take the following equispaced partition of Ω× [0, 1]

xi = ihx, hx =
1

n1 + 1
, i = 0, 1, . . . , n1,

yj = jhy, hy =
1

n2 + 1
, j = 0, 1, . . . , n2,

t(m) = m∆t, ∆t =
1

M
, m = 0, 1, . . . ,M,

and we arrive at a linear system whose coefficient matrix is the 2-level Toeplitz matrix

M(α,β)
n =

2hαx
∆t

In1n2
+ In2

⊗ Tn1
(fα) +

hαx

hβx
Tn2

(fβ)⊗ In1
,

with n = (n1, n2),

fγ(θ) = −
∞∑

k=−1

w
(β)
k+1eikθ = −

[
2− γ(1− e−iθ)

2

](
1 + ei(θ+π)

)γ
,

γ ∈ {α, β}, θ ∈ {θ1, θ2}, and w
(β)
k defined as in [16]. Both Tn1

(fα) and Tn2
(fβ) are

lower Hessenberg, and so M(α,β)
n is non-symmetric.

It has been shown in [13] that, whenever
hαx
hβx

= O(1) and
2hαx
∆t = o(1), it holds that

{M(α,β)
n }n ∼λ fα,β := fα(θ1) +

hαx

hβx
fβ(θ2),

i.e., M(α,β)
n = Tn(fα,β).

In the following tests we fix α = 1.8 and β = 1.6. Figure 4.3(a) shows that when
M = n1 = 30 and n2 = 35 the eigenvalues of the flipped Toeplitz matrix YnTn(f) are
well described by the sampling of the eigenvalue functions of g given in Λ. Similar
results can be inferred from Figure 4.4 when comparing the eigenvalues of YnTn(f)
directly when the spectrum of g with n1 = 20, n2 = 40.

For this example we also show how the results in section 3 can be used to describe the
convergence rate of preconditioned MINRES, which depends heavily on the spectral
properties of the coefficient matrix (see, e.g., [3, Chapters 2 & 4]). With this aim we
focus on the solution of the following linear system

Tn(fα,β)un = bn,

with bn = 2hαx1, and we define the following preconditioners for YnTn(fα,β):

• Pn = Tn(fR), with fR =
fα,β+f∗

α,β

2 . Of course, in this case the symbol of the
preconditioning matrix sequence is h = fR;

• Pn = P 2,2
n , obtained from M(α,β)

n replacing Tn1
(fα), Tn2

(fβ), with Tn1
(2 −

2 cos θ1), Tn2
(2 − 2 cos θ2), respectively (see [13] for more details). In this

case, the symbol of the preconditioning matrix sequence is h = 2− 2 cos θ1 +
hαx
hβx

(2− 2 cos θ2);
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Table 4.1: Preconditioned MINRES iteration counts for Example 2.

dn Tn(fR) P 2,2
n P 2,β

n

102 12 29 22
202 13 35 26
402 14 41 27
802 14 43 29

• Pn = P 2,β
n , obtained from M(α,β)

n replacing Tn1(fα) with Tn1(2 − 2 cos(θ1)),
and Tn2

(fβ) with the real part of its tetra-diagonal band truncation
Tn2

(pβ(θ2)), where

pβ(θ2) = −
2∑

k=−1

w
(β)
k+1eıkθ2 .

In this case, the symbol of the preconditioning matrix sequence is h = 2 −
2 cos θ1 +

hαx
hβx

pβ(θ2)+p∗β(θ2)

2 .

All of the aforementioned preconditioners are symmetric positive definite matrices
that satisfy the conditions of Theorem 3.3 when n = (n1, n2) has even components.
Figure 4.3(b)–(d) show that the eigenvalues of P−1

n YnTn(f) are well described by
the sampling of the eigenvalue functions of h−1g contained in Λ even though not all
components of n are even, as required by Theorem 3.3 (here n1 = 30 and n2 = 35).
Moreover, in all the given cases the eigenvalues of the preconditioned matrices lie
close to 1 and −1. This is particularly evident for Pn = Tn(fR). Note that, when
Pn = P 2,β

n , the eigenvalue functions of h−1g assume values around zero (while the
eigenvalues of P−1

n YnTn(f) do not); this is because pβ(θ2) does not have a zero at
θ2 = 0 but fβ(θ2) does.

From Figure 4.3(b)–(d) and since λ1(h−1g), λ2(h−1g) are clustered at ±1, we expect
that preconditioned MINRES applied to the flipped version of Example 2 with precon-
ditioners Tn(fR), P 2,2

n or P 2,β
n will converge at a fast rate. In Table 4.1 the iterations

of preconditioned MINRES are stopped when the residual norm is reduced by eight
orders of magnitude, i.e, when ‖rk‖2/‖r0‖2 < 10−8. We see from these results that
for all three preconditioners convergence is rapid, with Tn(fR) resulting in the lowest
iteration counts. Neither P 2,2

n nor P 2,β
n is optimal and this is in line with the spectral

analysis performed in [13, 2]. On the other hand, both are block banded with banded
block matrices, and so are computationally affordable unlike the dense preconditioner
Tn(fR).

Example 3. In our final example we consider the 3-level Toeplitz matrix arising from
an upwind finite difference discretization of the convection-diffusion equation{

−4u(x, y, z) +w · ∇u(x, y, z) = f(x, y, z), (x, y, z) ∈ Ω,

u(x, y, z) = 0, (x, y, z) ∈ ∂Ω,

where Ω = (0, 1)3 and w = [2, 1, 1.5]T .
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(a) Unpreconditioned (b) Pn = Tn(fR)

(c) Pn = P 2,2
n (d) Pn = P 2,β

n

Fig. 4.3: Comparison of the eigenvalues of YnTn(fα,β) or P−1
n YnTn(fα,β) (◦) with Λ

collecting the uniform samples of the eigenvalue functions of g or h−1g for Example 2
(∗) when M = n1 = 30, n2 = 35.
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Fig. 4.4: Eigenvalues of YnTn(f) (red dots) and the spectrum of g (colored surfaces)
for Example 2 when n1 = 20 and n2 = 40.
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For fixed n1, n2, n3 ∈ N, we take the following equispaced partition of Ω

xi = ihx, hx =
1

n1 + 1
, i = 0, 1, . . . , n1,

yj = jhy, hy =
1

n2 + 1
, j = 0, 1, . . . , n2,

zk = khz, hz =
1

n3 + 1
, k = 0, 1, . . . , n3,

and apply the discretization in [1]. The resulting coefficient matrix is Tn = Tn3
⊗

In2
⊗ In1

+ In3
⊗ Tn2

⊗ In1
+ In3

⊗ In2
⊗ Tn1

, where n = (n1, n2, n3),

Tn1
=


a c
b a c

. . .
. . .

. . .

b a c
b a

 , Tn2
=


0 e
d 0 e

. . .
. . .

. . .

d 0 e
d 0



Tn3
=


0 g
f 0 g

. . .
. . .

. . .

f 0 g
f 0


with a = 6 + 2hx +hy + 1.5hz, b = −1− 2hx, c = −1, d = −1−hy, e = −1, f = −1−
1.5hz, and g = −1. The associated symbol is f(θ1, θ2, θ3) = f1(θ1) + f2(θ2) + f3(θ3),
where f1(θ) = a + beıθ + ce−ıθ, f2(θ) = deıθ + ee−ıθ and f3(θ) = feıθ + ge−ıθ.

Also for this example we check the performance of the preconditioned MINRES method
for solving the linear system Tnun = bn with bn = 1. As preconditioners we choose
Pn = Tn(fR) and the positive definite 3-level circulant preconditioner defined as

Pn = Cn = |Cn3
| ⊗ In2

⊗ In1
+ In3

⊗ |Cn2
| ⊗ In1

+ In3
⊗ In2

⊗ |Cn1
|

with |Cn` | = (CTn`Cn`)
1
2 , where Cn` is the optimal circulant preconditioner for Tn` ,

with ` = 1, 2, 3. In the latter case, h = |f1| + |f2| + |f3|. These symmetric positive
definite preconditioners satisfy the conditions of Theorem 3.3.

Figure 4.5(a)–(c) shows the matching between the eigenvalues of YnTn or P−1
n YnTn

and the sampling of the eigenvalue functions of g or h−1g contained in Λ. From these
pictures we infer that, as in previous example, Tn(fR) is a good preconditioner. On
the contrary, we expect that since λ1(h−1g), λ2(h−1g) are not clustered away from 0,
Cn is not able to ensure fast convergence. This is confirmed by the iteration counts
in Table 4.2.

5. Conclusions. We have shown that the asymptotic eigenvalue distribution of
{YnTn(f)}n, where Tn(f) is a square real multilevel Toeplitz matrix generated by
f ∈ L1([−π, π]d) and Yn is the exchange matrix, is governed by a 2 × 2 matrix-
valued function whose eigenvalues are ±|f |. We have also investigated the asymptotic
eigenvalue distribution of preconditioned sequences {P−1

n YnTn(f)}n, where Pn is
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(a) Unpreconditioned (b) Pn = Tn(fR) (c) Pn = Cn

Fig. 4.5: Comparison of the eigenvalues of YnTn or P−1
n YnTn (◦) with Λ collecting

the uniform samples of the eigenvalue functions of g or h−1g for Example 3 (∗) n1 =
n2 = n3 = 20.

Table 4.2: Preconditioned MINRES iteration counts for Example 3.

dn Tn(fR) Cn

53 8 61
103 9 198
203 9 724

Hermitian positive definite, {Pn}n ∼GLT h, and {ΠnUnPnUnΠT
n}n ∼GLT h · I2 with

h : [−π, π]d → C and h 6= 0 a.e. The latter result enables us to analyse the convergence
of preconditioned MINRES for this problem at least in the two quite common cases
where the preconditioners are multilevel circulant or multilevel Toeplitz matrices.
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[10] U. Grenander and G. Szegő, Toeplitz Forms and Their Applications, vol. 321, Second Edi-
tion, Chelsea, New York, 1984.

[11] M. Mazza and J. Pestana, Spectral properties of flipped Toeplitz matrices and related pre-
conditioning, BIT, 59 (2019), pp. 463–482, https://doi.org/10.1007/s10543-018-0740-y.

[12] M. Mazza, A. Ratnani, and S. Serra-Capizzano, Spectral analysis and spectral symbol for
the 2d curl-curl (stabilized) operator with applications to the related iterative solutions,
Math. Comput., 88 (2018), pp. 1155–1188, https://doi.org/10.1090/mcom/3366.

[13] H. Moghaderi, M. Dehghan, M. Donatelli, and M. Mazza, Spectral analysis and multi-
grid preconditioners for two-dimensional space-fractional diffusion equations, J. Comput.
Phys., 350 (2017), pp. 992–1011, https://doi.org/https://doi.org/10.1016/j.jcp.2017.08.
064, http://www.sciencedirect.com/science/article/pii/S0021999117306459.

[14] J. Pestana, Preconditioners for symmetrized Toeplitz and multilevel Toeplitz matrices, SIAM
J. Matrix Anal. Appl., 40 (2019), pp. 870–887, https://doi.org/10.1137/18M1205406.

[15] J. Pestana and A. J. Wathen, A preconditioned MINRES method for nonsymmetric Toeplitz
matrices, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 273–288, https://doi.org/10.1137/
140974213.

[16] W. Tian, H. Zhou, and W. Deng, A class of second order difference approximations for
solving space fractional diffusion equations, Math. Comp., 84 (2015), pp. 1703–1727, https:
//doi.org/10.1090/S0025-5718-2015-02917-2.

[17] P. Tilli, A note on the spectral distribution of Toeplitz matrices, Linear Multilin. Algebra, 45
(1998), pp. 147–159, https://doi.org/10.1080/03081089808818584.

[18] N. L. Zamarashkin and E. E. Tyrtyshnikov, Distribution of eigenvalues and singular val-
ues of Toeplitz matrices under weakened conditions on the generating function, Sbornik:
Mathematics, 188 (1997), p. 1191, https://doi.org/10.1070/SM1997v188n08ABEH000251.

17

The asymptotic spectrum of flipped multilevel Toeplitz matrices and of certain preconditionings

17

https://doi.org/10.1137/18M1207399
https://doi.org/10.3390/axioms7030049
https://doi.org/10.3390/axioms7030049
https://doi.org/10.1007/s10543-018-0740-y
https://doi.org/10.1090/mcom/3366
https://doi.org/https://doi.org/10.1016/j.jcp.2017.08.064
https://doi.org/https://doi.org/10.1016/j.jcp.2017.08.064
http://www.sciencedirect.com/science/article/pii/S0021999117306459
https://doi.org/10.1137/18M1205406
https://doi.org/10.1137/140974213
https://doi.org/10.1137/140974213
https://doi.org/10.1090/S0025-5718-2015-02917-2
https://doi.org/10.1090/S0025-5718-2015-02917-2
https://doi.org/10.1080/03081089808818584
https://doi.org/10.1070/SM1997v188n08ABEH000251

	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Multilevel block Toeplitz matrices and their spectral properties
	2.3 Multilevel block generalized locally Toeplitz class

	3 Main result
	4 Numerical results
	5 Conclusions
	References



