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Abstract: 3D printing technologies enable medicine customization adapted to patients’ needs. There
are several 3D printing techniques available, but majority of dosage forms and medical devices
are printed using nozzle-based extrusion, laser-writing systems, and powder binder jetting. 3D
printing has been demonstrated for a broad range of applications in development and targeting solid,
semi-solid, and locally applied or implanted medicines. 3D-printed solid dosage forms allow the
combination of one or more drugs within the same solid dosage form to improve patient compliance,
facilitate deglutition, tailor the release profile, or fabricate new medicines for which no dosage form
is available. Sustained-release 3D-printed implants, stents, and medical devices have been used
mainly for joint replacement therapies, medical prostheses, and cardiovascular applications. Locally
applied medicines, such as wound dressing, microneedles, and medicated contact lenses, have
also been manufactured using 3D printing techniques. The challenge is to select the 3D printing
technique most suitable for each application and the type of pharmaceutical ink that should be
developed that possesses the required physicochemical and biological performance. The integration
of biopharmaceuticals and nanotechnology-based drugs along with 3D printing (“nanoprinting”)
brings printed personalized nanomedicines within the most innovative perspectives for the coming
years. Continuous manufacturing through the use of 3D-printed microfluidic chips facilitates their
translation into clinical practice.

Keywords: personalized medicines; 3D printing; FDM; fuse deposition modelling; SLA; stereolithography;
PAM; pressure-assisted microsyringes; SLS; selective laser sintering; bioprinting; nanomedicines;
nanoparticle; peptide hydrogel; microfluidic chip

1. Personalised Medicine

The Horizon 2020 Advisory Group has defined personalised medicine as “a medical
model using characterization of individuals’ phenotypes and genotypes such as lifestyle
data, medical imaging or molecular profiling, for tailoring the right therapeutic strategy for
the right person at the right time, and/or to determine the predisposition to disease and/or
to deliver timely and targeted prevention” [1,2]. According to the Research and Innovation
Unit of the European Commission, personalized medicines address the challenges of
conventional medicines that are not effective in treating a large number of patients and
rising healthcare costs due to more prevalent chronic disease and an ageing population. In
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this context, personalized medicines allows for custom-made prevention and treatment
strategies for individuals or groups of patients that are optimised for them with no money
wasted on trial-and-error treatments [1].

Apart from personalized medicine, other terms are also used to describe the same
concept, such as individualized medicine, precision medicine, stratified medicine, phar-
macogenomics, genomic medicine, and P4 medicines, including personalized, predictive,
preventive, and participatory [3]. 3D printing technologies have emerged as a powerful
tool for manufacturing personalized medicines, providing healthcare professionals with
a huge arsenal of different techniques to fabricate custom-made medicines and medical
devices. Initially, 3D printing technologies were developed to produce tablets moving from
simple formulations, just containing the drug in a specific dose not commercially available,
to complex systems, containing all drugs required and combining different release profiles
within the same tablet adapted to the patient’s need. 3D printing also has enabled the
manufacturing of personalized metallic prostheses and parenteral implants and other types
of medical devices. In the last years, the application of 3D printing technologies in the
manufacturing of medicines containing biopharmaceuticals or drugs encapsulated within
nanovehicles, known as nanomedicines, is attracting more and more attention in the scien-
tific community. In this review, the different 3D printing technologies commonly used in the
development and fabrication of personalized medicines will be covered, such as material
extrusion techniques (fused deposition modelling (FDM) and semisolid extrusion (SSE))
and vat photopolymerisation (stereolithography, SLA). 3D-printed medicines containing
biopharmaceuticals and nanomedicines will also be discussed.

2. 3D Printing of Medicines

3D printing involves the accumulation of a series of 2D layers that, as a result, give rise
to a 3D geometry. The versatility of 3D printing techniques together with the lower cost of
the necessary equipment means that these techniques are becoming increasingly popular,
which has enabled the maturation of the technologies for translation into clinical practice.
Applying 3D printing technologies allows pharmacological therapies to be personalized in
an extremely precise and individualized way adapted to the needs of each patient.

2.1. What Applications Can 3D Printing Have for Healthcare Professionals?

3D printing can have endless possibilities from the 3D printing of medicines (topical,
oral, and parenteral dosage forms) to tissue engineering and microfluidic organ-on-chips
(Figure 1). 3D-printed dosage forms, such as tablets or capsules, are of increased interest,
considering the licensing of the first 3D-printed product (Spritam©), while the development
of personalized implants adapted to the dimensions of the cavity or tissue of interest
for each patient is also very popular [4–7]. Implants are typically prepared from 3D-
printed hydrogels that exhibit high water content within their structure while they remain
biocompatible and biodegradable, while prostheses are produced with metal printers
according to computerized images obtained with imaging techniques, such as MRI or axial
tomography. 4D printing, with time being the fourth dimension, is under research as when
implants are integrated into the patient’s body and can change shape over time or when
they are integrated into patients’ body, such as breast implants after a mastectomy [8,9].

Within tissue engineering applications, 3D printing is mainly used at two levels. The
first one is regarding the 3D printing of scaffolds for cell cultures. Conventional 2D cultures
have many limitations, and although useful for initial screening, the data on efficacy and
toxicity are far from in vivo data. However, 3D printing techniques, especially bioimprint-
ing, can create 3D cell cultures and thus 3D models, also known, as organ-on-a-chip, that
mimic human tissue much more closely and thus can mimic human response [10,11]. For
example, the hepatic metabolism of drugs can be evaluated by printing well-defined hepato-
cyte architectures for testing, or similarly, the renal clearance can be reproduced by printing
nephronlike structures [12]. Connecting these organ-on-chips in series can allow models
to understand the overall permeability or clearance mimicking human data [13,14]. This
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allows the reduction of animals used in experimentation since these chips are much more
similar to the human body, and more reliable results can be obtained with in vitro tools
before moving forward to animal preclinical studies. Using 3D printers, not only the 3D
tissue architecture can be printed but also the chip itself. 3D printing of microfluidic chips
has been recently demonstrated [15–18]. These chips can provide support for cell growth,
but also, depending on the channel geometry, can serve to manufacture nanomedicines,
which will be described in more detail in the next section [15].
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2.2. Which Technical Considerations Should Be Born in Mind before 3D-Printing
Personalized Medicines?

When manufacturing 3D-printed medicines, it is critical to design the 3D structure
using a CAD (computer-aided design) software or obtain a geometry using a 3D scanner
(Figure 2) towards creating an stl. file. This file will be sliced into different layers defined
by their set height that will be superimposed on top of the other during printing to develop
the geometry. The slicing process is carried out with the slicing software integrated into
each printer or free-cost available software, such as the Ultimaker CURA software. After
the slicing process, a g-code file is generated that can be sent to the printer, dictating the
exact coordinates where the “pharmaceutical ink” will be deposited (Figure 2) [19].

There are many 3D printing techniques, but only some of them allow us to manufacture
pharmaceutical inks with the required drug loading and/or quality characteristics. In the
case of FDM, a flexible filament is required if solid dosage forms are needed to be printed,
which needs to be extrudable and loaded with the required stable quantity of the drug [20].
Upon entering the extrusion head of the printer, the filament melts or more accurately
becomes malleable, and the molten material can be extruded and deposited layer by layer
according to the structure that has been designed. The stability of the drug throughout this
process is paramount to ensure that, progressively, the layers are superimposed until the
3D structure of the solid dosage form is generated.

Stereolithography (SLA) requires a photopolymerisable liquid resin that can be mixed
with our active ingredient in the form of a solution or suspension, which, when exposed to
ultraviolet light, will solidify. Controlling the positions in which the laser beam irradiates
the resin will determine the overall geometry of the structure [21]. Other techniques, such
as SSE, also known as pressure-assisted extrusion of semisolid material (PAM), in which
prefilled syringes are used with a semiviscous mixture of active ingredients and excipients
that are extruded using a pneumatic or piston system and deposited on the printer platform
according to the indicated coordinates in the G-code, are also commonly employed [22].
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2.3. What Are the Great Challenges to Bringing This Technology to Clinical Practice?

The length of printing is critical in the production of an adequate number of printed
units. Considering oral solid dosage forms, this could range from 7 s to 15 min [23].
However, this is still far lower compared with compression in a conventionally industrial
tablet press able to produce millions of tablets per hour.

The cost of printing needs also be considered as the price, for example, of 3D-printed
solid dosage forms is difficult to lower than that of generic compressed tablets. Even
though the cheapest FDM printers cost around EUR 100–200, the printing of medicines
necessitates that the medicines meet quality attributes and an adequate decontamination
protocol is in place to ensure the absence of cross contamination between batches of
printed medicines, which is challenging for FDM printers of the lower price range. To
the best of our knowledge, there is only one 3D printer for medicines that operates under
good manufacturing practice (GMP), M3DIMAKER, currently commercialized at EUR
~80,000 [23]. To overcome the cross-contamination issues, FabRx has implemented printing
within blister packaging.

Pharmaceutical-grade excipients are required with clear audit trails for the manufac-
ture of medicines or drug-loaded filaments, which limits the choice of available techniques
utilized for manufacture. Regulatory authorities and ethics committees also have limited
experience in handling these products, and available pharmacopoeia tests, such as disin-
tegration, might prove challenging for 3D-printed solid dosage forms. Finally, training
health professionals in 3D printing technologies, even if 3D printers are increasingly be-
coming a household item, requires experience, knowledge, and training to ensure that the
printed medicines meet the quality standards. Suitable training should be implemented in
points-of-care to ensure that the clinical translation of this technology takes place.

2.4. What Are the Differences between Conventional Drug Manufacturing and 3D Printing?

Three techniques are mainly used in the pharmaceutical industry to manufacture
medicines, direct compression, wet granulation, and dry granulation. The manufacturing
process of solid dosage forms, such as tablets, requires a series of sequential steps and can
be a complex process. Direct compression is the simplest method since the API is simply
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mixed with the excipients and the mixture is transferred to the tableting machine, and
after compression, a coating of the solid pharmaceutical form may be required. However,
sometimes it is not possible to perform direct compression directly because the powdery
material does not compress well and a granulation process has to be carried out beforehand.
The granulation process allows us to bind the drug with other excipients, forming granules
that exhibit much better flow and compaction properties. To granulate, the binder can
be added in the presence of water or ethanol. which is called wet granulation, or using
compaction rollers, dry granulation. After the granulation process, granules are mixed
with other excipients, such as disintegrants or lubricants, followed by tableting. A coating
layer may be required in an additional step (Figure 3).
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However, through 3D printing, a single step is required once the “pharmaceutical ink”
is ready [24]. Depending on what type of medicine we want to print, the type of 3D printing
technique should be carefully selected. In Table 1, the main advantages and disadvantages
for each technique are described to understand which one meets the requirement according
to the type of API. In the following section, the manufacturing of pharmaceutical ink
will be described in more detail to understand which type of 3D printing method fits
our requirements.
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Table 1. Comparison of 3D printing techniques utilised for the fabrication of personalised medicines.
FDM, fuse deposition modelling; DPE, direct powder extrusion; SSE, semisolid extrusion; PAM,
pressure-assisted microsyringes; SLA, stereolithography; SLS, selective laser sintering; Tg, glass
transition temperature.

Printing
Technique Type Key Parameters Advantages Challenges Type of Medicines

Nozzle-based
deposition

FDM

Temperature of
extrusion
Layer height
Speed of printing
Filament composition
and diameter
Tg composite

High mechanical
strength
Availability of
pharmaceutical-
grade
excipients

A suitable filament is
required for
printingHigh
temperatures are
usually necessary
Thermolabile drugs

Solid dosage forms
(easier to obtain
sustained-release
tablets rather than
immediate-release
ones)
Parenteral implants

DPE

Temperature of
extrusion
Layer height
Speed of printing
Powder mixture

High mechanical
strength
Availability of
pharmaceutical-
grade excipients No
need for filament
prefabrication

High temperature of
extrusion
Lack of homogeneity
during the process
Thermolabile drugs

Solid dosage forms
(easier to obtain
sustained-release
tablets rather than
immediate-release
ones)
Parenteral implants

PAM

Viscosity of the
material
Speed of printing
Layer height
Composition of
the ink

No need for high
temperature
High cell
biocompatibility

Solvent removal in
the postprinting step
Poor mechanical
strength

Tissue engineering
Solid dosage forms

Laser-based
writing

SLA

Laser power intensity
Time of exposure
Type of resin
UV wavelength

High resolution
No need for high
temperature

Toxicity of the resin
Postprinting step
necessary to remove
unsolidified resin
UV-sensitive drugs

Dentistry
Microfluidic chip
fabrication

SLS

Laser power intensity
Time of exposure
Type of
powder mixture

High resolution
No need for solvent

Risk of degradation
by laser exposure
Excessive waste of
powder mixture

Solid dosage forms

2.5. How the Pharmaceutical Ink Can Be Manufactured for 3D Printing?

The two main groups of 3D printing techniques commonly used for manufacturing
personalized medicines in clinical points-of-care are nozzle-based deposition systems, also
known as material extrusion techniques, and laser-writing systems, also known as vat
photopolymerisation (Figure 4). Nozzle-based deposition systems include FDM and its
alternatives, direct powder extrusion (DPE), SSE, and PAM. Laser-based writing includes
stereolithography (SLA) and selective laser sintering (SLS). The type of ink and critical
parameters to control differ from each other [25–29].

For FDM, the pharmaceutical ink consists of a filament that contains the drug and
the excipients. The filament has to possess adequate characteristics for printing, such as
an adequate diameter, flexibility, and hardness. Otherwise, the printer is not able to print.
The diameter ranges in most FDM printers between 1.75 and 2.85 mm. Deviations in the
average diameter of around 10% are usually accepted, but higher than this, printing is not
accurate. The challenge of using this technique is to fabricate optimal filaments [30,31].
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These filaments are manufactured by a hot extrusion process using an extruder. In
this case, a powder mixture of active substances (API) is prepared with the corresponding
excipients and incorporated into the extruder inlet hopper. Through the hopper, the
powdery mixture is incorporated and mixed by an endless screw, where heating elements
are connected that cause a malleable viscous mixture to form. The malleable viscous
mixture is forced to leave through a small die, which should be slightly larger than the
diameter of the filament required. As the filament comes out of the die, this is pulled and
wound into a coil; as it cools, it becomes rigid. During this process, the filament usually
suffers from a contraction process, which should be taken into account to match the final
filament diameter requirements.

Even though the process may look simple, several hurdles should be overcome. At
the industrial level, the equipment is larger and more versatile, but on a smaller scale, it
is more complex. First, controlling the temperature of extrusion is key, as thermolabile
drugs could undergo degradation. Commonly, temperatures above 30 ◦C of the glass
transition temperature of the excipient mixture are desirable. If drug degradation occurs,
additional excipients with low glass transition temperatures, such as polyethylene glycol,
should be included in the mixture to bring down the extrusion temperature. Otherwise, the
API can be incorporated at the end of the extrusion process through an additional hopper,
limiting the contact time at the extrusion temperature. If excipients melt, the extrusion
temperature should not exceed the melting temperature of those as the filament will not
cool down fast enough to keep its shape and integrity at the exit from the die. Additionally,
the filament has to be flexible, but also have sufficient hardness. Plasticizers play a key
role and should be added when necessary. The latter parameters can be measured through
texture analyser equipment. However, there is some controversion about which should be
the most appropriate tensile properties to ensure successful FDM printing [32–35].

Density is also a key parameter during FDM to calculate the final dose in our solid
dosage formulations. Based on the density and drug loading within the filaments, the
final volume of the dosage form should be calculated, and accordingly, the dimensions
of the 3D medicine should be designed. Once the filament has been fabricated and the
object designed, the medicine should be sliced, and additional key parameters should be
chosen before printing, such as layer height (usually 0.1–0.2 mm), which impacts structure
resolution and printing time (the lower the layer height, the higher the resolution and the
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higher the time needed for printing) [36], the temperature of the building platform to ensure
good adhesion during the process, and the extrusion temperature of the nozzle printer,
which it is commonly 5–10 degrees higher than the temperature needed during hot-melt
extrusion. Finally, the printing speed will be adjusted. The slower the printing, the better
the resolution, but the process can be very long in time [37]. The most common excipients
used in FDM are polylactic acid (PLA), polyvinyl alcohol (PVA), Soluplus, ethylcellulose
(EC), Eudragit, hydroxymethyl cellulose (HMPC), hydroxypropyl cellulose (HPC), and
polycaprolactone (PCL) [38].

One of the main advantages of this technique is the formation of amorphous solid
dispersions that enhance the solubility of poorly water-soluble drugs and, hence, oral
bioavailability [39]. Additionally, the temperature is high enough to limit the risk of
microbiological contamination, and the water content is limited, enhancing long-term drug
stability. The hardness of 3D-printed FDM solid dosage forms tends to be very high, which
may result in poor disintegration and drug release [20]. However, the main challenge to
overcome when using FDM is the manufacturing of high-quality filaments and working
with thermolabile APIs. The solution for the first issue is to use direct power extrusion
(DPE) or semisolid extrusion (SSE) instead of FDM, and for the letter challenge, PAM
techniques can be used instead [40–45].

DPE or SSE are alternative techniques that have emerged to overcome the difficulties
to implement FDM in clinical settings. In this case, the nozzle has a metallic chamber
connected that allows the direct incorporation of the powder mixture (the pharmaceutical
ink) rather than the prefabrication of a filament. Similar to FDM, the powder mixture
containing the API and the excipients should be heated ideally 30 ◦C above the glass
transition of the mixture and allow for equilibration to ensure a good heating transfer
amongst all powder particles before printing. Otherwise, the 3D-printed medicine will
exhibit heterogeneous amorphous domains that can affect the dissolution profile and oral
bioavailability. Additionally, poor resolution can be obtained if the powder mixture is not
heated evenly. Several examples of personalized medicines, such as paediatric formulations,
have been demonstrated using this technique [41–44].

PAM has been extensively used in tissue engineering as a high temperature is not
required for printing, and hence, it is not a limiting factor for cell viability. However, this
technique has also been employed in the manufacture of personalized medicines, such as
tablets [22], oral bucodispersable films [46,47], and parenteral implants [48].

Bioinks can generally be described as a formulation of cells that is suitable to be
processed by an automated biofabrication technology [49]. Aqueous formulations of
polymers or hydrogel precursors that contain biological factors would be considered
biomaterial inks, which would become bioinks following the addition of cells into that
formulation [49]. As a rule of thumb, these biomaterial inks should be biocompatible and
biodegradable, and additionally for implants, they have to be sterilized and permeable.
When printing with bioinks, the key factor is their rheological behaviour. Typically, inks
are viscous semisolid materials. The bioink should possess a minimum viscosity to be
able to maintain its structure after being deposited on the platform but, at the same time,
it should not be too rigid structures that do not allow adequate cell growth and oxygen
permeability. In the case of solid dosage forms, solvents may be required for printing. This
is a hurdle as a postprinting step is necessary to ensure that all solvents are eliminated
before administration. This is a risk, especially for those solvents more toxic in which the
ppm left in the medicine is extremely low, necessitating quality assurance [49]. In this case,
the bioink is placed inside a microsyringe that has a small die to control efficiently the
deposition of the semisolid material on the platform. These microsyringes are commonly
disposable, which reduces the risk of cross contamination and can ensure sterility every
time they are used. PAM printers either have a pneumatic system or are mechanically
activated with a piston or rotating screw. In the case of the pneumatic system, it uses
compressed air to force the ink out through the nozzle. By pressing on the ink, it flows
as cylindrical filaments that can be latticed with UV light, enzymes, chemicals, or heat to
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generate structures with better mechanical properties. Special attention must be paid to
ensure that the pressure exerted does not affect cell viability. The printing speed is usually
much lower than with FDM printers to achieve better resolution [50–52]. The most common
excipients used in PAM are Carbopol, polyethylene glycol (PEG), hydroxypropyl cellulose
(HPC), hydroxymethyl cellulose (HPMC), and polyvinylpyrrolidone (PVP) [38].

The laser-based writing technologies applied to the fabrication of personalized medicines
can be divided into two main techniques, stereolithography (SLA) and selective laser
sintering (SLS). SLA is one of the techniques that have a higher resolution compared with
other 3D printing techniques, reaching up to 10–25 microns. In this case, the pharmaceutical
ink is a mixture of a light-curing resin together with our API. The general printing concept
consists of a bath with resin composed of monomers and a photoinitiator capable of
being activated when interacting with ultraviolet light. When the UV light irradiates the
photoinitiator, free radicals are released, being capable of interacting with other monomers
forming rigid polymer chains. When this happens, the resin that was previously in a
liquid state hardens and forms a hard plastic solid material. During this process, the API is
retained within the rigid polymer structure.

There are two techniques of 3D printing with stereolithography, top–down or bottom–
up. If the printing is from top to bottom, the UV light beam is located above the resin
tank, so the platform inside the tank will move down as the solid layers are formed. At the
beginning of the process, the platform is submerged in the surface at a distance equivalent
to the desired thickness with the first layer so that the UV light falls on the surface, forming
the first layer of solid. Only in those points where UV light strikes, the resin solidification
occurs. As the UV light beam is very small, good resolution can be achieved with this
technique. When the first layer is already printed, the platform lowers another distance
equivalent to the thickness required by the next layer, covering the solid layer formed
with more liquid resin that will be the next layer to be polymerized. Using the other
bottom–up printing technique, the UV light beam would be located under the resin tank,
which would have a transparent window that would allow light to pass through. In this
case, the platform goes up as the layers are formed, and the platform is progressively raised
according to the dimensions of each layer to be printed [19,30,53].

When using this SLA printing technique, it is necessary to make a postprinting process
consisting of washing the printed product with usually isopropyl alcohol to remove excess
resin, followed by a curing process using UV light to harden the structure and finish the
polymerization process. This step is essential since the polymer formed no longer contains
free radicals, which are found in the excess liquid resin and have a proven genotoxic
nature [54–56]. Although free radicals are mostly eliminated after the postprinting process,
their administration for human use is limited, being necessary to develop biocompatible
resins for their administration inside the body, for example, in the case of tablets or implants.
This technique, however, is widely used in the field of dentistry [57].

In the SLS technique, the pharmaceutical ink consists of a layer of powder containing
the API along with the necessary excipients onto which the laser light beam will fall directly.
The powdery mixture is placed on a platform that is heated slightly below the melting
point of the powder. Due to the action of laser light, the powder undergoes a sintering
process in which the particles fuse and solidify [58]. The unmelted powder serves as a
support for the geometric shape during printing, so unlike the SLA and FDM techniques,
there is no need to add any support. Once the first layer has been printed, the platform
lowers the height corresponding to a layer that usually ranges between 50 and 200 microns.
There is a roller that spreads the powdery mixture after every layer so that the process is
homogeneous. This process is repeated until the printing process of all layers is complete.
Once the printing is finished, the printing chamber must be cooled, and then the printed
structure can be removed and left to rest for a while until it acquires the optimal mechanical
properties and the part does not deform. The postprinting process consists of removing
excess dust that may remain adhered to our structure. The main problem associated with
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this technique is the excess powder generated, API with the excipients, which is usually
expensive [59].

In both laser-based writing techniques, the most critical parameters that should be
adjusted before printing are the composition of the pharmaceutical ink, the laser power,
and the time of exposition from each layer. If the laser power is too strong, it may degrade
sensitive drugs to UV light, but very low radiation can result in poor medicine resolution
as the resin is not properly cured or the powder is not bonded appropriately.

Before printing a medicine, it is key to bear in mind the main characteristics of the
API, for example, if it is thermolabile or it can degrade easily under UV light. In those
cases, PAM can offer an alternative in which neither temperature nor UV light is needed
during the process. Additionally, we need to consider which is the target product profile
of our medicine. Sustained-release tablets can be easily manufactured using FDM or DPE
techniques, while immediate-release tablets are more challenging, taking into account the
high mechanical strength obtained with the latter techniques. SLS can be a good alternative
to those. Even though PEDGA has emerged as a less toxic resin for SLA, still, its safety for
oral administration has not been demonstrated specially in chronic therapies, and hence,
SLA has been relegated to other uses that require high precision, such as manufacturing of
microfluidic chips or dentistry applications.

3. Implementation of 3D Printing in Personalized Solid, Topical, Parenteral Dosage
Forms and Medical Devices
3.1. Solid Dosage Forms

Powder binder jetting is the only 3D printing technology that has reached the market at
the industrial level. Aprecia laboratories have implemented this technology to manufacture
Spritam, a 1000 mg levetiracetam oral dispersible tablet. It does not require heat to fabricate
the tablet; it just relies on a powder bed and a liquid binder that makes each layer stick to the
other. The tablets are directly printed in the blisters, minimizing the need to harvest dosage
forms or recirculate unprinted powder. The preformed orodispersible tablet shell and lid
comes out directly using an automated zip dose assembly system. The disintegration time
is below 1 min, facilitating deglutition and fast onset of action [60].

However, nozzle-based extrusion systems and laser-writing systems are more com-
monly used in research, and these technologies are moving faster to clinical practice,
especially for the manufacture of solid, topical, and parenteral medicines (Figure 5).
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Polypills have emerged as a new personalized solid dosage form trying to combine
all the medicines that a patient needs in a single tablet, adjusting the dose and the release
profile. Commonly, drugs have been combined to treat metabolic syndrome consisting of
hypercholesterolemia, hypertension, and hyperglycemia, but also, combined treatments for
infectious diseases and pain are gaining attention. Amongst all 3D printing techniques used
to manufacture mono- or polypills, FDM is currently the top technology. The main reason
is the easier implementation in clinical practice, taking into account that postprocessing
is not required as there are no solvents involved in the process, and printed solid dosage
forms have suitable characteristics in terms of tensile strength and the ease of modification
of the drug release profile. Using FDM technology, polypills containing two, three, four, or
even more drugs have been successfully printed. Excipients used can be of a high technical
grade similar to the one used currently in the pharma industry to manufacture pills. FDM
technology has shown the higher feasibility for implementing 3D-printed polypills in
clinical practice followed by PAM and SSE. Additionally, two, three, four, or even more
drugs have been successfully printed using this technique, but the postprinting step to
remove the solvents utilized during the process is a major challenge to overcome. Polypills
have also been printed using SLA and SLS techniques. However, the implementation of
these techniques in clinical practice for the fabrication of polypills is more complex, consid-
ering the difficulty of incorporating different APIs, the major risk of cross contamination
during the process, and the lack of biocompatibility studies with the resins utilized for SLA.
In Figure 6, the potential for the clinical translation of different printing technologies is
schematically illustrated along with several examples of polypills.
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FDM, fuse deposition modelling; DPE, direct powder extrusion; SLA, stereolithography; SLS, selec-
tive laser sintering; HTA, hypertension; HCHO, hypercholesterolemia; TB, thrombosis; HPMCAS,
hydroxypropyl methylcellulose acetate succinate; MgSt, magnesium stearate; PEG, polyethylene gly-
col; HPMC, hydroxypropyl methylcellulose; CA, acetate cellulose; PVA, polyvinyl alcohol; PEGDA,
polyethylene glycol diacrylate; PVPK30, polyvinylpyrrolidone K30; SG, sodium starch glycolate; TPO,
thermoplastic polyolefin used as photoinitiator; EVA, ethylene-vinyl acetate copolymer (82:18, w:w);
PVP-VA, vinylpyrrolidone-vinyl acetate copolymer 60:40; FS, fumed silica; P188, poloxamer 188.

An easier application of FDM is to print small tablets in size with different APIs
each and combine them within the same capsule to achieve a polypill. As an example,
a paediatric treatment for HIV has been developed combining minitablets of ritonavir
and lopinavir [41]. Due to the low thermal stability of the drugs, DPE was preferred over
FDM, making it possible to reduce the extrusion temperature to 80 ◦C. Hydroxypropyl
methylcellulose acetate succinate (HPMCAS) combined with a plasticizer (PEG 4000) and a
lubricant (magnesium stearate) was utilised to create a sustained zero-order drug release
matrix over a 24 h period (Figure 6).
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Polypills for Parkinson’s disease have been also manufactured using hot-melt extru-
sion coupled with FDM containing three drugs, levodopa in combination with benserazide,
a dopa decarboxylase inhibitor, and pramipexole, a dopamine agonist [61]. Two different
composition filaments were fabricated for a rapid-release one containing pramipexole,
polyvinyl alcohol, mannitol as a plasticizer, and fume silica as a glidant, and a sustained-
release one made of levodopa and benserazide, ethylene-vinyl acetate copolymer (82:18,
w:w), 15% vinylpyrrolidone-vinyl acetate copolymer 60:40 (PVP-VA), and 0.5% fume silica.
The tablets were designed with a hollow cylinder inside to make them float in the stomach
for over 24 h to ensure a successful absorption of levodopa, considering that it is absorbed
in the upper gastrointestinal tract.

However, polypills manufactured with FDM extrusion can contain four or even more
APIS. For example, lisinopril and amlodipine for hypertension, indapamide as a diuretic,
and rosuvastatin for dyslipidemia were combined within the same solid dosage form.
Filaments were prepared by hot-melt extrusion using PVA and sorbitol as excipients using
distilled water as a temporary coplasticizer to reduce the extrusion temperature from 170
to 90 ◦C [62].

The potential for clinical translation of pressure-assisted microsyringes also known as
semisolid extrusion has been widely explored. The main limitation is to ensure full solvent
removal in the postprocessing step, which increases the manufacturing time and puts at risk
patients’ lives. Mono- and polypills have been successfully printed for many different ap-
plications, for example, infection, including clarithromycin combined with hydroxypropyl
methylcellulose (HPMC), polyvinylpyrrolidone K30 (PVPK30), and poloxamer 188, to form
a gel matrix type that floats in the stomach for over 8 h [63].

A three-drug polypill has been designed and printed for patients with type 2 diabetes
and high blood pressure containing captopril, an angiotensin-converting enzyme (ACE);
glipizide, a hypoglycemic drug; and nifedipine, a calcium antagonist [64]. Captopril exhib-
ited a zero-order sustained release due to the incorporation of mannitol as an osmotic agent,
which is useful for controlling blood pressure levels over long periods, while glipizide
and nifedipine were embedded in a hydrophilic matrix of hydroxypropyl methylcellulose,
allowing first-order release by diffusion. Both compartments were physically separated
with a layer made of croscarmellose sodium and sodium starch glycolate as disintegrants,
PVPK30 as a binder, and mannitol as a diluent.

Additionally, using a four-nozzle PAM printer, a five-in-one-dose combination polypill
was successfully printed [22]. The tablet was printed in two different layers, the immediate-
release layer containing aspirin as an antiplatelet and hydrochlorothiazide as a diuretic
combined with sodium starch glycolate and polyvinylpyrrolidone K30 as a disintegrant
and binder, respectively, and a sustained-release layer with atenolol as a beta-blocker,
ramipril as an ACE inhibitor, and pravastatin as a 3-hydroxy-3-methylglutaryl–coenzyme
physically separated from the other layer by a hydrophobic cellulose acetate shell acting
as a permeable barrier along with mannitol as a filler and polyethylene glycol (PEG) as
a plasticizer.

Using laser-writing techniques, such as SLA and SLS, the manufacture of polypills has
also been feasible. For pain, SLS has shown the feasibility of printing dual 1 mm in diameter
minitablets containing paracetamol and ibuprofen and Kollicoat IR and ethylcellulose as
excipients to control drug release for over 24 h [65]. SLA is also a suitable technique for
printing polypills. However, the main drawback is the inherent toxicity of the polymerisable
resins used. A six-drug tablet was printed containing paracetamol, an antipyretic and
analgesic; caffeine; aspirin; naproxen, a nonsteroidal anti-inflammatory; chloramphenicol,
a broad-spectrum antibiotic; and prednisolone, an anti-inflammatory corticosteroid [66].
Polyethylene glycol diacrylate (PEGDA) was chosen as a photopolymerisable monomer,
and thermoplastic polyolefin as a photoinitiator. To allow the polypill printing, drugs were
dissolved individually in PEGDA, thermoplastic polyolefin was used as a photoinitiator
(TPO), and PEG 300 Da was poured into the resin tray sequentially.



Pharmaceutics 2023, 15, 313 13 of 28

Apart from tablets, 3D printing has shown the capability to produce capsule shells
either with similar performance to commercially available hard gelatin capsules or able
to modify the release of the filling content. Mostly, capsule shells are made of poly(vinyl)
alcohol (PVA) and PVA blends with other excipients, such as HPMC [67]. Additionally,
the capsule shell can be divided into different compartments, allowing a progressive drug
release [68].

3D printing techniques have also been demonstrated to be a valid tool for manufac-
turing oral dispersible films, which can facilitate the manufacturing of those compared
with conventional solvent casting techniques especially useful for patients with deglutition
problems [69]. SSE has been used to print layer-by-layer benzydamine-hydrochloride-
loaded orodispersible films consisting of maltodextrin, a plasticizer such as sorbitol, and a
thickening agent, such as hydroxyethyl cellulose [70].

Finally, 3D printing technologies for solid dosage forms have gone one step further to
ensure product authenticity by printing QR codes and data matrices on the surface of the
tablets to allow track and trace measurement control [71]. Additionally, Braille and Moon
patterns can be printed on the surface of the tablets, enabling easier tablet identification for
visually impaired patients [72].

Several clinical studies are ongoing to show the real clinical translation of 3D-printed
solid dosage forms in patients. Patient acceptability of 3D-printed medicines has been
evaluated. The torus shape is preferred over spherical geometries, as well as smaller-size
tablets. The colour of the tablet was also a driving parameter for tablet picking [73]. The
perceptions of healthcare professionals have also been evaluated, and it has shown that
more than 60% of the interviewed healthcare professionals were willing to prescribe 3D-
printed medicines, understanding the potential of this new tool in clinical practice [74].
Additionally, 3D-printed tablets have shown great potential to manufacture medicines
not commercially available for orphan diseases. 3D-printed isoleucine formulations are
used for the treatment of maple syrup urine diseases, a rare metabolic disorder with
a worldwide prevalence of 1 in every 185,000 children. Current therapy for children
diagnosed with this rare disease consists of full restriction of leucine and supplementation
with isoleucine and valine. However, medicines containing isoleucine have to be prepared
as an extemporaneous compounding formulation in which the dose needs to be titrated
according to the patient’s needs, such as age, weight, and blood levels of these amino
acids. When comparing the isoleucine blood levels in patients receiving either isoleucine
in conventional capsules or chewable 3D-printed formulations, the latter showed lower
blood level variability and higher patient acceptability [75]. This is a promising result to
keep investigating the potential of 3D printing in the manufacturing of personalised solid
dosage forms.

Apart from Aprecia laboratories, pharmaceutical companies are also investing in
3D printing technologies to manufacture solid dosage forms. Triastek, a Chinese-based
pharma company, has one on-going clinical trial authorised by the FDA (Food Drug and
Administration) to 3D-print a colon-targeted oral new drug for ulcerative colitis to help
improve the safety of the dosage form by enhancing controlled-drug release in specific
segments in the colon [76].

These are a few examples of the applicability of 3D printing to oral treatments. How-
ever, most of the ongoing clinical trials are focused on the development of personalised
prostheses and medical devices [77]. An insight on the advances achieved in this field will
be described in the next section.

3.2. 3D-Printed Medical Devices

3D printing technologies have also shown great potential in the manufacturing of
medical devices. One of the critical parameters is the material chosen for printing, such
as the biocompatibility, mechanical properties, and capacity for sterilization. One of the
areas that are gaining more attraction in this field is the printing of metallic biomaterials
using iron, magnesium, zinc, titanium, cobalt, and stainless steel. Apart from the FDM and
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SLS, selective laser melting and electron beam melting also are widely used for printing
this type of device [78]. Iron is characterized by its high fracture strength, ductility, and
hardness. Additionally, it is nontoxic and biodegradable, but the degradation rate of pure
iron is very slow, and hence, alloys with Mn and Pd make the degradation rate faster and
more uniform. Iron-based alloys can be used as temporary cardiovascular stents [79].

Stainless steel is produced by a combination of iron, carbon, and a minimum of 11%
chromium, which has good mechanical properties stronger than bone, heat resistance, and
biocompatibility. However, it can cause stress shielding when used as orthopaedic implants,
corrosion can occur when in contact with body fluids for longer periods, and inflammation
can be the result of the release of certain metals, such as chromium. The combination with
other metals makes the alloys more resistant to corrosion and more biocompatible, being
used for orthopaedic implants well adjusted to patients’ anatomy, artificial heart valves,
needles, catheters, and many other applications [80].

Titanium can be used in its pure form or in alloys or composites with ceramics. The
main advantage is its high biocompatibility and mechanical strength similar to human bone;
however, it is chemically reactive with atmospheric gases, and titanium-based biomaterials
require surface treatment. It is one of the most biocompatible metals being widely used in
orthopaedics and dentistry [81].

Magnesium is also used for metallic implants as its mechanical properties are compa-
rable to those of human bone, but it is lightweight. However, it degrades too fast, and high
rates of corrosion usually take place. It has been used for orthopaedic screws [82]. Zinc
has been also used in 3D printing applications for wound closure devices, orthopaedic de-
vices, and cardiovascular stents, exhibiting good corrosion resistance but poor mechanical
strength. As an inorganic material, zinc promotes bone tissue growth and suppresses bone
tissue loss, making it a good candidate for orthopaedic applications [83]. Cobalt alloys
have excellent magnetic properties, wear resistance, and long-term stability. They are the
second most used metal in medicine for the manufacturing of implantable devices, such as
cardiac pacemakers, defibrillators, hip implants, and coronary stents [78].

3.3. 3D-Printed Implants

Apart from metals, long-lasting implants and stents can be also manufactured using
biodegradable polymers, such as polylactic acid (PLA), polyglycolic acid (PGA), polyvinyl
alcohol (PVA), polycaprolactone (PCL), and their copolymers with a degradation time in
the body up to 36 months, much longer than natural polymers, such as chitosan, collagen,
alginate, and gelatine. A wide range of APIs, such as hormones, cytostatics, anaesthetics,
and antimicrobials, have been successfully delivered by FDM 3D printing [84–87]. 3D-
printed rod-shaped implants consisting of PVA and PLA fabricated with FDM slowed
down the release, which lasted for up to 300 days [87]. Personalized vaginal rings made of
PLA: PCL (8:2 w:w) and polysorbate 80 loaded with progesterone exhibited a prolonged
release for up to 7 days [88]. 3D-printed scaffolds for breast cancer made of PLGA in
combination with doxorubicin and cisplatin allowed a sustained release of both cytostatic
drugs for over 30 days [89]. Biodegradable stents have been fabricated with a composite of
PLA-PCL material printing a PLA core and a PCL shell with a sustained release of over
6 weeks [90]. Stents can also be printed or coated with antimicrobials to prevent infection
and anti-inflammatory drugs to reduce postsurgical side effects. For example, amoxicillin
and cefotaxime PCL-loaded stents were placed in salivary glands to avoid infection after
implantation [91].

SLA has also been applied in the manufacture of intravesical bladder devices [92]. One
of the main disadvantages of this technique is the release of unpolymerized resin, which
can cause acute and chronic toxicity. Novel materials that are more biocompatible should
be developed, considering the high resolution that can be obtained using this technique.
3D-printed devices loaded with lidocaine to treat interstitial cystitis and bladder pain were
designed to be inserted and removed from the bladder through a urethral catheter. An
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elastic resin made of a thermoplastic polymer was used, which facilitated the insertion of
the device [92].

Moving beyond the state of the art, 4D printing is also gaining attention as a new
concept to develop patient-centred medicines. 4D printing is defined as the fabrication of
dynamic 3D-printed structures that can change their morphology and/or characteristics as
a function of time. They are also called smart materials as they suffer from a transformation
after certain stimuli, such as a change in pH, temperature, humidity, light, or the presence
of a magnetic field. The transformation can be shape-shifting abilities, commonly folding,
expansion, shrinkage, and stiffness. For example, 3D-printed scaffolds with NIR-triggered
doxorubicin delivery were developed to be implanted immediately after breast surgery.
The incorporation of polydopamine provided responsiveness to NIR irradiation. Only
under NIR irradiation, the core underwent a sol/gel transition, which resulted in drug
release [8].

3.4. Semisolid and Locally Applied Drugs

3D printing has shown great potential in the manufacture of semisolid and locally
applied drugs especially on the skin and on the eye surface. Wound dressings and mi-
croneedles are two of the main applications of 3D printing on the skin. Wound healing is a
complex process requiring a good equilibrium between cell proliferation, such as angiogen-
esis and re-ephitelisation, and healing rather than inflammation and scarring [93,94]. PAM
is the most suitable technology for manufacturing wound-healing dressings. Novel bioinks
are under development made of gelatin methacryloyl (GelMA) and xanthan gum with
excellent printability and swelling properties [95]. Chitosan is one of the most promising
natural-derived polysaccharides used as a bioink because of its attractive properties, such
as biodegradability, biocompatibility, low cost, and nonimmunogenicity [96]. Chitosan–
pectin hydrogels with lidocaine have shown promising results, allowing the exudates to be
absorbed while maintaining a moist wound healing pain-free environment [97]. Wound
dressings loaded with metals, such as copper, zinc, or silver, have been fabricated by
hot-melt extrusion using PCL exhibiting excellent antibacterial properties [98].

3D-printed microneedles have been manufactured by SLA as a high resolution is key
for this type of device. The needle geometry ranges from 25 to 200 µm in height with a
50–250 µm diameter in the base and a 1–25 µm diameter in the tip [99]. 3D-printed solid
microneedle arrays have been fabricated using commercial resins coated with cisplatin for
skin tumours [100]. Insulin delivery has been also achieved with this type of device. Solid
microneedles were printed, followed by a coating process by inkjet printing. The insulin
ternary structure was maintained, keeping the performance and eliciting a pharmacological
effect equivalent to the subcutaneously administered insulin [101]. Hollow microneedles
have been fabricated using Class I resin (Dental SG) in which the microreservoirs were
loaded with 360 µL rifampicin solution to treat infection [102]. Similarly, the microreservoirs
can be filled with cells previously encapsulated in alginate capsules cross-linked with CaCl2,
keeping the cell viability [103].

3D printing can be also applied in the manufacturing of contact lenses, opening many
new possibilities to explore [104]. 3D-printed lenses should possess certain characteristics
to make them suitable for this administration route, such as transparency, sterility, flexibility,
permeability to oxygen, and good patient acceptability, amongst others. Several attempts
have been made to print contact lenses, but still, they are far from ideal. Contact lenses have
been printed using digital light processing and dental commercially available transparent
resins. To achieve the desired level of optical transmittance, a postprinting process was
required consisting of dip-coating the lenses, followed by a curing process and washing
with isopropyl alcohol. Surface roughness remains a challenge [105]. Medicated contact
lenses with timolol maleate for glaucoma were printed using FDM, and a biocompatible
medical-grade polymer, ethylene-vinyl acetate copolymer–polylactic acid blends. Lenses
were printed with a middle aperture to ensure proper vision, considering the lack of optical
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transmittance of the lens. The surface roughness was improved using this technique, and
the drug release was controlled for over 3 days [104].

4. Implementation of 3D Printing in Personalised Biopharmaceuticals

Most research in 3D printing has been performed with small molecules. However, the
market of biopharmaceuticals products is growing exponentially, and the application of
3D printing in this field, especially PAM, is opening up new ways to manufacture reliable
organ-on-chip when incorporating this type of compound. Currently, peptides and proteins
have been mostly utilized in 3D printing tissue engineering, mainly cartilage and bone
restoration. When bioprinting cell-based scaffolds, the combination with biopharmaceuti-
cals, such as TGF-beta 1 binding peptide, bone morphogenetic protein 2 (BMP-2)–derived
peptides, and mussel-derived bioactive peptides, has shown an enhancement of the carti-
lage and bone growth [106–110]. Bilayered porous scaffolds with GelMA hydrogels as a
matrix have been constructed, including an upper layer with bioactive peptides that can ad-
sorb TGF-beta-1 for cartilage repair and a lower layer with hydroxyapatite for subchondral
regeneration [107]. PLA scaffolds with enhanced osteogenesis have been developed by coat-
ing them with BMP-2-derived peptides conjugated with dopamine. The scaffold promoted
the expression of osteogenesis-related genes, such as alkaline phosphatase, osteocalcin, and
osteopontin [109]. These are just a few examples of the potential of incorporating peptides
and proteins in 3D cultures to mimic closely in vivo tissues using PAM.

In this case, hydrogels are constructed, and hence, there is no need for heating during
printing or postprocessing steps as water is the only vehicle. However, the rheological
properties of the hydrogel remain a challenge, and hence, the PAM technique is commonly
combined with FDM printing to construct scaffolds to provide enough mechanical strength
made of biocompatible polymers, such as PLA, PCL, or PLGA [111]. Peptide hydrogel
design focuses on the modulation of the amphiphilic balance of the backbone sequence
with an optimal arrangement of hydrophobic–hydrophilic units, allowing for spontaneous
physical gelation. The interactions are mainly consisting of H-bonding, charge–charge
interactions, and π–π stacking which is triggered by the native protein folding, resulting in
different secondary structures, such as α-helices, β-sheet, and hairpin motifs [112,113].

3D-printed solid dosage forms containing biopharmaceuticals are currently under
development. A tablet containing alkaline phosphate to treat ulcerative colitis has been
fabricated with an ileo-colonic release profile to reduce degradation in harsh media of the
stomach [114]. To avoid enzyme degradation during printing, powder bed printing was
employed utilizing HPC as a binder. After printing, a coating layer with PEG was included
to achieve ileo-colonic release.

Additionally, polymeric microneedle patches printed by SLA to increase resolution
were loaded with insulin to enhance its transdermal delivery. The length of the micronee-
dles was 1 mm with a 1 mm base diameter. A biocompatible Class I resin (Dental SG) was
used to minimize the risk of toxicity. A postprinting step was required in isopropyl alcohol
under UV radiation at 40 ◦C to remove any unpolimerised resin left. After the postprinting,
an insulin solution containing trehalose, mannitol, and xylitol was inkjet-printed on the
microneedles. Once the solvent was evaporated, uniform solid thin films were formed on
the needles. Insulin showed a full immediate release for over 30 min after the application
on porcine skin [101].

3D-printed multiunit implants have been successfully manufactured using polycapro-
lactone, lauric acid, and melanin as a matrix to enable remote light-controlled protein drug
delivery in a spatiotemporal manner. Implants were loaded with insulin in each unit. Upon
irradiation with near-infrared light (NIR), heat was generated from melanin, which melted
the polycaprolactone and lauric acid matrix, resulting in the insulin release. This implant
showed promising results in an vivo model of a diabetic mouse. An efficient decrease of
the glycaemia was achieved for over multiple days [115].
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These results show the potential of 3D printing applied to biopharmaceuticals. Proteins
can easily be denaturalized, but peptides can resist greater temperatures, being good
candidates for material extrusion techniques, such as FDM or DPE.

5. Implementation of 3D Printing in Personalised Nanomedicines

According to the European Commission, nanomaterial refers to “a natural, incidental
or manufactured material containing particles, in an unbound state or as an aggregate and
wherein one or more external dimensions is in the size range 1 nm–100 nm for 50% or
more of the particles” [116]. Nanomaterials can be applied in nanomedicine for medical
purposes in three different areas: diagnosis (nanodiagnosis), controlled drug delivery
(nanotherapy), and regenerative medicine [117]. Their small size confers their unique
properties in medicine due to the high specific surface area in relation to the volume, which
leads to a large particle surface energy and, hence, reactivity.

There are a large number of nanomedicines that can be divided into inorganic and
organic nanomedicines, such as micelles, liposomes, nanoparticles, nanofibers, and carbon
nanotubes, amongst others (Figure 7) [118–122]. Inorganic nanoparticles play a key role
in the diagnostics, existing several products commercially available, such as Nanocoll,
NanoHSA based on albumin nanoparticles tracked with technetium for nuclear gam-
magraphy, and SPIONS (superparamagnetic iron oxide nanoparticles), used in magnetic
resonance imaging [123]. Several organic nanomedicines are also commercially available,
most of them liposomes for cancer and infectious diseases, such as Doxil (pegylated li-
posomes of doxorubicin), DepoCyte (liposomes of cytarabine), Onivyde (liposomes of
irinotecan), and AmBisome (liposomes of amphotericin B for fungal diseases), but also
albumin nanoparticles loaded with paclitaxel (Abraxane) and polymeric micelles loaded
with paclitaxel (Apealea).
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Apart from liposomes characterized by having a rigid bilayer with cholesterol with
prolonged circulation in the blood, transferosomes are greater vesicles for topical drug
delivery due to their flexible membrane when cholesterol is replaced by edge activators,
such as sodium deoxycholate [124,125]. The flexible membrane allows them to squeeze
through pores amongst the stratum corneum, reaching deeper regions of the skin.

Self-nanoemulsifying drug delivery systems (SNEDDS) are also promising vehicles
able to solubilise high quantities of poorly soluble drugs and deliver them across the
skin or the gastrointestinal track [126–128]. SNEDDS are anhydrous homogeneous liq-
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uid mixtures, consisting of oil, surfactant, drug, and/or cosolvents, which spontaneously
form transparent nanoemulsion usually between 20 and 200 nm droplet size upon aque-
ous dilution with gentle agitation [129]. When the physicochemical stability of liquid
SNEDDS is poor, they can be adsorbed onto silica nanoparticles and transformed into solid
nanomedicines [130–132].

Polymeric nanoparticles are also promising drug delivery systems currently under
research [133,134]. For example, a wide number of publications highlight the potential
of PLGA nanoparticles to target tumours using a passive or active approach. Passively
targeted nanoparticles make use of biological mechanisms to achieve specific organs or sites
of disease, such as phagocytosis by the cells of the reticuloendothelial system (RES) [135] or
enhanced permeation and retention (EPR) effect observed in tumours with leaky vascula-
ture, while actively targeted nanoparticles have attached to their surface a targeting moiety,
making them selectively interact with a receptor to elicit their effect, which is especially
useful to cross the blood–brain barrier [136,137] (Figure 8). The concept of active and
passive targeting can be applied to mostly all types of nanomedicines.
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5.1. 3D Printed Nanomedicines

3D printing technologies have been used in the manufacturing of nanomedicines.
However, nanoparticle concentration is a key factor, taking into account that particle
aggregates behave as defects and weaken the 3D-printed structure. In general, achieving
high drug-loading nanoparticles in a polymer matrix is challenging due to nanoparticle
attractions and Van der Waals–induced aggregations. To improve particles’ homogeneity in
liquid suspension, a preprocessing step may be required, such as an ultrasound application,
the addition of surfactants, ball milling, and so on [138].

Redispersible 3D-printed solid dosage forms containing polyphenols (curcumin and
resveratrol) were loaded in polymeric PCL nanocapsules. The latter were embedded in
a carboxymethyl cellulose 3D-printed hydrogel by PAM. The polyphenols were partially
released over an 8 h period, but not all the active ingredients were released from the
nanocapsules, being still a challenge to overcome [139]. Curcumin loaded in liposomes was
printed in 3D-printed tissue scaffolds. Curcumin possesses strong antioxidant, anticancer,
and osteogenic properties, but it is poorly available due to its lipophilicity. The incorpora-
tion of loaded liposomes in 3D-printed calcium phosphate scaffolds provided significant
cytotoxicity toward osteosarcoma, whereas it promoted osteoblast viability [140].
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3D-printed solid lipid dosage forms consisting of a 3D-printed dissolvable polymer
scaffold were fabricated with PLA and PVA with different compartments to load in a second-
step solid lipid formulation within a single dosage form. The emulsions were prepared
using Gelucire 44/14, Gelucire 48/16, and Kolliphor P188 containing either fenofibrate or
clofazimine, lumefantrine, and halofantrine as model drugs. The mixture was prepared
under heat and stirring and was loaded into the compartments of the solid dosage form.
Once the temperature reached room temperature, the solid lipid system solidified. Different
release profiles were achieved depending on the lipid ratio to manufacture the solid lipid
systems [141].

Solid SNEDDS were successfully printed directly as a tablet. A semisolid paste was
prepared by the fusion method containing dapagliflozin, capryol 90, poloxamer 188, PEG
6000 and 400, and cremophor EL. The lipid system consists of a liquid phase containing
oils and cosurfactants and a solid phase with a solid matrix with a surfactant. Once all
excipients and drugs were fully melted, they were transferred to a PAM cartridge for
3D printing. The dapagliflozin-loaded SNEDDS 3D-printed tablet showed an immediate
release profile (>75% in 20 min) [142]. A similar approach was used to fabricate 3D-printed
lidocaine-loaded SNEDDS suppositories to treat hemorrhoids by PAM [143].

5.2. Conventional Batch-to-Batch Approach versus Continuous Manufacturing Using
Microfluidics Chips

There are multiple conventional technologies utilized at the laboratory scale in the
fabrication of nanomedicines. The solvent evaporation–precipitation technique (bottom–up
approach) is probably the most widely used [144–146]. The scale-up of this technique is
very challenging at the industrial level, taking into account the high amounts of remaining
solvents that have to be removed and the volume of the tank used to fabricate the particles as
well as the impeller speed, and the liquid media can alter significantly the final properties
of the particles [147]. Additionally, it is challenging to control the polymorphism and
solid state of the drug, crystalline or amorphous, that will determine the physicochemical
performance of the drug [144,148]. Spray drying and spray coating can facilitate the
scale-up, but controlling the particle size remains challenging [149–153].

The conventional batch manufacturing method still does not have any alternatives
in the pharmaceutical industry, but the continuous manufacturing approach is gaining
attention focused on a process in which raw materials are continually injected into a manu-
facturing facility, and products are continuously discharged during the operation of the
manufacturing processes [154]. Continuous manufacturing requires a fully automated
system and continuous monitoring in real time. The incorporation of process analytical
technologies on, in, and at the production line along with the implementation of chemomet-
ric models facilitates the successful manufacturing of nanomedicine within the specification
limits set [155].

The investment in the manufacturing of nanomedicines at the industrial level is
limited due to (1) lack of infrastructure and in-house expertise, (2) low speed of fabrication
compared with the production of capsules and tablets (1 million/h), (3) insufficient batch-
to-batch reproducibility requiring a rigorous control of the particle size, and (4) lack of
chemical and physical stability [156,157]. The current cost of development and market
authorization of nanomedicines is much higher than conventional medicines and results in
economically unaffordable products for public healthcare systems and patients [158]. In
Europe, the commercialisation of nanotherapeutics is driven by start-ups and small- and
medium-sized enterprises [158]. Thus, there is a clinical need for bridging the gap between
the development of excellent health solutions and efficient production and development.

Microfluidic devices are microscale fluidic circuits utilized to manipulate liquid at
the nanolitre scale. Fine control of process parameters afforded by microfluidics allows
unprecedented optimization of nanomedicine quality and encapsulation efficiency [159].
Automation improves the reproducibility that lacks using conventional technologies, such
as solvent evaporation, to produce nanomedicines. In addition, the continuous nature of the
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microfluidic process is inherently scalable, allowing optimization at low volumes, which is
advantageous with scarce or costly material [160]. However, the engineering of microfluidic
devices is complex, and there have been some barriers to commercializing these devices that
traditional fabrication methods, such as injection moulding using polydimethylsiloxane
(PDMS), have failed to address, for example, nonstandard user interfaces, complex control
systems, and high cost. However, these barriers may be overcome by 3D printing, which is
a more cost-effective technology that has shown a great improvement in terms of channel
resolution, and there are a variety of commercialised materials ready to use with ideal
properties, such as being transparent, nonfluorescent, and biocompatible [161]. The use
of PDMS chips for the manufacturing of nanomedicines has been extensively reviewed
previously [162].

However, the use of 3D printing to fabricate microfluidic devices capable of high-
throughput synthesis of nanomedicines with tuneable dimensions is feasible [163–168].
Utilising a high-resolution 3D printing process based on FDM or stereolithography, reliable
patterning of channel features with dimensions of ~200 µm has been demonstrated, result-
ing in the production of nanomedicines (<100 nm at a production rate of 4 mg/min) [169].
This can be achieved with a single device due to the engineering of flow-focusing mi-
crochannels with high aspect ratios, together with the seamless fabrication of high-pressure
fluidic ports for world-to-chip interfacing that supports large volumetric flow rates and
high-throughput nanoparticle synthesis [170].

3D printing microfluidic devices are capable of high-throughput synthesis of nanomedicines
with tuneable dimensions, resulting in an enormous advantage compared with the con-
ventional batch method [163–167,171,172]. Still, solvent and unencapsulated drug removal
remain a challenge for continuous manufacturing using these devices. The feasibility of
3D-printed microfluidic chips for the manufacturing of nanomedicines has recently been
demonstrated, and a few examples are illustrated [15,173]. Nifedipine-loaded polymeric
nanoparticles were engineered using 1000 µm in diameter channelled 3D-printed microflu-
idic chips made of either commercially available resin and SLA or cyclin copolymer olefin
and FDM. Particles exhibited a similar drug loading and particle size as those obtained
by conventional solvent evaporation [15]. Curcumin loaded in liposomes was manufac-
tured using FDM-printed chips with channels of 1000 µm in diameter. Liposomes with
about 200 nm in size and 99% encapsulation efficiency were obtained [174]. Glycyrrhetinic-
acid-loaded ethanolic liposomes were successfully prepared by FDM-printed T-shaped
microfluidic chips with round channels with 600 µm. Liposomes were 200 nm in size with a
63% drug encapsulation efficiency [173]. Sucrose decorated liposomes loaded with berber-
ine for breast cancer were successfully manufactured in an effective passive micromixing
with a “zigzag” bas-relief (Z-chip) and “split and recombine” channels (C-chip) [175]. Better
encapsulation efficiencies and lower particle size could be achieved with a smaller channel
diameter and more advanced channel geometry.

6. Conclusions and Future Perspectives

The applications of 3D printing in personalized medicine are unimaginable. Medicines
can be customized and adapted to patients’ needs. Solid dosage forms can be manufac-
tured by combining one or more drugs within the same solid dosage form to improve
patient compliance, facilitate deglutition, or fabricate a new tablet when no medication is
available. Regarding parenteral solid dosage forms and medical devices, 3D printing has
opened a new range of possibilities, such as implants and prostheses perfectly adapted
to the patient’s anatomy, such as metallic implants and cardiovascular stents. Semisolid
locally applied drugs also benefit from the personalization provided by 3D printing, for
example, to manufacture wound dressings adapted to the wound characteristic of the
patient, microneedles to transdermal delivering the drug to deeper regions of the skin,
or by printing medicated contact lenses with a sustained release profile to treat certain
diseases, such as glaucoma.
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The integration of nanotechnology-based drugs along with 3D printing (“nanoprint-
ing”) brings printed personalized nanomedicines within the most innovative perspectives
for the coming years [176–178], enabling continuous manufacturing through the use of
microfluidic chips, facilitating their translation into clinical practice. Finally, the combina-
tion of 3D printing with biopharmaceuticals opens multiple windows to improve current
therapies and develop further 3D cultures used in tissue engineering.

However, the reality is that the clinical translation of 3D printing is very slow. Very
few clinical trials are going on regarding the use of 3D-printed tablets to treat a specific
pathology for which there is no commercially available medicine. The main reasons behind
this fact are the complexity of using 3D printers at high-quality standards, the lack of clear
regulatory guidelines, the lack of trained personnel, and the lack of accessibility to good
manufacturing practice (GMP) printers that avoid cross contamination. The potential of 3D
printing for different medical needs has been widely demonstrated. However, most of the
published research has been performed with standard 3D printers that do not comply with
the regulatory requirements. For example, there is no assurance that cross contamination
cannot occur between the manufacturing of different dosage forms. This is a clear problem
when using FDM printers in which the different combinations pass through the same
extrusion nozzle, which can be challenging to clean. There are very few printers that
can operate under GMP conditions, but the prices at the moment are extremely high,
which limits their affordability to implement in clinical settings. Additionally, healthcare
personnel should receive suitable training to fabricate personalized medicines with high-
quality standards. For that, it is key to ensure knowledge transference from bench to clinical
settings and optimization of protocols to minimize variability batch-to-batch. Finally, the
main regulatory authorities, such as the Food Drug Administration (FDA), the European
Medicines Agency (EMA), and the Pharmaceuticals and Medical Devices Agency (PMDA),
should join together to draft a clear regulatory guideline to fabricate 3D-printed medicines
directly in clinical settings. The currently published drafts are unspecific with voids
that should be amended to guide healthcare personnel and researchers. After COVID,
a conformity assessment procedure for 3D printing and 3D-printed products used in a
medical context was issued and has paved the way for implementing 3D printing in
clinical practice. However, this applies mainly to 3D-printed medical devices rather than
medicines. Nevertheless, it is expected that in the next decade, 3D printing changes the
path of personalized medicines.
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