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a b s t r a c t

In this work, we propose and test a method to expedite Global Sensitivity Analysis (GSA) in the context
of shape optimisation of free-form shapes. To leverage the computational burden that is likely to
occur in engineering problems, we construct a Shape-Signature-Vector (SSV) and propose to use it
as a substitute for physics. SSV is composed of shapes’ integral properties, in our case geometric
moments and their invariants of varying order, and is used as quantity-of-interest (QoI) for prior
estimation of parametric sensitivities. Opting for geometric moments is motivated by the fact that
they are intrinsic properties of shapes’ underlying geometry, and their evaluation is essential in many
physical computations as they act as a medium for interoperability between geometry and physics.

The proposed approach has been validated in the area of computer-aided ship design with regard to
the capability of global- and composite-SSV to reveal parametric sensitivities of different ship hulls for
the wave-making resistance coefficient (Cw), which is a critical QoI towards improving ship’s efficiency
and thus decreasing emissions. More importantly, the longitudinal distribution of the volume below the
ship’s floating waterline, which is measurable via geometric moments, has an impact on Cw . Through
extensive experimentation, we show a strong correlation between the sensitive parameters obtained
with respect to SSV and those based on Cw . Consequently, we can estimate parameters’ sensitivity
with considerably reduced computational cost compared to when sensitivity analysis is performed
with respect to Cw . Finally, two design spaces are constructed with sensitive parameters evaluated
from SSV and Cw , and spaces’ quality and richness are analysed in terms of their capability to provide
an optimised solution.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Computational design pipelines have become indispensable
or handling various problems in science and engineering, which
nvolves rapid exploration of parametric design spaces for
lobal optima leading to shorter product development cycles.
hysics-based simulation tools, such as Computational Fluid Dy-
amics (CFD), Computational Structural Dynamics (CSD), Com-
utation Aeroacoustics (CAA), etc., are the key drivers of this
xploration [1], which are continuously evolving to achieve a
igh level of fidelity. However, simultaneously they are becoming
omputationally intensive, requiring unaffordable computational
esources even for a single simulation run [2]. As an example, a
FD-based statistically significant evaluation of ship performance
n waves may require up to 1M CPU hours on HPC systems [3].
onsequently, the extensive use of these tools can be impractical
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c-nd/4.0/).
for rich and vast design spaces, which are often incurred by
design constraints to confine exploration to feasible designs [4].
A more critical bottleneck can be encountered if these spaces
are high-dimensional, which is often favoured for maximal per-
formance improvement [5], leading to the well-known curse of
dimensionality and thus hampering the success of optimisation.

The existing techniques used to reduce the exorbitant compu-
tational costs mainly fall into two categories. One line of work
focuses on developing computationally less demanding solvers
[6,7] while the other leverages computational resources with
data-driven approaches [8,9]. Recently, the most astounding re-
sults in reducing computational cost while maintaining the high
approximation accuracy of designs’ physics are achieved via data-
driven approaches. These approaches can be broadly classified
as dimensional reduction and surrogate modelling, employed
to reduce the design space dimensionality and bypass designs’
performance estimation with simulation tools, respectively [10].
For dimension reduction, there are well studied unsupervised
(e.g., Principal Component Analysis (PCA) [4], auto-encoders [11],
etc.) or supervised (e.g., Active Subspace Method (ASM) [12]),
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. Workflow of the proposed approach, which uses a shape-signature vector containing geometric moments of variant order for sensitivity analysis and design’s
hysics for shape optimisation.
o
S
o
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ensitivity Analysis (SA), do or do not require data, correspond-
ngly. Among these, PCA, auto-encoders, and ASM extract the
atent features of the original design space to span a lower-
imensional subspace while materialising the maximum geo-
etric variability. Contrary, SA is a down-selection process that
creens out the parameters less sensitive (insensitive) to physics.
s less sensitive parameters have a negligible effect on perfor-
ance and they can be excluded to reduce the dimensionality of

he design space [13].
The efficiency of both supervised and unsupervised

pproaches is manifested in various applications to mitigate the
urse of dimensionality [11,14,15]. However, since unsupervised
echniques do not require performance labels, their implementa-
ion can be less expensive than supervised methods. However,
ince there is no correlation between design and shape mod-
fication, these techniques can produce perfunctory subspaces,
ith the basis forming merely a new orientation of the de-
ign space without capturing any associated geometric features
4,15]. In contrast, SA implementation is more informed because,
long with dimension reduction, its assessment is a meaningful
rerequisite to reducing uncertainty and identifying the driving
eatures of designs that account for the minimum or maximum
ariability in performance [10]. Consequently, SA may offer de-
igners enhanced resource allocation from the preliminary design
tage, thereby expediting product development. However, the
mplementation of SA can be computationally demanding, espe-
ially when the analytical solution is not available and running
umerical simulations become mandatory.
To lessen the computational burden, surrogate models are

ften used to accelerate the SA as at the preliminary stage de-
igners may not be interested in accurately estimating the per-
ormance [16]. Surrogate modelling is also a supervised learning
pproach, and despite the undoubted efficiency, their usage is
ften hindered by the availability of data, which is profound in
ngineering applications where data is the outcome of expensive
hysical simulations [2] and may exacerbate the entire design
ipeline. Recently, to combat this insufficiency, these approaches
ave been revitalised via scientific machine/deep learning, such as
hysics-Informed Neural Networks (PINN) [9]. PINNs are trained
o integrate differential equations modelling the physics along
ith a moderate amount of data from simulations or experi-
ents to approximate the underlying Partial Differential Equa-

ions (PDE) solution. In fact, if the PDE problem is well-defined
long with appropriate initial and boundary conditions, then
INN can identify the unique solution without any simulation
2

data [2]. Their potential has been exploited in fluid mechanics [9],
solid mechanics [17] and dynamical systems [18].

Motivated by these approaches, we aim to address the afore-
mentioned challenges associated with SA by offloading the eval-
uation of parametric sensitivities from physical quantities to rel-
atively inexpensive quantities compared to physical ones but
provide important clues about the form distribution and validity
of the design. More specifically, it is well known that shape’s
integral properties, such as geometric moments and their invari-
ants [6,19] serve as a geometric foundation for different designs’
physical analyses. Like physics, they rely strongly on design’s
geometry, but their evaluation is substantially less expensive.
Therefore, we propose a geometric moment-dependent SA ap-
proach that harnesses the geometric variation of designs in a
design space using geometric moments as a geometrical Quantity
of Interest (QoI) to measure parametric sensitivities. These results
can serve as a prior estimation of parametric sensitivities and use
to construct a design space of lower dimension with only a subset
of highly/strongly sensitive parameters for shape optimisation
performed against physical QoI. This approach can significantly
reduce the computational time because, typically, sensitivities
are learnt directly with physical QoI, which can add a heavy
computational burden on the entire design process as one has to
perform computationally intensive physical simulations for both
SA and shape optimisation. Fig. 1 shows the systematic workflow
f the proposed approach, which uses geometric moments for
A and design’s physics for shape optimisation. The selection
f geometric moments for SA in our work is motivated by the
ollowing fundamental insights:

1. Geometric moments of a shape are intrinsic properties of
its underlying geometry and act as a unifying medium
between geometry and its physical evaluation [20,21].

2. Physical analysis requires the evaluation of such integral
properties of the geometry such as the stiffness and mass
matrices, and moments of a domain are sufficient to ensure
accurate integration of a large class of integrands [6,22].

3. Like physics, geometric moments also act as a compact
shape signature or descriptor to a specific design falling in
a specific category, which facilitates various shape process-
ing tasks [23–25].

In this work, we show through extensive experiments the
ompetitive performance of the geometric moments for making
n informed decision on the sensitivity of parameters without
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erforming computationally intensive physical simulations. The
esults of SA via geometric moments permit to categorised a
rior the design parameters as strongly sensitive, moderately sensi-
ive, weakly sensitive, and insensitive. According to Sheikholeslami
t al. [16] and Klepper [26], when such categorisation of param-
ters is available, then computationally efficient SA with physics
an be performed for each category. As explained earlier in this
ection, different physical analyses have a dependence on shape
ntegral properties such as geometric moments, but during any
esign process, there are many physical criteria (varying from
pplication to application) that have to be investigated and may
ot be dependent on geometric moments. Thus, the use of mo-
ents does not aim to eliminate the need to perform SA with respect

o physics but rather to support the designer for a prior check
egarding the sensitivity of parameters for those physical quantities
hat are computationally expensive and share relevance with geo-
etric moments. Therefore, we restrict our aim to exploring the
apability of these geometric moments in the context of ship-
ull design, namely, with regard to their capability to reveal
he sensitivity of its parameters for the wave-making resistance
oefficient (Cw), which is one of the significant components of
total ship’s resistance and a critical design criterion.

Wave-making is caused when an object moves on or near
the free surface of the water. The waves are generated from the
variation of pressure over the wetted surface of the ship and
carried behind it in the form of the so-called Kelvin wave pattern
through a mechanism that is due to the kinematic and dynamic
conditions satisfied on the free surface of the ocean. The impor-
tance of Cw reduction at the preliminary design stage, its effect
on hull geometry and its connection with geometric moments
will be discussed and formulated in Section 4.1. To experimen-
tally demonstrate the effectiveness of geometric moments, we
used two ship hulls parameterised with 26 and 27 parameters
using two different techniques based on Procedural Deformation
(PD) [27] and Global Modification Function (GMF) [4], respec-
tively. The former parameterises a hull geometry constructed
using the NURBS (non-uniform rational B-splines) representation
and parameters directly associated with the hull’s key features. In
contrast, the latter is defined directly on a design grid and creates
a global surface deformation. For the hull parameterised with
PD, its Cw is evaluated using an inviscid BEM (Boundary Element
Method) isogeometric solver [7]. For the GMF-based hull, Cw is
obtained with a method based on the linear potential flow theory
as well [28]. Geometric moments for both hulls are evaluated via
the divergence theorem [29], which is applied on the triangulated
mesh surfaces of the hull.

To commence SA, we first construct the so-called Shape-
Signature Vector (SSV), which acts as a unique descriptor for the
shape and contains all the geometric moments up to a certain
order. To better correspond to Cw , all the moments in this vector
are formulated to be invariant to translation and scaling. A global
variance-based SA [30] is performed concerning SSV and Cw . Here,
the former is purely a vector quantity containing the moment
of various orders, while the latter is a scalar one but computa-
tionally expensive to evaluate. Therefore, learning sensitivity to
SSV requires implementing a multivariate output SA technique,
such as covariance decomposition [31], which provides gener-
alised sensitivity indices of design parameters to all moments
in SSV. Afterwards, a series of experimentations are performed
to identify a common set of sensitive parameters between SSV
and Cw . Furthermore, the higher the order of SSV is, the better it
can describe the shape, and as a result, its parametric sensitivity
better correlates with Cw . However, evaluation of higher-order
moments can be prone to numerical noise. Therefore, following
various other applications of moments in literature [20,32] we

restrict our analysis to geometric moments up to fourth-order.

3

We also study the local effect of geometric moments evaluated
after segmenting the hull shape to compensate for this. To further
demonstrate the effectiveness of geometric moments, for each
test case, two shape optimisations are performed in the design
spaces constructed with parameters sensitive to SSV and Cw .
Their results are compared to optimal design obtained when
optimisation is performed within the actual high-dimensional
design space.

The remainder of this paper is organised as follows: Section 2
gives an overview of the relevant works proposed for computa-
tionally effective SA. Section 3 discusses the problem formulation,
evaluation of geometric moments and SA for problems with uni-
variate and multivariate outputs. A detailed discussion on the
relevance of geometric moments with Cw , along with the descrip-
tion of the test cases, is given in Section 4. The numerical results
of the proposed technique are provided in Section 5. Concluding
remarks and plans for future work are presented in Section 6.

2. Related works

As stated in the introduction, the work aims not to propose
a new SA approach; instead, it intends to use computationally
efficient and physically linked geometric functionals to expedite
SA, especially at the preliminary design stage, where the decision
on the selection of effective design parameters is critical. Before
delving into the core formulation of the proposed approach, we
first briefly review previous work in SA while restricting our ex-
position to work dealing with reducing their computational cost.
We also briefly discuss the application of geometric moments in
design and analysis.

2.1. Sensitivity analysis (SA)

SA is widely used in various applications for different pur-
poses, but as stated in [33], one of its primary goals is to reduce
the dimensionality of the design space by screening out the less
sensitive parameters to designs’ performance. It should be noted
that there are two types of approaches in the field of parametric
SA, namely the local (LSA) and global SA (GSA). LSA is usually
derivative-based [34,35], in which the change in QoI is evaluated
against the variation of a single parameter. LSA investigates how a
small perturbation near an input space value influences the value
of QoI. On the contrary, in GSA, all parameters are varied simulta-
neously, and sensitivity is assessed over the entire range of each
design parameter constructing the design space [16,34]. In com-
plex engineering problems, the influence of a design parameter
may vary drastically as the remaining parameters change. Thus, it
could be inadequate to evaluate the impact of a parameter on the
QoI with the other parameters being kept constant. Accordingly,
selecting significant parameters for shape optimisation based on
their GSA is more appropriate in real-world applications [36] and
used in the present work.

The analytical implementation of GSA can often be tricky as it
requires solving high-dimensional integrals. In this case, one has
to appeal to sampling methods, such as Monte Carlo sampling
(MCS) [16]. However, MCS is susceptible to slow convergence
for stable results, as it requires the evaluation of a sufficiently
large number of samples via computationally intensive physi-
cal simulations. Although a slightly better convergence rate can
be obtained with quasi-Monte Carlo (Q-MC) or Latin-Hypercube
(LH) methods, which are based on uniformly distributed de-
sign sequences, their advantage downgrade considerably in high-
dimensional design spaces [16]. A sequential strategy, namely
progressive Latin hypercube sampling (PLHS), was proposed by
Sheikholeslami and Razavi [33]. As implied by its label, PLHS

searches the design in the class of Latin hypercube and uses a
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riterion of space-filling to uniformly distribute the designs in
sub-set of sliced design spaces. Similar to [33], Wu [37] also
tilised space-filling to propose a SA, which initially commences
ith samples obtained using the max–min principle of Latin hy-
ercube, whose spread was improved by maximising a Euclidean
istance with a coordination sorting algorithm. Gong et al. [38]
ompared different baseline sampling approaches, such as good
attice points, symmetric Latin hypercube uniformity, Ranked
ram–Schmidt and Quasi-Monte-Carlo, against uniformity scores
nd found out that a better convergence can be achieved with the
irst two approaches. Recently, Khan and Kaklis [10] proposed a
ynamic Sampling Strategy (DSS), which, along with space-filling,
nvolves criteria of non-collapsing and repulsion. This method
rogressively increases the number of samples in each iteration;
he non-collapsing maintains the diversity while repulsion helps
reate designs different from previously sampled ones in each
teration. DSS is proven to approximate a solution closer to the
nalytical one with small sample size and, therefore, used in the
resent work.
As mentioned earlier, surrogate models such as non-

arametric regression [39], polynomial chaos expansions [40],
upport vector machines [41], low-rank tensor approximations
42], Gaussian processes [8], and other Kriging methods [43] are
lso widely used for revealing parametric sensitivities with re-
pect to costly physical quantities. Apart from the traditional sur-
ogate modelling approaches, deep learning approaches [44] have
ecently gained attention specifically for quantifying key resource
ncertainty in the system. Despite their proven efficiency, the
ensitivity of parameters evaluated with these methods heavily
epends on the accuracy of the surrogate models [8,16].
Along with using retrofitted versions of the sampling meth-

ds to improve convergence and surrogate models to bypass
xpensive physics evaluation, few attempts have been made to
ase the computational burden in the context of reducing the
imensions of a high-dimensional problem before performing
A. For instance, Pronzato [45] used a Bayesian Linear Model
onstructed through a particular Karhunen–Loéve expansion to
stimate Sobol’s indices at a reduced computational cost. Fur-
hermore, Sheikholeslami et al. [16] utilised a clustering-based
trategy to ease the computational burden of implementing typ-
cal SA on high-dimensional design problems. Masood et al. [8]
erformed the eigendecomposition of the original design space
sing PCA and then proposed a method to drive the sensitivity of
ctual parameters from their lower-order projection. This method
educes the number of samples required to evaluate the robust
ensitivity indices.
Apart from the high computational cost, another significant

ut often neglected challenge SA has to deal with is related to
he fact that the sensitivity of parameters varies locally within the
esign space, meaning a parameter can be sensitive in some local
egions of the design space but become insensitive in others. Such
ehaviour makes SA vulnerable to instabilities even with slight
erturbation in the parametric ranges of the design space. Con-
equently, SA should be performed with caution, especially at the
reliminary design stage. At this stage, the design problem is not
ell established, and designers are not aware of the appropriate
arametric ranges for performing a reliable sensitivity study. SA
ithin a non-viable design space can be dismayed, eliminating
ssential parameters from the design study. To tackle this prob-
em, approaches like regional SA [46] and intra-sensitivity [10]
ave been proposed in the literature to evaluate the behaviour
f parametric sensitivity in local regions of the design space and
o identify parameters whose perturbation in the range gener-
tes the most considerable inconsistency in the sensitivity of
ther parameters, respectively. Although these techniques can

rovide substantial aid to designers for reliable sensitivity studies,

4

they are computationally demanding because of the extraction of
the local behaviour of parametric sensitivities. Therefore, in this
work, we appeal to a different direction to support the sensitivity
study of design problems using quantities like geometric moment
invariants, which, compared to physical criteria, are time inex-
pensive even for complex free-form or organic shapes but provide
important clues regarding the physics. This work performs an
extensive experimental study to prove that geometric moments
can ease the designer for estimating parameters’ sensitivity at the
initial design stage.

2.2. Geometric moments in design and analysis

From a geometric point of view, these moments are typi-
cally used to evaluate the overall volume enclosed by the shape,
its centre of mass, and moment of inertia. Geometric moments
are used over a wide spectrum of applications ranging from
probability and statistics to signal processing, computing tomog-
raphy [47], object recognition [25], shape retrieval [24], rigid
body transformation [23], feature extraction [48] etc. In physical
analyses, they are used for governing equation of motions for
flows around a body [20], integrating accurately implicit func-
tions [22], modelling nonlinear material properties in the cut-cell
method [49], simplifying history-dependent material modelling
in the case of crack propagation [50], and material field modelling
to develop an integral representation for fields that supports a
wide range heterogeneous data [21]. Recently, meshfree meth-
ods have also been developed [6,51,52], which use moments to
generate quadrature rules for the geometric domain to aid the
interoperability between CAD representation and its physics.

Similar to the present work, Taber et al. [6] used a moment-
vector for composing components of moments of a different
order; however, there is a slight difference in their construction
and the number of moments they contain. A new integration
technique called Shape Aware Quadratures (SAQ) was proposed
by Vaidyanathan, and Vadim [51] to efficiently integrate arbi-
trary integrable functions over arbitrary 2D/3D domains even in
the presence of small features. It uses different derivative-based
shape sensitivities of first and second-order to construct shape
correction factors used in the moment-fitting equations. These
shape correction factors ensure that the quadrature rule deter-
mined by the moment-fitting equations is aware of the shape
of the integration domain, especially associated with the small
features. Christian et al. [52] proposed a new type of analysis
pipeline, eXtended Finite Element Method (XFEM), mainly to
support smooth interoperability between CAD and physical sim-
ulation during shape optimisation. The core of their contribution
lies in using a moment-fitting technique to compute on-the-fly a
modified set of quadrature rules that accurately handle integra-
tion over curved domains of varying shape and size, bounded by
NURBS and planar patches, and evaluate shape derivatives with
respect to these rules to quantify the shape sensitivities caused
on the volume integral with the change of the design parameters.
The derivative-based shape sensitivities evaluated in [51,52] are
usually referred to as local sensitivities [34,35], which enables
identifying the local influence of a single parameter on the QoI.
As explained earlier, in this work, we use GSA, which provides a
holistic view of the influence of all design parameters on the QoI
in question.

3. Geometric moment-based sensitivity analysis

This section provides an in-depth description of the proposed
approach, including the general assumptions, mathematical for-
mulation of geometric moments and their invariants and a brief

overview of SA for univariate and multivariate outputs models.



S. Khan, P. Kaklis, A. Serani et al. Computer-Aided Design 151 (2022) 103339

3

c
R
b
(
e
e
r
i
i
e
m
v
0
i
a
w
f
a
t
p
c

S

3

(
t

M

w
q
a

a
M
s
r

M

n
i
a
f
a
t
t
h
w
a

(
s

µ

.1. Problem formulation

Let a geometric design G be parameterised with a set of n
ontinuous design parameters t = {ti, i = 1, 2, . . . , n} ∈ X ⊆
n. Here X is the n-dimensional solution/design space, bounded
y lower tl and upper tu limits of the associated parameters
i.e., X := {t li ≤ ti ≤ tui ,∀i ∈ {1, 2, . . . n}}). Moreover, all the
lements of t are assumed to be statistically independent from
ach other, i.e., pt(t) =

∏n
i=1 pti (ti), where pt(t) : Rn

→ R
epresents the Probability Density Function (PDF) of t and pti (ti)
s the marginal PDF of ti. Now, the objective of the present work
s to assess the sensitivity indices, SI = {SI1, SI2, . . . , SIn}, of each
lement of t with respect to geometrical QoI, such as geometric
oments of G. Therefore, we assume to possess a shape-signature
ector, MIs, which contains all the geometric moments from
th to sth order. Construction of MIs will be discussed in detail
n the subsequent subsections. Once the SA is performed, the
im is to find a subset tMI of m highly sensitive parameters
hose sensitivity index is greater than a threshold, ϵ, where m is

avourable to be less than n. The subset of m parameters forms
design space XMI of reduced dimension, which is exploited

o expedite the shape optimisation carried out directly with a
hysical QoI; represented as y = g(t) : X ⊆ Rn

→ R. In
onclusion, the overall problem can be stated as follows:

ensitivity:
Find tMI ⊆ t sensitive w.r.t. MIs

where t ∈ X ⊆ Rn

Construct XMI such that
tMI ∈ XMI ⊆ Rm

m < n
Optimisation:

Find t∗MI ∈ Rm such that
g(t∗MI) = min

tMI∈XMI
g(t∗MI)

(1)

.2. Geometric moments

We shall use moments for quantifying the shape of an object
design, in the so-far terminology) G of finite extent, defined by
he following formula:

p,q,r (G) =
∫

+∞

−∞

∫
+∞

−∞

∫
+∞

−∞

xp yq zr ρ(x, y, z) dxdydz,

with p, q, r ∈ {0, 1, 2, . . . }, (2)

hich gives the sth-order geometric moment of G, where s = p+
+ r and ρ(x, y, z) = 1/0 for (x, y, z) ∈ / /∈ G, respectively. Given
non-negative integer s, the vector Ms will contain (s+1)(s+2)/2

moments Mp,q,r (G) such that p+ q+ r = s. The ideal order of M
will result in a vector containing geometric moments capturing
not only global features of the shape but also the local features.
For instance, moment of (s = 2)th-order contains

M2
=
[
M2,0,0(G) M0,2,0(G) M0,0,2(G) M1,1,0(G) M1,0,1(G) M0,1,1(G)

]
.

(3)

As pointed out in [6], moments can be thought of as projec-
tions (with respect to L2 inner product) of ρ onto any polynomial
basis, such as monomials, Legendre polynomials, etc. In Mathe-
matical Analysis, the classical moment problem, which has been
treated by various famous mathematicians such as Markov in
1883 and Stieltjes in his famous 1894 paper on: ‘‘Recherchers
sur les fractions continues’’, can be simply stated as follows:
Recover a function f (x) given its moments Mp

=
∫
xpf (x)dx, p =
5

0, 1, . . .. In all these guises, the moment problem is recognised
as a notoriously difficult inverse problem, often leading to the
solution of very ill-posed systems of equations that usually do
not have a unique solution [47].

In Eq. (2), if ρ(x, y, z) represents the volume density then
the zero- and first-order moments, M0,0,0(G), M1,0,0(G), M0,1,0(G),
and M0,0,1(G), are widely used in computer graphics, CAD and
engineering for computing the object volume, V = M0,0,0(G), and
the coordinates of the centre-of-volume:

c(G) =

[Cx
Cy
Cz

]
=

⎡⎢⎢⎣
M1,0,0(G)
M0,0,0(G)
M0,1,0(G)
M0,0,0(G)
M0,0,1(G)
M0,0,0(G)

⎤⎥⎥⎦ . (4)

If ρ(x, y, z) is the PDF of a continuous random variable, then
M0, M1, M2, M3 and M4, represent the total density, mean, vari-
nce, skewness and kurtosis of the random variable, respectively.
oreover, the moments of second-order can be organised in a
econd rank tensor, the moment of inertia tensor (MoI), which is
epresented as follows:

oI

=

⎡⎣M0,2,0(G)+M0,0,2(G) −M1,1,0(G) −M1,0,1(G)
−M1,1,0(G) M2,0,0(G)+M0,0,2(G) −M0,1,1(G)
−M1,0,1(G) −M0,1,1(G) M2,0,0(G)+M0,2,0(G)

⎤⎦ .

(5)

As mentioned earlier, the more moments we use, the better
we capture the shape’s intrinsic features. Our moment-driven
SSV is represented by Ms

=
[
M0,M1,M2, . . . ,Ms], where s is

appropriately large to cover the shapes of interest [23]. Theoret-
ically, s ranges from 0 to ∞, though there exist object classes
for which s is finite when, e.g., dealing with the class of the so-
called quadrature domains in the complex plane [53] or when
approximating convex bodies using Legendre moments [54].

There exists a variety of methods available in the literature
for computing geometric moments, which use either lower-order
approximating mesh [55] or high-order surface [19] representa-
tions, such as B-splines and NURBS, of G. The most commonly
used method is Gauss’s divergence theorem [29], which evaluates
geometric moments by converting volume integrals to integrals
over the surface bounding the volume. In the Appendix, we
summarise the evaluation of geometric moments using the di-
vergence theorem for a triangulation S =

⋃N
i=1 Ti approximat-

ing the surface bounding G, where N is the total of triangular
elements T .

3.2.1. Geometric moment invariants
The moments in Ms are variant with respect to rigid and

on-rigid transformations, such as translation, rotation and scal-
ng [56]. However, most physical quantities are invariant to either
ll or some of these transformations. For instance, evaluating Cw

or the ship is invariant to translation and scaling if assessed at
certain Froude number. Therefore, to measure the sensitivity of
hese parameters with respect to the geometry, the invariant of
hese geometric moments with respect to translation and scaling
as to be secured. A description of geometric moment invariants
ith respect to translation and scaling presented in this section
nd their other invariants can be found in [56].
If Eq. (2) is applied for G, while placing it at its centroid, c(G) =

Cx, Cy, Cz), then we get the so called central geometric moment of
th-order, which is invariant to translation and is expressed as:

p,q,r (G) =
∫

+∞

−∞

∫
+∞

−∞

∫
+∞

−∞

(x− Cx)p (y− Cy)q (z − Cz)r

× ρ(x, y, z) dxdydz. (6)
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t is noteworthy that as G is placed at its centroid; therefore
he first-order moment is zero, i.e., [µ1,0,0, µ0,1,0, µ0,0,1

] = 0.
To achieve invariance of µp,q,r to scaling we assume that G is
uniformly scaled by a factor λ, which gives

µ̂p,q,r (Ĝ) = λp+q+r+3µp,q,r (G). (7)

Then, one can easily conclude that

MIp,q,r =
µp,q,r

(µ0,0,0)1+(p+q+r)/3 (8)

is an invariant moment form for G under uniform scaling and
ranslation [56]. For any non-negative integer, s, the moment
nvariant vector, MIs contains all the moments invariant to trans-
ation and scaling such that p + q + r = s. By definition this in-
variance satisfies MI0,0,0 = 1 and MI1 =

[
MI1,0,0,MI0,1,0,MI0,0,1,

MI1,1,0,MI1,0,1,MI0,1,1
]
= 0. As M0,0,0 represents the volume of

G, which is intrinsically invariant to translation; therefore, the
invariant SSV, MIs, contains M0,0,0 instead of MI0,0,0 (i.e., MIs

=[
M0,0,0,MI2,MI3, . . . ,MIs

]
).

3.3. Global sensitivity analysis

In GSA, variability of QoI is measured when all parameters vary
over the entire design space. This allows users to evaluate the
relative contribution of each parameter to QoI’s output variation,
which is the focus of the present study. Different sensitivity
analyses have been proposed in the literature, such as variance-
based (or Sobol’s method), density-based sensitivity, elementary
effects test (or Morris method), etc. Interested readers can re-
fer to [30] for a detailed overview of these techniques. Among
these methods, variance-based probabilistic methods like Sobol’s
analysis [57] is suitable for complex nonlinear and non-additive
models; therefore, it is well received in different design applica-
tions and thus used in the current study. This method investigates
how much of the overall variance of QoI is achieved due to the
variability of a collection of design parameters. This variance
is usually measured with First-order indices (or main effects) or
total-order indices (or total effects). The former quantifies the
direct contribution to QoI variance from an individual parameter
over the entire design space. The latter approximates the over-
all contribution of a parameter considering its direct effect and
interactions with all the other design parameters.

3.3.1. Sobol’s sensitivity analysis
Sobol’s analysis is often classified as a variance-based model-

independent method, which is based on the variance decompo-
sition and can handle the underlying non-linearity of QoI under
consideration. Under the probabilistic interpretation of elements
of t, Y is the output of g with mean (E(Y )) and variance (V (Y )).
Consider g(t1, t2, . . . , tn) to be square integrable over X ⊆ Rn

with Lebesgue measure dt = dt1 . . . dtn. The Sobol’s SA is based
on a decomposition of the model into summands of functions
of increasing dimensionality referred to as ANOVA (functional
ANalysis Of VAriance) or Hoeffding–Sobol decomposition [57], that
can be written as

g(t) = g0 +
n∑

s=1

∑
i1<···<is

(
ti1 , . . . tis

)
, (9)

where g0 is the expectation (mean) of Y defined as

g0 = E(Y ) =
∫

∞

−∞

· · ·

∫
∞

−∞

g(t1, . . . , tn)
n∏

k=1

ptk (tk)dtk, (10)

and gi1,...,is (ti1 , . . . tis ) satisfy the unicity condition∫
gi1,...,is (ti1 , . . . tis )pti ,...,i (ti1 , . . . , tis )dti1 . . . dtis = 0,
1 2

6

s = 1, 2, . . . , n. (11)

The interior sum in Eq. (9) can be extended over all different
groups of indices i1, i2, . . . , is such that 1 ≤ i1 < i2 < · · · < is ≤
n. With this condition, Eq. (9) can be expanded as

g(t1, . . . , tn) = g0 +
n∑

i=1

gi(ti)+
n∑

i=1

n∑
j=i+1

gij(ti, tj)+ · · ·

+ g1,...,n(t1, . . . , tn). (12)

Eq. (12) consists of 2n terms with each term is assumed to
be squared integral over X with zero average. The terms gi(ti),
1 ≤ i ≤ n, are functions of a single variable and are the so-called
first-order indices (or main effect). Each of them represents the
variation in Y due to the change in ti. The functions of more than
one variable, gij(ti, tj), 1 ≤ i ≤ j ≤ n, are called interactions
and represent the variation in Y not accounted when ti and tj
vary individually. With the condition in Eq. (11), all the terms
in Eq. (12) are naturally orthogonal and can be expressed as
integrals of g(t) as

gi(ti) =
∫

∞

−∞

· · ·

∫
∞

−∞

g(t1, . . . , tn)
n∏

k=1,k̸=i

pti (ti)dt1 . . . dtn − g0

= Et∼i (Y |ti)− g0, (13a)

gij(ti, tj) =
∫

∞

−∞

· · ·

∫
∞

−∞

g(t1, . . . , tn)
n∏

k=1,k̸=ij

pti (ti)dt1 . . . dtn − gi

− gj − g0 = Et∼ij (Y |ti, tj)− gi − gj − g0. (13b)

In the similar way, Eq. (13) continues for the higher-orders. Here,
Et∼i (·) is the mean of Y taken over all possible values of t when ti
is fixed through its full distribution range, whereas Et∼ij (·) is also
the mean of Y but evaluated when both ti and tj are fixed.

With the hypothesis that all the input parameters are indepen-
dent of each other, the variance of the output (V (Y )) can be also
be decomposed into 2n

− 1 partial variances of increasing orders
as [58]

V (Y ) =

n∑
i

Vi +
∑

i

n∑
j=i+1

Vij + · · · + V12...n (14)

where

Vi = V (gi (ti)) = Vti

(
Et∼i (Y |ti)

)
, (15a)

Vij = V
(
gij
(
ti, tj

))
= Vti,tj

(
Et∼ij

(
Y |ti, tj

))
− Vti

(
Et∼i (Y |ti)

)
− Vtj

(
Et∼j

(
Y |tj

))
. (15b)

Herein, Vti (·) and Vtj (·) is the variance over all possible values
of ti and tj, respectively. The contribution of individual design
parameter’s variance to the total output variance can be evaluated
with the above relation. Therefore, by the dividing Eq. (13) with
the total variance V (Y ) of Y one could determine the first and
second-order sensitivity index of ti as

SIi =
Vi

V (Y )
=

Vti

(
Et∼i (Y |ti)

)
V (Y )

, (16a)

Iij =
Vij

V (Y )

=
Vti,tj

(
Et∼ij

(
Y |ti, tj

))
− Vti

(
Et∼i (Y |ti)

)
− Vtj

(
Et∼j

(
Y |tj

))
V (Y )

.

(16b)
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Likewise, indices of the sth-order can be defined as

SIi1,i2,...,is =
Vi1,i2,...,is

V (Y )
. (16c)

SIi is the main effect index of ti and can also be referred to as
he average reduction of the total variance of Y when ti is fixed
ver its full distribution range. Another well known variance-
ased sensitivity measure is the total effect sensitivity index [58],
hich can be derived as

ITi =
Et∼i

(
Vti (Y |t∼i)

)
V (Y )

= 1−
Vt∼i

(
Eti (Y |t∼i)

)
V (Y )

. (17)

ere, SITi is the total sensitivity index for ti and Et∼i
(
Vti (Y |t∼i)

)
is the expected reduction in variance that is obtained if all, but ti,
parameters are fixed. The lower value of SITi represents ti which
is less significant. Furthermore, the indices in Eq. (16) satisfy

i SIi +
∑

i
∑

j>i SIij + · · · + SI12...n = 1 and sum of the indices
n Eq. (16a) is greater than or equal to one. In this analysis, if
Ii = SITi then there is no interaction effect between ti and
ther elements of t and model is additive, which, based on the
ssumption of orthogonality of input parameters. If a model is
ot additive then Sobol’s indices can also be used for identifying
he effective dimensions [13].

In summary, SIi as the main effect measures the fractional
ontribution of a single parameter to the output variance. SIij
re used to measure the fractional contribution of parameter
nteractions to the output variance. The total effect, SITi, is more
dequate as its evaluation takes into account the main, second-
rder, and higher-order effects over the entire range of X [58].
herefore, in this work, we focus on evaluating SITi of parameters
ith respect to MIs. However, as shown above, the analytical
valuation of SITi requires solving high-dimensional integrals;
herefore, as explained in Section 2, sampling methods are used.

.4. Sensitivity analysis of multivariate output

MIs of sth-order is a vector quantity composed of multiple
oments invariant vector terms. For instance, MI2 is composed
f one zeroth-order and six second-order moment invariants,
hich create a problem with the multivariate output. The typi-
al Sobol decomposition is obtained for each component of the
odel output, leading to many sensitivity measures for each
utput variable. These sensitivities can be redundant if the corre-
ation in the model output is essential, leading to difficulties in-
erpreting these results. To deal with this problem, two different
lternatives have been proposed in the literature for multivariate
utput, referred to as output decomposition [59] and covariance
ecomposition [31] approaches.

.4.1. Output decomposition method
The output decomposition method was initially proposed by

ampbell et al. [59] and is based on the eigendecomposition of a
et of output variables into a lower-dimensional representation.
herefore, it is primarily suitable for problems involving time
eries output data in which the dimensionality of model output
s extensively high. Since MIs is the QoI in the present case, we
ssume that the elements of the MIs form a moment space from
hich a dataset MI consisting of N ′ samples is constructed as

I =

⎡⎢⎢⎢⎣
MIs

1

MIs
2

...
s

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
MI0 MI21 MI31 . . . MIs1
MI02 MI22 MI32 . . . MIs2
...

...
...

. . .
...

0 2 3 s

⎤⎥⎥⎥⎦ . (18)
MIN ′ MIN ′ MIN ′ MIN ′ . . . MIN ′

7

et C represents covariance matrix of MI defined as

=
1
N ′

MITcMIc, (19)

where MIc is centred matrix obtained by subtracting mean of
each column, µ, of MI, i.e., MIc = MI − µ. Now, to identify the
orthogonal active directions of moment space, the eigenvectors
are computed via their eigenvalue decomposition, which can be
written as

C = WΛWT . (20)

Herein, W = {w1,w2, . . . ,ws} is an [s×s] matrix whose columns
are orthogonal eigenvectors (wk ∈ R1×s), which spans the new
basis to form an eigenspace. Moreover, Λ = diag(λ1, λ2, . . . , λs),
with λi’s being the eigenvalues sorted in descending order λ1 ≥

λ2 ≥ · · · ≥ λs, which represents the variance resolved along the
corresponding eigenvectors. Based on the above decomposition
and the variance-based SA, one can use Lamboni et al.’s [60]
generalised sensitivity indices for multivariate outputs using the
eigenmodes or principal components (DI) obtained with first K
eigenvectors which covers at least 95% of the empirical variance,
i.e., DI = (MI+ µ){W}

K
k=0. The generalised first-order sensitivity

index for the ith variable is defined as

GSIi =
K∑

k=1

λk

V (Y )
SIi,k, (21)

and the generalised total-order sensitivity index for the ith vari-
able is evaluated as

GSITi =
∑
ωi

GSIωi , (22)

where ωi includes all the components in the ANOVA decom-
position with all subscripts including i. SIi,k in Eq. (21) are the
first-order sensitivity indices of the ith variable, evaluated as
in Eq. (16a), on the new orthogonal basis wi,k. Under this new
setting it can be written as

SIi,k =
Vi,k

Vk
, (23)

here Vi,k is the partial variance of the kth eigenmode caused
by the variation in the ith parameter and Vk is equal to the
eigenvalue λk. The generalised sensitivity indices in Eq. (22) give
he significance of the parameters for MIs in the same way as the
ensitivity indices do in the univariate output case in Eq. (17). For
ore details, interested readers should refer to [59,60].

.4.2. Covariance decomposition approach
Gamboa et al. [31] proposed the covariance decomposition ap-

roached, which is based on the Hoeffding–Sobol decomposition
s in Eq. (12). It can be generalised for any arbitrary number of
utput variables,

I = MIr0 +
n∑

i=1

MIri (ti)+
n∑

i=1

n∑
j=i+1

MIrij(ti, tj)+ · · ·

+MIr1,...,n(t1, . . . , tn), r = 1, 2, . . . , s, (24)

hich implies that the covariance matrix of the model output can
e partitioned into a sum of covariance matrices as follows:(
MIs)

= C
(
MI0, . . . ,MIs

)
=

n∑
i=1

Ci
(
MI0, . . . ,MIs

)
+

n∑
i=1

n∑
j=i+1

Ci,j
(
MI0, . . . ,MIs

)
+ · · ·

+ C
(
MI0, . . . ,MIs

)
. (25)
1,2,...,n
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he above equation is equivalent to the decomposition of vari-
nce in Eq. (13) which is used for the scalar output. This im-
lies that the main effect indices can be obtained as SIi =

i/V (M0,0,0) = Ci/C(M0,0,0). Gamboa et al. used this idea to
roject C onto a scalar through multiplication by an identity
atrix and then taking its trace (Tr) as

r
[
C
(
MIs)]

= Tr
[
C
(
MI0, . . . ,MIs

)]
=

n∑
i=1

Tr
[
Ci
(
MI0, . . . ,MIs

)]
+

n∑
i=1

n∑
j=i+1

Tr
[
Ci,j
(
MI0, . . . ,MIs

)]
+

· · · + Tr
[
C1,2,...,n

(
MI0, . . . ,MIs

)]
. (26)

On the basis of the above, the multivariate main effect indices
of the ith variable can be obtained as

GSIi
(
MIs)

=
Tr [Ci]
Tr [C]

, (27)

hile the multivariate total effect sensitivity indices are given as

SITi
(
MIs)

=
Tr [Ci]+

∑n
i=1
∑n

j=i+1 Tr
[
Cij
]
+ · · · + Tr

[
C1,2,...,n

]
Tr [C]

.

(28)

s the trace, Tr [C (MIs)] is equal to the sum of variances of all
lements of MIs in Eq. (26), GSIi can be interpreted as the ex-
ected percentage reduction in the total variance of the outputs,
hich is obtained when variable ti is kept fixed. Garcia-Cabrejo
nd Valocchi [61] also demonstrated that if the covariance of MIs

s fully captured by the first K eigenvectors, then GSIi obtained
rom this method are equal to GSIi from output decomposition
pproach in the previous subsection. We will base our SA us-
ng the covariance decomposition approach in the present case.
nlike in time series data, the dimensionality of moment space
s not extensively high in our case. Furthermore, the covariance
ecomposition approach reduces the possibility of approximation
rror during the dimension reduction and numerical inaccuracies
esulting from using the output decomposition method during
igendecomposition.

.5. Selection of sensitive parameters

After obtaining the sensitivity indices, a subset of the highly
ensitive parameters, whose variation influence significantly the
oI while ignoring those that do not contribute significantly
owards design improvement against QoI. Therefore, only a small
ubset of sensitive parameters are allowed to vary during shape
ptimisation, and others are kept fixed, thereby accelerating the
hape optimisation process. The selection of a subset of sensitive
arameters can be made either based on the available computa-
ional budget [10,13], using a predefined threshold value (such
s ϵ) [62,63] or clustering the parameters into groups of high
nd low sensitive ones based on their sensitivity indices [16,26].
n the first approach, for instance, if only a limited number of
esign evaluations are allowed to be performed during optimi-
ation, then the designer will favour selecting a smaller subset of
nly highly sensitive parameters to achieve maximum possible
esign improvement within the available computational budget.
threshold ϵ is defined based on a statistically significant value

n the second approach. Any parameter with sensitivity indices
reater or equal to ϵ is included in the analysis, and others are
ept fixed. The second approach is more favourable and widely
 t

8

ractised among these three approaches. It provides the subset
f sensitive parameters that are statistically sufficient to redefine
he problem with a smaller set of parameters. However, the
etting of ϵ is important as the smaller value may result in se-
ecting more parameters, and a larger value may form the subset
ontaining fewer sensitive parameters. For complex analyses, ϵ =

.05 is widely used [62]. The influence of ϵ on the selection of
ignificantly sensitive parameters will be analysed in Section 5.

. Test cases

To experimentally demonstrate geometric moments’ capabil-
ty to make an informed decision regarding the parametric sen-
itivity, we use the wave resistance coefficient, Cw , as a physical
riterion. Cw is part of the overall resistance affecting the move-
ent of objects on or near the free surface of oceans, lakes and

ivers. It reflects the energy spend for creating the free-surface
aves following the moving body. Although the overall resistance
f the ship is composed of different components, Cw is a vital
omponent and especially prominent for relatively full hull forms
ravelling at high speeds. It is noteworthy that Cw is highly sensi-
ive to local features of the hull so that a significant reduction
an be achieved without affecting the overall cargo capacity.
imilar to geometric moments, Cw is affected by the distribution
f the hull’s shape, and it can be used as a physics-informed
hape signature. Minimising this resistance at the preliminary
esign stage is crucial, but its evaluation can be computationally
emanding.

.1. Relation of moments with wave resistance coefficient

Our motivation to investigate the utility of moments in SA
or ship design stems from the extensive use of SAC (Sectional
rea Curve) in Computer-Aided Ship Design and Hydrodynamic
nalysis. SAC is a function S(x) of 2D zeroth-order moments
escribing the longitudinal variation of the area of ship sections
elow the waterline. In [64], it is stated: ‘‘A SAC provides an
ffective and simple description of global geometric properties. At
he same time, it is closely related to the resistance and propulsion
erformance of a ship. From this point of view, the ship hull form
istortion approach based on SAC transformation is one of the most
ffective global design methods for the preliminary design stage’’. In
nalogous spirit, [65] stresses that ‘‘geometric properties of SAC
ave a decisive effect on the global hydrodynamic properties of
hips’’. Historically, the importance of SAC in ship design has been
nitiated back in the 1950s with the introduction of Lackenby
ransformation [66] for modifying SAC, which has been further
nriched in the context of modern CAD representations and used
n ship-design optimisation, see, e.g., in [67,68].

Furthermore, linear wave-resistance analysis performed by
minent hydrodynamicists, e.g., E.O. Tuck [69,70], J.V. Wehausen
71], has revealed the importance of the longitudinal rate of
hange of cross-sectional area, i.e., S ′(x), which determines the
trength of the Kelvin-source distribution used to model the dis-
urbance caused by the body as it moves on the sea’s free-surface.
t is worth noticing that the flow around a slender ship moving on
he free surface with a constant velocity can be represented by us-
ng an appropriate source–sink distribution along its centre plane.
he strength of these sources is proportional to the longitudinal
ate of change of the ship’s cross-sectional area [69,71], and this
spect can be well captured by geometric moments, especially
hose of higher order. In fact, an early derivation for the evalua-
ion of Cw for slender ships, known as Vosser’s integral, reveals
xplicit dependence on the longitudinal derivative of the cross-
ectional area [71], i.e., S ′(x) = d

dxS(x) where S(x) =
∫

Ω(x) dydz is
he cross-sectional area, and Ω(x) denotes the cross-section of a
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Fig. 2. Three dimensional CAD geometries of (a) PD and (b) DTMB 5415 hull models used as test cases for the proposed approach.
Fig. 3. Three dimensional design variations of the PD hull (on the left) and DTMB 5415 hull (on the right) generated with 26 and 27 design parameters defined using
PD- and GMF-based parameterisation, respectively. These design variations can also be visualised in a video at https://bit.ly/3BiB9wZ. For PD hull, parameterisation
s performed on the submerged part below the waterline, and for both hull their geometric moments are evaluated for the submerged part.
hip hull at the longitudinal position x. Let now mp =
∫ L
o xpS ′(x)dx

e the p-th order moment of S ′(x) with x = 0 and x = L
orresponding to the stern and bow tips of the hull, respectively.
ssuming that S(0) = S(L) = 0 we get:

p
= −p

∫ L

0
xp−1S(x)dx = −p

∫ L

0

∫
Ω(x)

xp−1dxdydz, (29)

which leads to

mp
= −pMp−1,0,0, (30)

where Mp−1,0,0 is a component of the hull’s geometric moments
vector of order s = p + q + r = p − 1 (see Eq. (2)). Thus, p-
order 1D moments of S ′(x) are directly linked to (p − 1)-order
3D longitudinal moments of the hull. These physics-informed
moments are included in the set of moments used for building
the SSV we use for SA.

4.2. Parametric modellers

To validate our claim regarding geometric moments, we used
two different test cases based on a different type of parameter-
isation, namely Procedural Deformation (PD) [27,72] and Global
Modification Function (GMF) [4]. PD is used for the parameterisa-
tion of the hull shown in Fig. 2(a), which shares some closeness
to the well known KCS1 ship hull model, and shall be referred to
as the PD hull from this point forward in this paper. GMF is used
to parametrise a DTMB 54152 naval ship model (see Fig. 2(b)),
an early and open to the public version of the USS Arleigh Burke
destroyer DDG 51, which is another extensively used benchmark
ship model for shape optimisation problems.

PD creates a high-level parameterisation via coupling free-
form features with control points of the underlying surface rep-
resentation through linear procedural relations. This results in

1 http://www.simman2008.dk/KCS/container.html.
2 http://www.simman2008.dk/5415/combatant.html.
9

a fully feature-driven parameterisation, i.e., each parameter de-
fines and alters a specific feature of the PD hull, such as the
length, width or length of the bulbous bow. This parameteri-
sation provides both local and global shape modification. GMF
is a grid modification approach performed using a shape mod-
ification function based on vector-valued functions defined on
a design grid. These functions are defined with the objective
that during modification, the underlying structure of the de-
sign should be preserved, the design grid used for simulation
to evaluate Cw does not have to regenerate, and a prescribed
degree of similarity should be maintained. However, unlike PD,
the parameterisation obtained from GMF is not feature-driven as
varying a parameter may alter a specific feature and features in
its neighbourhood. Variations of hull designs obtained from both
types of parameterisation are shown in Fig. 3.

4.2.1. Procedural deformation (PD)
Let G be a member of a rich class of objects in an ambient

space A ⊆ R3. The PD-based parametric modeller, P, used in this
work is based on the technique proposed by Kostas et al. [27],
which for any t ∈ X produces a new shape G′ = P(t). In this
case, P(t) is a vector function Rn

→ A that defines the underlying
geometry of G, which corresponds to t = ti, i = 1, 2, . . . , 26. As
the PD in this case adopts the NURBS (Non-Uniform Rational B-
splines) surface representation, P(t) = N(CG(t);Ω), where N :

R2
→ R3 is a vector-valued function that maps each point of the

two dimensional domain, Ω , to a point on the surface bounding
G. Here, CG(t) represents the control cage of G, which maps t onto
the control points of CG. Parameters in t are classified in four
categories, namely global, local, semi-global and shape transition
parameters, providing shape modification of different nature. The
parametric definition on the hull geometry is shown in Fig. 4.

The global parameters, hull length at waterline, beam and
depth, are the most shape influential. Typically, these parameters
are predefined during the design process based on the customer
requirements; therefore, these are kept fixed in our analysis. The
local parameters, such as parameters defining lengths at flat side

https://bit.ly/3BiB9wZ
http://www.simman2008.dk/KCS/container.html
http://www.simman2008.dk/5415/combatant.html
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Fig. 4. Parameterisation of PD hull adopted by the PD-based parametric modeller.
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nd bottom at the aft and forward (t5, t6, t9, t10), bulb bow (t14 -
17), stern (t22 - t24), bilge radius (t4), shaft (t25, t26) dimensions,
tc., affect small areas of the geometry but can cause significant
hanges on Cw [27]. Semi-global parameters affect relatively large
ull areas, such as the length and position of the mid-ship body
t1 and t2). Transition parameters are also local, controlling the
ransition between different sections of the shape, for instance,
he transition from mid-ship to bow (t19). In this case, all these
arameters are defined as

i = t̂i · fi (t1, t2, . . . t26) , t̂ ∈ [0, 1], i = 1, 2, . . . , 26, (31)

here t̂i is the ith non-dimensional version of ti bounded by
0,1] and fi are affine functions of these parameters defining the
rocedural relation and is specified internally by the developer.
uring shape modification, [27] recommends using t̂ for support-
ng robustness by avoiding setting parametric values that would
esult in creating invalid and implausible geometries. Once the
alues of global parameters and t̂ are given, the control cage,
hown in Fig. 4, is automatically constructed. For further details
n the formulation of this parameterisation, interested readers
hould refer to [27].

.2.2. Global modification function (GMF)
Let be given a set of coordinates ζ ∈ G ⊂ Rn, with n = 1, 2, 3,

nd assume that the design variables set t defines a continuous
hape modification vector δ(ζ, t) ∈ Rn̂, with n̂ = 1, 2, 3, which
or any t ∈ X modifies each ζ ∈ G of the baseline shape to a new
hape ζ′ ∈ G′ as
′
= ζ + δ(ζ, t), (32)

here G′ is the modified version of the G. In the present work,
δ(ζ, t) is defined using a recursive combination of n = 27 shape
modification vectors over a hyper-rectangle embedding the demi
hull:

ψi(ζ) : A = [0, Lζ1 ] × [0, Lζ2 ] × [0, Lζ3 ] ∈ R3
−→ R3, (33)

ith i = 1, . . . , n. Specifically,

(ζ, t) = δn, (34)

here

i(ζ, t) = tiψi(ζ), with
{
ζ = ζ + δi−1
δ1 = 0 (35)

he coefficients {ti, i = 1, . . . , n ∈ R} are the design parameters
nd forms a 27-dimensional initial (original) design space X. For
odification the shape functions are defined as

i(ζ) :=
3∏

sin

(
aijπζj

Lζ

+ rij

)
eq(i). (36)
j=1 j

10
In Eq. (36), {aij, j = 1, 2, 3} ∈ R define the degree of the function
along jth axis, {rij, j = 1, 2, 3} ∈ R are the corresponding spatial
hases and {Lζj , j = 1, 2, 3} ∈ R are the hyper-rectangle edge
engths; eq(i) is a unit vector. Modifications are applied along ζ1,
2, or ζ3, with q(i) = 1, 2, or 3 respectively. Details of setting
arameters can be found in [4].
The objective of using two different types of parameterisation

n two different hulls is to see if geometric moment invari-
nts capture the sensitivity of parameters under various design
ettings.

.3. Hydrodynamic solver and setup

Two inviscid solvers are for two ship hulls, both symmetric
ith respect to the xz-plane. For the one hull referred to as the PD
ull model, the PD parameterisation is used, while for the other
ull, referred to in the literature as the DTMB hull, we employ the
MF parameterisation.
PD hull model: Hydrodynamic calculations to estimate Cw for

he PD hull are performed using the Isogeometric Analysis-based
oundary Element Method (IGA-BEM) developed by Belibassakis
t al. [7]. This solver applies the Isogeometric Analysis (IGA) [73]
or solving the boundary integral equation (BIE) associated with
he linearised Neumann–Kelvin formulation for the calculation of
w of ships. The IGA concept is based on exploiting the same
URBS basis used to represent the exact geometry of the hull
or approximating the singularity distribution of the associated
IE, or, in general, the dependent physical quantities. In BIE, the
ependent/unknown variable is the density of Neumann–Kelvin
ources distributed over the hull’s wetted surface, which is accu-
ately represented with parametric NURBS surfaces or a collection
f smoothly joined NURBS patches; referred to as multi-patch
URBS surface. In our case, the PD hull is composed of a signal
ubic NURBS surface with 108 control points, whose iso-mesh is
hown in Fig. 5 and simulation is performed on the unit scaled
right demi-hull.

DTMB hull model: Hydrodynamic simulations of this hull
model are conducted using the code WARP (Wave Resistance
Program), developed at CNR-INM. Cw computations are based
on linear potential flow theory using Dawson (double-model)
linearisation. The frictional resistance is estimated using a flat-
plate approximation based on the local Reynolds number. Details
of equations, numerical implementations, and validation of the
numerical solver are given in [28]. As with the DTMB hull model,
simulations are performed for the demi-hull. Fig. 5(b) shows the
computational grid used for the simulation. The computational
domain for the free-surface is defined within 1Lpp upstream, 3Lpp
downstream, and 1.5Lpp sideways. A total of 75 × 20 grid nodes
are used for the free surface, whereas 90 × 25 nodes are used for
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Fig. 5. Computational grid of (a) PD hull and (b) DTMB 51415 hull used during the simulation for approximation of Cw .
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Table 1
Main particular, test conditions and Cw values of PD hull and DTMB 5415 hull.
Quantity Symbol Unit Value

DTMB hull PD Hull

Volume of displacement ∇ m3 8419.31 5112.56
Wetted surface area S m2 2974.23 2076.56
Length at waterline Lwl m 142.73 100.00
Max beam at waterline Bwl m 19.06 16.25
Draft T m 6.15 4.51
Water density ρ kg/m3 998.50
Kinematic viscosity ν m2/s 1.09E−6
Gravity acceleration g m/s2 9.80
Froude number Fr – 0.25
Wave resistance coefficient Cw – 1.0531E−03 1.0678E−04

the hull discretisation. The main particulars, test conditions and
Cw values for both type hulls are given in Table 1.

. Results and discussion

This section demonstrates the effectiveness of geometric mo-
ent invariants for evaluating parametric sensitivities using var-

ous experiments on the previously described test cases. We first
rovide the results of geometric moment invariants for PD and
TMB hull models and then discuss the Sensitivity Analysis (SA)
esults with respect to Shape-Signature Vector (SSV) and Cw for
oth hull types, along with the correlation between the results.
inally, for both test cases, we present the optimisation results
erformed in the sensitivity spaces evaluated with SSV and Cw .

.1. Moment evaluation

As mentioned before, for any shape satisfying the conditions
entioned in Section 3.2, there exist geometric moments of ar-
itrary order. In this work, we mainly focus on performing SA
ith respect to fourth-order geometric moments invariant to the
ranslation and scaling. This choice results from two facts:

1. Higher-order moments can be sensitive to noise acquisi-
tion [25]. The risk of numerical inaccuracies, specifically
due to the use of finite-precision arithmetics, also increases
as we move towards evaluating high-order moments [23].
Therefore, it could be challenging to include moments of
order greater than 10 as computational complexity in-
creases with the order.

2. Literature review in various application areas, e.g., kinetic
equations [74] and shape retrieval [56], reveals that it is
unlikely to use moments of order higher than 4.

Thus, SSV of order s = 4 (MI4) is used to evaluate the
ensitivity of parameters of both test cases. In MI4, there are
, 6, 10 and 15 components of 0th- 2nd-, 3rd- and 4th-order
11
eometric moments, respectively. The values of these invariants
or two hulls are shown in Table 2. As explained earlier in Sec-
ion 3, all the moment invariants of first-order are zero, while the
eroth-order moment is equal to one due to its scale invariance.
herefore, the effect of sensitivity of parameters in the case of
eroth-order is measured with M0,0,0 instead of MI0,0,0, as M0,0,0

efines the volume of the shape.

.2. Sensitivity analysis of PD hull model

As described earlier, the PD hull is parameterised with 26 pro-
edural parameters, so a 26-dimensional design space is created
hile keeping the baseline hull at the centroid of the design
pace. To commence the SA, the design space is sampled with
′
= 9000 samples using a progressive sampling technique [10,

5]. This sampling technique is based on the space-filling crite-
ion, searching the design space in the class of Latin-Hypercube
o ensure a uniformly distributed and diverse set of samples.
I4 and Cw of designs are evaluated on the basis of the setting

escribed in Sections 3.2 and 4.3, respectively. Afterwards, two
ifferent datasets are created, the first containing the design
arameter values as independent variables and Cw as dependent
ariables. The second dataset is composed of MI4 as depen-
ent variables. Afterwards, Sobol’s global SA for univariate output
s performed to measure the sensitivity of parameters towards
w , and multivariate output Sobol’s analysis with covariance de-
omposition approach is utilised to estimate the parameters’
ensitivity to MI4. In the remainder of this section, we first
iscuss the results on the sensitivity of parameters with respect
o Cw (shown in Fig. 6) and then we present the results of
arameters’ sensitivity measured with respect to the zeroth- to
he fifth-order (shown in Figs. 7 and 8) SSV to observe how
he sensitivity of parameters varies with the increment in the
rder. Finally, we compare the sensitivity indices of parameters
valuated with MI4 and Cw .
To select the set of sensitive parameters, a threshold is set

qual to ϵ = 0.05 [62]. From Fig. 6, it can be seen that in
ase of Cw , 4 out of 26 parameters, t1, t2, t6 and t19, have a
ensitivity index greater than ϵ and thus regarded as the Cw

ensitive parameters. Among these parameters, t1 and t2 have
substantially higher sensitivity index, defining the mid-body

ength and position. These parameters are of semi-global nature
nd have the highest impact on the hull’s shape after the three
lobal parameters, and thus, they significantly affect the variation
f Cw . The next two sensitive parameters, t6 and t19, have a
ensitivity index close to ϵ. Here, t6 is a local parameter, which
odifies the flat-of-side length at the aft of the hull and t19 is

he transition parameter defining the interaction of the bow and
ulb of the hull. These results align with the literature [10] as
arameters associated around the bulbous bow segment of the
ull are known to have a significant influence on C .
w
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Table 2
Geometric moment invariants up to 4th-order evaluated for the PD and DTMB hull models.
Designs M0,0,0 MI2,0,0 MI0,2,0 MI0,0,2 MI1,1,0 MI1,0,1 MI0,1,1 MI0,0,3

DTMB hull 8.4193E+03 2.3151 4.1970E−02 6.9840E−03 0 −2.3789E−02 0 −3.3039E−04
PD hull 5.1126E+03 1.7426 5.7126E−02 5.4962E−03 0 −3.8124E−03 0 −4.7635E−05

MI0,1,2 MI0,2,1 MI0,3,0 MI1,0,2 MI1,1,1 MI1,2,0 MI2,0,1 MI2,1,0

DTMB hull 0 1.0767E−03 0 2.7862E−03 0 −9.0788E−03 2.4529E−03 0
PD hull 0 3.7467E−04 0 −6.2258E−05 0 −4.8513E−03 1.7167E−02 0

Designs MI3,0,0 MI0,0,4 MI0,1,3 MI0,2,2 MI0,3,1 MI0,4,0 MI1,0,3 MI1,1,2

DTMB hull 4.4042E−01 1.3333E−04 0 2.2588E−04 0 3.9970E−03 −8.8414E−04 0
PD hull 1.5272E−01 5.5021E−05 0 3.1210E−04 0 6.7697E−03 −2.8814E−05 0

Designs MI1,2,1 MI1,3,0 MI2,0,2 MI2,1,1 MI2,2,0 MI3,0,1 MI3,1,0 MI4,0,0

DTMB hull −5.5388E−04 0 2.2982E−02 0 6.0453E−02 −2.2388E−01 0 12.3709
PD hull −1.8780E−04 0 9.2384E−03 0 6.3636E−02 −2.3872E−02 0 6.5083
Fig. 6. Sensitivity indices of PD hull’s 26 design parameters obtained using Eq. (17) with respect to Cw .
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The parametric sensitivity indices obtained with SSV are
hown in Fig. 7. We will start the discussion with the results
elated to MI0, which only consists of the zeroth-order moment,
0, i.e., the volume of the submerged part of the hull. In this case,

here are three parameters, t1, t4 and t6, sensitive to MI0. The
eader should recall that, among these parameters, t1 and t6 are
ensitive to Cw , which means that MI0 is able to capture 50% of
he parametric sensitivity to Cw . Obviously, the parameter t1 is
ore sensitive to volume as it modifies the length of the mid-
ody of the hull. However, as the volume does not get affected
y changing the position of the mid-ship, t2, which is a third
ensitive parameter with regards to Cw , has a negligible effect
n MI0. Interestingly, in the case of MI2, similar with respect
o Cw , there are four parameters, t1, t2, t5 and t6, with indices
igher than 0.05 and out of these four sensitive parameters,
hree parameters, t1, t2 and t6, are also sensitive to Cw . Note that
he sensitivity index of t2 is now close to that obtained with
w , which means that MI2 can capture the sensitivity of the
hape caused by varying mid-body position (i.e., the parameter
2). More importantly, the parameters, t1, t2 and t6 are the top
hree most sensitive parameters both with respect to Cw and
I2. The parameter, t5, which is only sensitive to MI2, is local

y definition and modifies the flat-of-side at the forward part of
he hull.

From the results depicted in Fig. 7, it can be seen that via MI2

e are able to capture the sensitivity of not only the semi-global
arameters (t1, t2) but also the sensitivity of the local parameters
t5, t6), which means that in comparison with MI0, MI2 is more
apable of reflecting the sensitivity of parameters with respect
o Cw . For the transition parameter, t19, its sensitivity index has
ncreased, but it is still far from being categorised as sensitive.
12
herefore, geometric moment invariants of higher order may be
equired.

In the case of MI3 and MI4, the sensitive parameters remain
he same as in the case of MI2. However, the sensitivity indices
f almost the entire set of parameters differ from what was
btained with MI0 and MI2. As we moved from MI0 to MI4,
he domination of sensitivity indices of highly sensitive param-
ters (t1, t2) reduces and sensitivity indices of other parameters
ncreases. Primarily, this is prominent for t1, whose sensitivity in-
ices decreases significantly from 0.7625 (MI0) to 0.2889 (MI4).
owever, from MI3 to MI4 sensitivity indices remain similar.
nother essential point to note here is that, when sensitivity
nalyses are performed with MI4, the sensitivity index of tran-
ition parameter t19, which is sensitive with respect to Cw and
s the only parameter that could not be categorised as sensitive
o geometric moments, increases monotonically as 0.0045 (MI0),
.0122 (MI2), 0.0212 (MI3) and 0.0447 (MI4). It can be seen
hat at MI4, the sensitivity index of t19 becomes very close to
ne obtained with Cw . This indicates that as we move towards
igher-order geometric moments, we capture more detailed ge-
metric information of the hull, including its local features. To
urther validate this, we increased the order of SSV from 4 to 5
nd analysed the behaviour of parametric sensitivities with the
nclusion of 5th order moments in SSV (i.e., MI5). It can be seen
rom Fig. 8 that parameters sensitive with respect to MI4 are also
ensitive to MI5. However, the sensitivity indices obtained with
I5 tends to be similar to ones obtained with Cw . Summary of

hese sensitivity results is provided in Table 3.
Note the correlation results discussed above are evaluated at
= 0.05. As stated in Section 3.5, when the value of ϵ changes

he then parameters sensitive to both Cw and MIs change. For
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Fig. 7. Sensitivity indices of PD hull’s 26 design parameters obtained using Eq. (28) with respect to MI0 , MI2 , MI3 and MI4 .
Fig. 8. Sensitivity indices of PD hull’s 26 design parameters obtained with respect to 4th and 5th order SSV (i.e., MI4 and MI5) and wave resistant coefficient
Cw).
Table 3
Sensitive parameters of PD hull with respect to Cw and MIs with s =

/2/3/4/5.
QoI Sensitive parameters NMSE Similarity

Cw t1 , t2 , t6 , t19 – –
MI0 t1 , t4 , t6 0.7399 58%
MI2 t1 , t2 , t5 , t6 0.4822 75%
MI3 t1 , t2 , t5 , t6 0.2221 75%
MI4 t1 , t2 , t5 , t6 0.2146 75%
MI5 t1 , t2 , t5 , t6 0.1856 75%

instance, in Fig. 6, when we set ϵ = 0.1, we will have only
one parameter in the subset of significantly sensitive parameters
and setting ϵ = 0.075/0.05/0.04/0.03 will result in 2/4/4/10
sensitive parameters, respectively, in the final subset. Similarly, in
Fig. 7, when ϵ is equal to 0.04 and 0.05 then parameters sensitive
toMI0 are [t1, t4, t5, t6] and [t1, t4, t6], respectively. In both cases,
[t1, t4] are also sensitive to Cw . So, respectively of the specific
value adopted for ϵ, one can make a good preliminary estimation
of sensitive parameters at a significantly reduced computational
cost. A commonly used threshold value is ϵ = 0.05 [62,63],
pecifically for selecting a subset of significantly sensitive param-
ters to construct a design space of reduced dimension. This is
he value used in this work.

Moreover, as the parametric sensitivities are evaluated based
n SSD [10], we also perform an experiment where the number
f samples is varied against the sensitivity indices of parameters.
ig. 9 show the sensitivity indices of the top 5 sensitive parame-
ers (t1, t2, t4, t5 and t6) evaluated with respect to MI4 versus the
number of samples. It can be seen that sensitivity indices vary as
the sample size increases, especially for parameter t1, which is the
opmost sensitive parameter. However, sensitivity indices reach a
lateau after a sample size equal to 1000, sufficient to reach true
arametric sensitivities.
13
Fig. 9. Plot showing sensitivity indices evaluated with respect to MI4 versus
the number of samples used to perform the geometric moment-dependent
sensitivity analysis.

5.2.1. Metric to measure correlation
To further analyse the effect of sensitivity of parameters with

respect to geometric moments and to compare it versus the
sensitivity indices to that obtained for Cw , we introduce two
metrics as below:

NRMSE =

√∑n
i=1

(
GSITi−SITi

)2
n

max (SIT ) −min (SIT )
(37)

similarity =
SIT · GSIT

∥SIT∥ ∥GSIT∥
=

∑n
i SITi GSITi√∑n SI
√∑n GSI

(38a)
i Ti i Ti
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Fig. 10. Plot showing (a, c) NRMSE and (b, d) similarity values obtained using Eqs. (38) and (37) for MI0 to MI5 and MI0 to MI4 obtained for PD hull.
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here

SITi =
{
1 if SITi ≥ ϵ

0 otherwise,
GSITi =

{
1 if GSITi ≥ ϵ

0 otherwise.
(38b)

The first metric (Eq. (37)) is the normalised root mean squared
error (NRMSE) which works directly on the sensitivity indices
and measures the deviation between the two sets of sensitivity
indices evaluated with Cw (SIT ) and MIs (GSIT ). The second
metric (Eq. (38)) is based on the cosine similarity, bounded be-
tween [0,1], which is used to measure the similarity between the
parameters sensitive to MIs and Cw . The perfect scenario will
be that the parameters sensitive to Cw are also sensitive to MIs

or vice versa. Therefore, we measure the similarity on the two
binary sensitivity vectors evaluated with Cw (SIT ) and MIs (GSIT )
obtained with Eq. (38b). A sensitive parameter, i.e., a parameter
with a sensitivity index greater than or equal to 0.05, gets a score
of one, and an insensitive parameter gets zero. This is preliminary
because we are not interested in the sensitivity indices; instead,
we intend to categorise a parameter as sensitive or insensitive
according to the sensitivity indices using the set threshold, ϵ.

Fig. 10(a, b) and Table 3 depict the NRMSE and similarity
values obtained using Eqs. (37) and (38) for MI0, MI2, MI3,

I4 and MI5. From these figures, it can be seen that NRMSE
achieves its maximum for MI0 and has a steep descent up to

I3. There is no significant difference between NRMSE of MI3

nd MI4; however, it reduces slightly from 0.2146 to 0.1856
when sensitivity analyses are performed with MI4 and MI5.
his is an apparent behaviour occurring as we increase the order
f SSV by adding high-order geometric moments. The sensitivity
ndices of the parameters become closer to the sensitivity indices
btained with Cw . As mentioned earlier, sensitive parameters
dentified by MI2, MI3, MI4 and MI5 are the same, i.e., in
ll three cases, there is a 0.75 (or 75%) similarity between the
ensitive parameters of SSVs and Cw . This shows that adding
igher-order moments to SSV can better capture the parametric
ensitivities; however, the improvement is marginal.
So far, we have measured the sensitivity of the parameters

sing MIs, which contains all the geometric moments from up to
th-order. The question arises what would be the result if we use
eometric moment invariants of a particular order to perform SA,
.e., if we measure sensitivity to MIs which contains the moments
f sth-order only. The results of this experiment are shown in
erms of NRMSE and similarity in Fig. 10(c) and (d), respectively.
t M0, NRMSE is the highest, and similarity is the lowest. These
alues are equal to the case when MI0 is used as MI0

= M0

ue to the reason mentioned earlier in Section 3.2. When MI2 is
used to measure the sensitivity of the parameters, interestingly,
NRMSE is lower than MI2, and both have the same similarity to
the sensitive parameters of Cw . Similarly, NRMSE obtained with
MI3 is lower than the MI3; however, the similarity with sensitive
parameters of C is only 57%, which is the same when MI0 is
w c

14
Table 4
Local and transition sensitive parameters of PD hull with respect to Cw and
MI4 .
QoI Sensitive parameters NMSE Similarity

Cw t5 , t6 , t7 , t13 , t16 , t19 – –
MI4 t5 , t6 , t13 , t16 , t19 0.1296 91%

used. The NRMSE of sensitivity indices obtained with MI4 and
w is 0.3103, which is higher than the ones obtained with MI3

nd MI4; nevertheless, the similarity is the same as MI4. These
esults show fluctuations in the sensitivity indices when only MIs
re used. This is because for geometric moments to be used as a
hape descriptor, the SSV should be composed of all the geometric
oments up to a specific order [23].

.2.2. Sensitivity analysis while excluding most dominating sensitive
arameters
In this section we have so far observed that parameters t1

nd t2 are the most sensitive parameters to Cw , MI2, MI3 and
I4, which, as indicated in Section 4.2.1, are semi-global in

ature when it comes to their high impact on shape modification.
herefore, it will be interesting to see if we exclude (i.e., keep
hem fixed) these parameters and perform SA on the remaining
4 parameters with respect to MI4 and Cw . The results of this
xperimentation are shown in Fig. 11(a).
There is a couple of noteworthy remarks regarding these re-

ults. First of all, there are six and five parameters, [t5, t6, t7, t13,
16, t19] and [t5, t6, t13, t16, t19] sensitive to Cw and MI4, respec-
ively, with ϵ ≥ 0.05. In the case of Cw , parameter, t19, is the most
ensitive one, followed by t6. Note that out of these parameters,
6 and t19, are also sensitive when SA is performed with all 26
arameters; see in Fig. 7 and Table 4. It is noteworthy that in
his case, t19 is a third sensitive parameter to MI4 and unlike the
esults in Fig. 7, it has significant sensitivity with the index value
lose to that of t5 and t6. Furthermore, apart from parameter t7,
ll the remaining parameters sensitive to MI4 are also sensitive
o Cw . Therefore, there is a high degree of similarity between
ensitive parameters obtained with both quantities with similar-
ty values equal to 0.9129 (91.29%) and NRMSE equal to 0.1296.
his shows that by identifying more sensitive parameters with
SV, one can also fix the most dominating sensitive parameters
nd re-perform the sensitivity study as the computational cost of
valuating the moments is significantly less than evaluating Cw .

.3. Sensitivity analysis for shape with simple geometry

As stated earlier in this section, selecting the order of SSV is
nfluenced by the nature of problems’ physics and geometry. It
s reasonable to expect that for a simple geometry with fewer
omplex features, lower-order SSV would be sufficient for SA.
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o analyse this effect, we perform SA only for the parameters
t14, t15, t16, t17] associated with the width, length, height and
ip height of PD hull’s bulbous bow. Compared to the overall
ull form, the geometry of the bulbous bow is simple (mainly of
lliptical type) but critical from the physical point of view. Sensi-
ivity analyses are performed to measure the sensitivity of these
arameters with respect to Cw and SSV, MIs with s = 0/2/3/4
hile fixing other parameters. The results of this experimentation
re shown in Fig. 11(b). It can be seen that parameters [t16, t17]
ensitive to Cw with sensitivity indices greater than ϵ = 0.05, are
lso sensitive to SSV of all orders. However, for MI0, the indices
f t16 and t17 deviate largely from what obtained with respect to
w . As order increases, the index of t16 increases whereas index
f t17 decreases; getting closer to indices obtained with Cw . There
s no significant difference between sensitivity indices obtained
ith respect to MI2, MI3 and MI4. Interestingly, in the case
f MI2, MI3 and MI4, the sensitivity ranking of parameters is
he same as obtained via Cw; thus, it gives similarity equal to
.0000 (100%). The results of this experiment reveal that in the
ase of simple geometry, geometric moments of lower order are
nough to capture parametric sensitivities associated with the
ocal features of the hull.

.4. Sensitivity analysis of DTMB hull model

As in the case of the PD hull, SA for the parameters of the
TMB hull commences with a 27-dimensional design space,
hich was sampled to create a dataset consisting of N ′

= 9000
amples. First, SA is performed to measure the sensitivity of
arameters with respect to Cw , which is evaluated using the
otential flow solver as described in Section 4.3. Afterwards,
he covariance decomposition approach, along with Sobol’s SA,
s used to evaluate generalised total sensitivity indices for the
arameters with respect to MI0, MI2, MI3 and MI4. As the
bjective here is to preliminary evaluate the parametric sensitiv-
ty using geometric moments, we first analyse results in terms
f NRMSE and similarity, which are shown in Fig. 12(a) and (b),
espectively. These results exhibit similar behaviour as the results
n the case of the PD hull shown in Fig. 10(a) and (b). NMSE
btained with sensitivity indices of Cw and MI0 is the highest
nd decreases steadily up to MI4, with similar values when SA
s performed with MI2 and MI3. Likewise, with the increase in
he order of SSV, the similarity between the sensitive parameters
btained using Cw and geometric moments increases gradually
rom 0.1690 (16.90%) (evaluated with MI0) to 0.7715 (77.15%)
evaluated with MI4). One should recall that in the previous test
ase, the similarity value of 0.75 was consistent for MI2, MI3

nd MI4, i.e., 75% of parameters sensitive to Cw were identified.
owever, in this test case, MI2 could only identify 66.81% of
he parameters sensitive to Cw . Nevertheless, the similarity value
chieved with MI4 for this test case is slightly higher than what
as obtained for the PD Hull. This shows that also in this test
15
Table 5
Sensitive parameters of DTMB hull with respect to Cw and MIs with s =

/2/3/4.
QoI Sensitive parameters NMSE Similarity

Cw t4 , t8 , t14 , t15 , t17 , t22 , t26 – –
MI0 t9 , t22 , t23 , t25 , t26 0.3984 17%
MI2 t3 , t4 , t8 , t9 t14 , t15 , t24 , t26 0.1964 69%
MI3 t4 , t8 , t9 t14 , t15 , t22 , t26 0.1868 77%
MI4 t4 , t8 , t9 t14 , t15 , t22 , t26 0.1366 77%

case, MI4 achieves the highest similarity and lowest NRMSE to
sensitivity indices of Cw , whereas MI0 shows the least similarity
and highest NMSE. In conclusion, even for a test case like DTMB,
whose parameterisation is not feature-driven, geometric mo-
ments can still significantly capture the sensitivity of parameters
associated with physics. Summary of above discussed sensitivity
results is provided in Table 5.

Fig. 12(c) shows the sensitivity indices of the 27 design pa-
rameters obtained with respect to Cw and MI4. It can be seen
that for Cw , 7 out of the 24 parameters, [t4, t8, t14, t15, t17, t22,
26], have a sensitivity index greater than ϵ and thus can be
egarded as the most sensitive parameters with respect to Cw .
mong these parameters, t14, t8 and t15 have substantially high
ensitivity index while t17, t22 and t26 have a sensitivity index
lose to ϵ = 0.05. In case of MI4, there are 6 parameters, [t4,
8, t9 t14, t15, t22, t26], with sensitivity index higher than 0.05.
t is interesting to note that, except parameter t9, parameters
ensitive to MI4 are also sensitive to Cw . More importantly, the
arameters, t4, t14, t8 and t15, are the top 4 sensitive parameters
ith respect to both Cw and MI4.

.5. Composite geometric moment invariants

For complex geometries containing many features, SSV may
equire to include high-order geometric moments to capture
etailed information about the shape, mainly associated with
ocal intrinsic features. However, as mentioned earlier, higher-
rder moments are sensitive to noise. Therefore, instead of eval-
ating higher-order geometric moments for capturing detailed
eatures, one may decompose the geometry into smaller seg-
ents whose geometries are simple enough to be represented
asily with lower-order geometric moments. This will create a
omposite-Shape-Signature Vector containing the geometric mo-
ent invariants up to sth-order for all shape segments and then
se it to perform SA. In this connection, we shall henceforth refer
o composite MIs versus the global MIs used in the previous
ection.
The segmentation of ship hulls used as test cases in the present

ork is shown in Fig. 13. Both hulls are divided into four parts:
ow (bulbous bow for the PD hull and sonor dome for the DTMB
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Fig. 12. Plot showing (a) NRMSE and (b) sensitivity values obtained using Eqs. (38) and (37) for MI0 to MI4 obtained for DTMB hull. (c) Sensitivity indices of
TMB hull’s 27 design parameters obtained using Eqs. (17) and (28) with respect to Cw and MI4 , respectively.
s
Fig. 13. Shape segmentation of PD and DTMB hulls used for sensitivity analysis performed with composite MI .

c

ull), forward, mid-body, and aft segments. This segmentation is
elatively easy for ship hulls and widely adopted in the literature.
owever, for other shapes, one can perform the segmentation
ased on the visible features or use an automatic segmentation
ethod similar to one presented in [76]. After the segmentation,
I4 is evaluated, and the multivariate SA is performed, whose

ensitivity results, along with Cw , are shown in Figs. 14 and 15
or PD hull and DTMB hull, respectively. The set of sensitive
arameters of both hulls with respect to composite-MI4 are
rovided in Table 6. We shall first comment on the sensitivity
esults of the PD hull obtained with composite MI4 and compare
hem with the sensitivity results of global MI4 evaluated for the
ntire shape, given in Fig. 7. In this case, sensitivity results for Cw

re the same as previously presented; however, the sensitivity
f parameters to geometric moments changes due to the usage
f composite MI4. From these results it can be seen that there
re five parameters, [t1, t2, t5, t6, t19], sensitive to composite MI4

here, apart from t19, the four remaining parameters are also
ensitive with respect to global MI4. One should recall that in
ig. 7, t19 is the only parameter sensitive with respect to Cw

ut insensitive to global MI4. However, it is noteworthy that in
he case of composite MI4, this parameter is sensitive with a
ubstantial increment in its sensitivity index value. This results
n the decline in NRMSE from 0.2145 (obtained with global MI4)
o 0.1661 (obtained with composite MI4) and increment in sim-
larity from 0.75 (75%) to 0.8944 (89.44%). Moreover, in the case
f composite MI4, the first two sensitive parameters have the
ame ranking as the ranking obtained with Cw . This again shows
he usability of geometric moments to perform reliable global SA.

Similar to the PD hull, interesting and improved results
shown in Fig. 15) are obtained when SA are performed for DTMB
ull with composite MI4. In this case, instead of 7 we have 6
ensitive parameters, [t4, t8, t14, t15, t22, t26]. All the parameters
ensitive to composite MI4 are also sensitive with respect to Cw .
urthermore, now the similarity between two sets of sensitive
arameters increases from 0.7715 (77.15%) to 0.9258 (92.58%)
nd only one parameter, t17, could not be categorised sensitive
ith respect to the composite MI4. The parameters t9 and t24 are
ensitive with respect to global MI4 and insensitive with respect
o composite MI4 with significant reduction in their sensitivity
ndices. Furthermore, the parameter t is sensitive with respect
22

16
Table 6
Sensitive parameters of PD and DTMB hulls with respect to composite-MI4 .
QoI Sensitive parameters NMSE Similarity

PD hull
Composite-MI4 t1 , t2 , t5 , t6 , t19 0.1661 89%

DTMB hull

Composite-MI4 t4 , t8 , t14 , t15 , t22 , t26 0.1301 93%

to compositeMI4 and Cw , but is insensitive with respect to global
MI4 (see results in Fig. 12(c)). Therefore, NRMSE reduces from
0.1366 to 0.1301.

5.6. Selection of SSV’s order to commence SA

From the above experimentation, it can be concluded that
selecting the right order of SSV can be based on the complexity
of the shape’s geometry. For a geometry with fewer complex
features, it would be sufficient to work with lower-order SSV,
e.g., of order 2 or 3. On the contrary, complex geometries with
many features may require SSV to include high-order geometric
moments (e.g., of order ≥ 4) to capture detailed information
about the shape, mainly associated with local intrinsic features.
However, the higher-order moments can be sensitive to noise
acquisition [25]. Therefore, instead of evaluating higher-order
geometric moments for capturing detailed features, one could
decompose the geometry into smaller segments whose geome-
tries are simple enough to be represented easily with lower-order
SSV. As a rule of thumb, we recommend using 4th-order global-
SSV for a simple geometry and 4th-order composite-SSV for complex
geometry with many features. This is also supported by the fact
that various application areas, e.g., kinetic equations [74] and
shape retrieval [56], use geometric moments up to the order of 4
and as shown in Section 5.2, with SSV of order higher than 4 only
a marginal improvement can be excepted. The above discussion
on the selection of the right order of SSV in relation to geometry
complexity also aligns with the result of experiments performed
in Sections 5.2 and 5.3. For instance, in the case of PD hull, only
composite-SSV could categorise parameter, t19, related to local
feature like bulbous bow as sensitive; see Figs. 7, 8 and 14 for
omparison. In contrast, for a bulbous bow, whose geometry type
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Fig. 14. Sensitivity indices of PD hull’s 26 design parameters obtained using Eqs. (17) and (28) with respect to Cw and composite MI4 , respectively.
Fig. 15. Sensitivity indices of DTMB hull’s 27 design parameters obtained using Eqs. (17) and (28) with respect to Cw and composite MI4 , respectively.
a

s simple compared to the overall hull form, the global-SSV of
nd-order was enough to capture the parametric sensitives; see
ig. 11(b).

.7. Summary of sensitivity results

Before proceeding to the last part of this section, which will
xploit our SA approach for shape optimisation, we offer the
eader a summary of the sensitivity results obtained:

1. For both the PD and DTMB hulls, the NRMSE between
sensitivity indices evaluated with respect to Cw and MIs

reduces with the increment in s.
2. Similarity between the parameter sensitivities with respect

to Cw and MIs increases with respect to s up to s = 3 but
no significant improvement is observed when s = 4.

3. In comparison to global MIs, the composite MIs captures
better parametric sensitivities.

4. The results in Figs. 7 and 11 show that out of the 26
parameters that control the parametric modeller of PD,
7/8 parameters are significantly sensitive with respect to
MI4/Cw , respectively (see Table 7).

5. A similar behaviour is observed from Figs. 12 and 15 for
the DTMB hull: 7/6 parameters out of the 27 parameters
are sensitive with respect to MI4/Cw , respectively (see
Table 7).

6. The similarity between the subsets of significantly sensitive
parameters with respect to Cw and MI4 is 79.06% for the
PD hull and 92.58% for the DTMB hull.

7. In the case of PD (DTMB) hull, the SA with respect to
MI4 helps to achieve a 73.08% (74.07%) reduction in the
dimension of the design space.
17
Table 7
Summary of the sensitivity analysis results obtained from the previously
discussed experimentation.

Sensitive parameters Similarity

With respect to Cw

PD hull t1, t2, t5, t6, t7, t13, t16, t19 –
DTMB hull t4, t8, t14, t15, t22, t26 –

With respect to MI4

PD hull t1, t2, t5, t6, t13, t16, t19 79.06%
DTMB hull t4, t8, t14, t15, t17, t22, t26 92.58%

5.8. Shape optimisation

One of the key objectives of extracting parametric sensitivities
is to achieve rapid design improvements already at the prelim-
inary stage of shape optimisation. In this connection, once the
subset tMI of parameters sensitive to MI4 is selected from the
original parametric set t, we use them to construct a design space
XMI of lower dimension to expedite the shape optimisation
performed against physical QoI, i.e., Cw . For the PD and DTMB
hulls, their sensitive parameters tMI = {t1, t2, t5, t6, t13, t16, t19}
nd tMI = {t4, t8, t14, t15, t17, t22, t26} create two 7-dimensional

design spaces (XMI). As stated earlier that typically parametric
sensitivities are learnt directly with physical QoI, which can be
extensively computational demanding due to the need of per-
forming physical analysis for both SA and shape optimisation.
To experimentally prove the potential of moments for learn-
ing parametric sensitivities to aid optimisation, we construct
a reduced-dimension design space Xcw with the subset tcw of
parameters sensitive to Cw . The shape optimisation is performed
in X and X with an objective to minimise their C .
MI cw w
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Fig. 16. Plot showing Cw versus optimisation iterations performed to optimise (a) PD and (b) DTMB hulls in XMI and Xcw .
Table 8
Cw values of optimal designs obtained when optimisation is performed in XMI and Xcw for PD and DTMB hulls.
Runs Cw

#1 #2 #3 #4 #5 Average STD

Design space PD hull

XMI 1.0328E−07 1.0395E−07 1.0244E−07 1.0205E−07 1.0505E−07 1.0335E−07 1.2013e−09
Xcw 1.0304E−07 1.0318E−07 1.0355E−07 1.0303E−07 1.0302E−07 1.0316E−07 2.2546e−10

DTMB hull

XMI 5.0809E−04 5.0945E−04 5.1097E−04 5.0314E−04 5.1419E−04 5.0917E−04 3.6349E−06
Xcw 5.0455E−04 5.0455E−04 5.0269E−04 5.0616E−04 5.0440E−04 5.0447E−04 1.09891E−06
The parametric modellers [4,27] used in this work ensure the
eneration of valid geometries, i.e., the possibility of generating
isjoint and self-intersecting surfaces is negligible. However, a
alid geometry may be unrealistic or impractical; therefore, our
ptimisation in Eq. (1) can be reformulated based on the set of

design constraints as:

Optimisation:
Find t∗MI ∈ Rm such that

Cw(t∗MI) = min
tMI∈XMI

Cw(t∗MI)

subject to 0.95V0 ≤ V (tMI) ≤ 1.05V0,

0.95Bwl0 ≤ Bwl(tMI) ≤ 1.05Bwl0,
Lwl(tMI) = Lwl0,
T (tMI) = T0.

(39)

Here, tMI is a subset of sensitive parameters obtained with
respect to moment and XMI is the corresponding design space,
whose dimension is less than the original space (X). V , BWL, LWL, T
correspond to volume, length and beam at the waterline, and
draft, respectively. The sub-index (·0) indicates the quantity val-
ues for the baseline hull design. These constraints focus on ex-
ploring an optimal design whose key features reside in the vicin-
ity of the baseline design. Therefore, the resulting optimal design
is considered practical as the baseline design.

The optimisation is performed using the Jaya Algorithm (JA)
[77], with the objective to minimise Cw . JA is a simple yet effective
stochastic meta-heuristic optimisation technique whose perfor-
mance has been proven in various engineering applications. JA
may provide different results in each run; therefore, five different
optimisation runs are performed in the present work. In each
run, a total of 150 iterations are conducted. Table 8 shows the
Cw values obtained at the 150th iteration of shape optimisation
performed in Xcw and XMI) for PD and DTMB hulls, along with
the average Cw in all five runs. From this table, it can be seen
that in the case of the PD hull, the best design is obtained at
the fourth and fifth run from XMI and Xcw with Cw equal to
1.0205E−07 and 1.0302E−07, respectively. Fig. 16(a) shows Cw

values in all 150 iterations for these two runs. It is noteworthy
18
that the optimal design obtained from XMI has better performed
(i.e., its Cw value is less) compared to the design obtained from
Xcw . However, on average, the Cw obtained from XMI with fives
run at their 150th iteration is slightly higher, with Cw equal to
1.0335E−07, compared to the design obtained from Xcw , which
is equal to 1.0316E−07. The optimal designs obtained for the
PD hull from this shape optimisation experiment are shown in
Fig. 17. Fig. 17(a) and (b) compare the baseline and optimal de-
signs obtained from XMI and Xcw in terms of their cross-sections
(bodyplan) while Fig. 17(c) show this comparison between the
two optimal designs.

Fig. 17(d–f) show the intensity of deviation between the fea-
tures of these designs as a heat map plotted using the one-sided
Hausdorff Distance (Hd) between two objects and features with
maximum deviation (Hd = 1) are highlighted in red. Similar
features are highlighted in dark blue when Hd = 0. From these
results, it can be seen that the design optimised from Xcw has
maximum deviation at the forward part of the hull, and the
design optimised from XMI show maximum deviation from the
baseline design at the aft segment. These slight geometric dis-
similarities between the two optimised hulls (see Fig. 17(c) and
(f)) are due to the existence of one extra parameter (t7) in tcw ,
which, as shown in Fig. 4, modifies the rise of the forward part
of hull’s flat-of-side. Nevertheless, in terms of performance, there
is no significant difference between two hulls; i.e., the Cw of
optimised hulls in Fig. 17(a) and (b) obtained with tcw and tMI
is 1.2976E−07 and 1.0328E−07, respectively. The Cw value of the
baseline PD hull (shown in Fig. 2(a)) is 1.07E−04, which is higher
than the optimal designs obtained from both sensitive design
spaces. This shows that one can achieve significant improvement
in the design using sensitive parameters only.

Fig. 16(b) shows the Cw values over 150 iterations during the
fourth and fifth optimisation run for the DTMB hull performed
in XMI and Xcw created for DTMB hull. From the results in
Fig. 16(b) and Table 8 it can be seen that, like in the case of
PD hull, the optimal design obtained in XMI has also lower
Cw value compared to the design obtained from Xcw . These val-
ues are notably less than that of the baseline design of DTBM
hull in Fig. 2(b), which is equal to 1.05E−03. Moreover, for this
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Fig. 17. Comparison between the baseline and optimised PD hulls obtained from XMI/Xcw in terms of (a)/(b) bodyplans and (d)/(e) one-sided Hausdorff Distance,
respectively. Similar comparison between optimised designs of Xcw and XMI in terms of (c) bodyplans and (f) one-sided Hausdorff Distance. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 18. Comparison between the baseline and optimised DTMB hulls obtained from XMI/Xcw in terms of (a)/(b) bodyplans and (d)/(e) one-sided Hausdorff Distance,
espectively. Similar comparison between optimised designs of Xcw and XMI in terms of (c) bodyplans and (f) one-sided Hausdorff Distance.
ull, the average Cw value of five optimisation runs, shown in
able 8, is 5.0917E−04 when optimisation is performed in XMI,
hich, unlike the case of PD hull, is slightly higher then average

w (equal to 5.0447E−04) obtained from Xcw . The percentage
ifference between the two values is 0.92%, which is negligible.
he comparison between the optimal and baseline design of the
TMB hull is shown in Fig. 18 in terms of the bodyplan and

the Hausdorff distance heat map. The map in Fig. 18(d) shows
that in the case of XMI the maximum deviation of the optimal
19
design from the baseline occurs close to the waterline at the mid-
body segment of the hull. In contrast, the design optimised from
Xcw deviates notably from the baseline design at the forward
segment close to the entrance of the hull; Fig. 18(e). On the
other hand, comparing the two optimised in Fig. 18(c) and (f)
one can observe a similar behaviour as the PD hull in terms of
geometric variation. For the DTMB hull, parameters sensitive to
Cw and MI4 are tMI = {t4, t8, t14, t15, t17, t22, t26} and tcw =

{t4, t8, t14, t15, t22, t26} and again, apart from t17, parameters sen-
sitive to both sets are the same. However, geometric variation
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Table 9
Cw values and the percentage improvement in baseline design of PD and DTMB hulls made when shape optimisation is performed
in sensitive ((XMI and Xcw )) and original (X) design spaces.

Baseline design Design from Xcw Design from XMI Design from X
PD hull

Cw 1.0678E−04 1.0302E−07 1.0205E−07 1.05081E−07

DTMB hull

Cw 1.0531E−03 5.0269E−04 5.0314E−04 8.9218E−05
between two optimised DTMB hulls is slightly higher compared
to PD hulls. However, despite the design difference both opti-
mised designs have similar performance, e.g., their Cw is equal
o 5.0269E−04 and 5.0314E−04.

The above results indicate that for both PD and DTMB hulls,
he optimal designs obtained from XMI and Xcw have similar
erformance in terms of the wave resistance Cw . Even with only
even sensitive parameters for the PD hull and six sensitive
arameters for the DTMB hull in XMI, a substantial improvement
s made versus the baseline designs in terms of Cw . Table 9
summarises Cw values of the parent and optimal designs obtained
from sensitive (XMI and Xcw ) and original (X) design spaces. This
shows that the biggest improvement for the PD hull is achieved
when shape optimisation is performed with sensitive parameters
instead of using the entire set of 26 design space parameters.
These impaired optimisation results obtained from X can be
ttributed to its high dimensionality. As X is 27-dimensional for
he PD hull, optimisation exhibits slow convergence, requiring
ore design evaluations, which results in a higher computational
ost. Furthermore, more than half of the improvement made to
he DTMB design achieved with a full set of 27 design parameters
f the DTMB hull is contributed by only six parameters sensitive
o MI4.

.9. Computational cost

The computational cost to perform SA to geometric moments
s glaringly less than performing SA with Xcw and XMI. On a
C with Intel(R) Xeon(R) Gold 6226 CPU with 2.70 GHz and
.69 GHz processors and 128 GB of memory on average, it takes
1.552 and 9.039 s to evaluate the fourth-order shape-signature
ector (MI4) for the PD and DTMB hull geometries composed
f triangulated meshes with 1,968,835 and 2,512,886 vertices,
espectively. For the PD and DTMB hulls, IGA-BEM and potential
low solvers take approximately 86.505 and 69.297 s to evaluate
w . Consequently, for the PD hull, the overall computational
ost for performing SA with respect to global MI4 and Cw is
29.0154 and 216.2701 h, respectively. Similarly, the computa-
tional cost for performing SA for DTMB hull with respect to Cw

is also significantly high. Therefore, this proves that performing
SA via geometric moments can provide a prior estimation of the
parameters’ sensitivity with extensively reduced computational
cost.

5.10. Limitation of geometric moment invariants for sensitivity anal-
ysis

So far, in this section, we have demonstrated that SSV com-
posed of geometric moment invariants up to fourth-order are
capable of revealing parametric sensitivities for both test cases.
However, despite their usefulness to expedite SA, moments can
only be used for physical quantities, with tight coupling with
the geometry, such as Cw . In general, an experienced designer/
engineer can easily identify the dependence of a physical quantity
on geometry, thereby on moments. Therefore, one can make a
technically sound judgement on using geometric moments to
20
preliminary drive the sensitivity of the parameters for their prob-
lem. Our use of geometric moments is based on the fact that, like
most physical quantities, moments are sensitive to the variation
of shape features, and the sensitive parameters are those with
a high effect on the shape and thus on the associated physics.
However, it is not unlikely that some parameters may have a high
impact on the shape but a negligible impact on the physics in
a design problem. In that case, one may require SSV composed
of geometric moments of higher than fourth-order. For these
reasons, moments may not be able to scale well versus other
physical quantities as they did in the present case, especially for
black-box problems or problems with no strong dependence of
physical QoI on moments, such as it is the case of frictional resis-
tance of the hull. Thus, a good understanding of the underlying
physics is necessary to perform a geometric-moment dependent
SA. In addition, moments can only be used for the SA of 2D/3D
design problems. In contrast, SA is also widely used in the con-
text of numerical problems with no geometrical objects/domains
like [16,46].

Nevertheless, there exist a wide variety of problems [6,20,21,
23–25,50] for which performing geometric-moment dependent
SA can be very beneficial to reduce the computational cost of
working directly with the physics. Moreover, as discussed in
Section 4, our methodology is based on two pillars:

• The collocation BEM for Fredholm Boundary Integral Equa-
tions (BIE) of the second type, used for formulating and
solving the elliptical exterior boundary-value problem (BVP)
associated with the chosen QoI. Along with the Galerkin
Finite-Element Method (FEM), collocation BEM provides a
standard weak formulation for solving various problems in
continuum mechanics and is especially suitable for BVP’s
defined on infinite domains, which is exactly the case for
the wave-resistance problem.

• A pair of parametric modellers (PD [27] and DTMB [4]), ca-
pable to parametrise in robust and efficient manner complex
free-form objects.

Based on the above remarks, we believe that the proposed ap-
proach can be applied to a broader class of shape optimisation
problems that can be modelled via BIE on free-form geometries.
Even if there is no strong connection of physics under consid-
eration with geometric moments, they can at least capture the
sensitivity of parameters to shape variation in a pure geometrical
setting. This can be very useful at the preliminary stage design
stage of constructing a parametric model, where the decision on
type and dimensionality of parameterisation is made based on the
effect a parameter can have on the original shape. This is related
to the previously mentioned fact that designers are interested
in parameterisation at the initial design stage, which can deliver
the highest variability possible. This is especially of interest for
parametric generative design [78,79].

Despite the limitations mentioned above, the results presented
herein support the assertion that at least in the field of naval
architecture, ocean and marine engineering, where these tech-
niques are widely used, the proposed approach constitutes a valu-
able contribution. Furthermore, our end aim is to find a class of
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esign problems specifically in maritime and aeronautical fields,
here these approaches are extensively used and ultimately, to
rigger an interest in the research community towards exploring
uch physics-correlated but computationally inexpensive quan-
ities to perform SA as a priori for identifying the sensitivity of
arameters.

. Conclusion and future works

This work describes our quest to support computationally
emanding physical models with the aid of efficient geometric
uantities such as geometric moments and their invariants. Using
uch geometric quantities, we proposed a method to expedite
ensitivity Analysis (SA) in the context of shape optimisation of
D free-form shapes such as ship hulls. Our choice of geometric
oments is based on the fact that they are intrinsic properties
f solid shapes’ underlying geometry that can provide essential
esign indications to facilitate designers in CAD. The set of geo-
etric moment invariants up to particular order can also be used

o create a shape-signature vector, which approximates the shape
s order increases. Moreover, computing geometric moments is
lso vital for physics-based simulations that help in improving
ealism in physical animations. To prove that geometric moments
an benefit designers as a prior check on the sensitivity of param-
ters, we utilised wave-resistance coefficient (Cw) as a physical
uantity, as it is a crucial design consideration for a ship hull
esign towards improving efficiency and thus decreasing Fuel Oil
onsumption. The distribution of the hulls’ geometry, especially
ongitudinally, has a similar impact on geometric moments as
w . To validate our claim, we utilised two different hull mod-
ls, PD and DTMB hulls, which are constructed, parameterised
nd physically evaluated with two different approaches. Various
xperiments are performed with varying degrees of both global
nd composite shape-signature vectors and Cw to experimentally
uantify the degree of similarity between the parameters sen-
itive to these quantities. The results from these experiments
evealed a good correlation between the sensitive parameters
btained from the fourth-order composite shape-signature vec-
ors (MIs) and Cw . In the case of the PD hull, seven parameters
ensitive to MI4 are also among the 8 parameters sensitive to
w . Interestingly, similar results are obtained for the DTMB hull,
here 6 out of 7 sensitive parameters to Cw are also sensitive to
I4. Afterwards, two different design spaces are constructed for

oth hull models, one with sensitive parameters obtained with Cw

nd the other with MIs. Shape optimisation is performed in both
paces performed via a meta-heuristic optimisation approach.
inal optimisation results showed that the design generated from
esign space constructed with sensitive parameters of Cw and
I4 for both types of hulls offer similar performance; however,

nterestingly, the optimal hull designs from MI4 have sightly
etter performance.
In future work, our prime aim is to explore other computation-

lly demanding engineering design problems for which geometric
oments can aid parametric analysis, specifically intra-sensitivity
nalysis [10]. Moreover, we are also interested in exploring other
hape integral properties along with their usage to support sur-
ogate and reduced-order modelling, specifically in the context of
hysics-informed learning [14].
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Appendix. Moment computation

To start the computation of geometric moments of G, let be
given a vector field f : Rn

→ R3 over V, whose boundary is
iece-wise smooth surfaces. The divergence theorem states that
he volume integral of the divergence (div) of f over V equals the
surface integral of the normal component n̂ of f over triangulation
S, which can be formalised as

div(f) =
∑ ∂ fi

∂ti
(A.1)∫

V
div(f) dV =

∫
S
f · n̂ dS. (A.2)

With Eq. (A.2) we convert the volume integrals, which are
ifficult to evaluate, into surface integrals that are easy to eval-
ate over S. However, this theorem is only applicable if f is
ontinuous and have continuous first partial derivatives in the
egion containing V. To evaluate moments using this theorem,
onsider the following field:

=
1
3
xp yq zr

(
x

p+ 1
ı̂+

y
q+ 1

ȷ̂+
z

r + 1
k̂
)

. (A.3)

nd thus

p,q,r (G) =
∫
V
div(f) dV =

N∑
i=1

∫
Ti

f · n̂ dSi, (A.4)

here n̂i is the unit normal vector on the triangle Ti, which can
e represented as a linear parametric surface as

i(u, v) = αiu+ βiv + ci, (u, v) ∈ Ωi ⊂ R2, (A.5)

ere Ωi can be taken to be the triangle with vertices (0, 0), (1, 0),
0, 1). Then

p,q,r (G) =
N∑
i=1

∫
Ti

f · n̂i

√
EiGi − F2i dudv, (A.6)

where

Ei = Si,u · Si,u = |αi|
2, Fi = Si,u · Si,v = 0, Gi = Si,v · Si,v = |βi|

2.

(A.7)
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Here, Ei, Fi and Gi are the constant first-order fundamental
quantities of the Si. Now, substituting Eq. (A.7) into Eg. (A.6) we
et

p,q,r (G) =
N∑
i=1

∫
Ti

f · n̂i |αi| |βi| dudv (A.8)

ith

ˆ i =
Si,u × Si,v√
EiGi − F2i

=
αi × βi

|αi| |βi|
(A.9)

nd

(x, y, z)|Ti = f (ti(u, v), yi(u, v), zi(u, v)) , (A.10)

ith xi(u, v), yi(u, v) and zi(u, v) are the x-, y- and z-
components of Si(u, v).
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