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Extension of low thrust propulsion to the Autonomous Coplanar Circular Restricted Four Body Problem with application to future Trojan asteroids missions.
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An Autonomous Coplanar Circular Restricted Four Body Problem (CRFBP) is considered, where the massless
body is a low-thrust spacecraft. “Natural” and “artificial” (i.e. created with the use of continuous low-thrust
propulsion) equilibrium solutions are identified, that have the potential to be exploited in future science missions.
Results show that, with zero thrust, there are unstable equilibrium points close to the third primary. However,
artificial equilibrium points, displaced from the natural ones, can be generated with the use of constant low-thrust.
Furthermore, these points are proved to be stable in certain regions about the third primary mass. This is
particularly advantageous since it means that it would be possible to continuously maintain a spacecraft about
these strategic observation points, close to the smaller primary, without the need for state feedback control.
The Sun-Jupiter-Trojan Asteroid-Spacecraft system is considered, as a particular case of the Autonomous
Coplanar CRFBP. Curves of artificial equilibrium points are then identified. Furthermore, the stability analysis of
these points reveals the region where they are stable. In this region four bounded orbits close to the Asteroid are
proved to exist, that can be reached and maintained with a constant low-thrust lower than 10µN .
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I. INTRODUCTION

The use of continuous low-thrust propulsion in four
body systems could enable a range of potential appli-
cations for several fields such as space physics, human
exploration, planetary science, asteroid observation
and many more.

The present studies on the dynamics of four body
problem fall into two general categories:

• where the CRFBP is analyzed as a perturbed Three
Body Problem (Hill’s approximation). In this case
the fourth body is set to be at a large distance from
the other assumed three bodies such that it can be
considered a perturbation.
Two examples of this case can be found in
Scheeres [1], and the bicircular model considered
by Cronin et al.[2], where both models are used to
approximate the dynamics of the Sun-Earth-Moon-
Spacecraft system;

• where two or three of the primary masses are set to
be equal and the planets are in a particular configura-

tion such as the Symmetric, Collinear CRFBP
(see [3] or [4]). Generally speaking these systems
are motivated by mathematical interest rather than a
particular application.

On the other hand, the use of continuous low-thrust
propulsion, has so far been confined to two and three-
body systems. Space mission design for low thrust
spacecraft has been extensively investigated from the
late 1990’s. So far the two major types of low-thrust
propulsion, which have been studied in this context,
are solar sails and solar electric propulsion (SEP), the
latter considered in this paper.
Research on this topic are, at present, mainly focussed
on finding artificial equilibria as in [5], [6] or [7],
on generating periodic halo orbits (see, for example,
[8], [9] or [10]), or on the systematic cataloguing of
non-Keplerian orbits as in [11].

In this paper the interaction between these two
relatively new topics is considered and explored both
for mathematical interest as well as to identify possible
applications for mission design.
To this end an Autonomous Coplanar CRFBP is analy-
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zed, with the objective of identifying completely new
orbits for future mission applications.
A low-thrust spacecraft is assumed, on the basis of
the technical capability of the QinetiQ thrusters [12],
which can generate a thrust of approximately 250mN .
Moreover we assume a capability of 300mN maxi-
mum thrust to account for feasible future advances in
low-thrust propulsion systems.

Results show that, with zero thrust, there are
unstable equilibrium points close to the third primary.
However, artificial equilibrium points, displaced
from the natural ones, can be generated with the use
of constant low-thrust. Furthermore, these points
are proved to be stable in certain regions about the
smaller primary. This is particularly advantageous
since it means that it would be possible to maintain a
spacecraft around strategic observation points about
the third primary continuously without the need for
state feedback control.

Finally, the particular case of the Sun-Jupiter-
Asteroid-Spacecraft Autonomous Coplanar CRFBP is
analyzed. In this case the third primary mass is taken
to be small to reflect estimates of asteroid masses
predicted to be trapped at the triangular Lagrangian
points of the Sun-Jupiter-Spacecraft system. Curves
of artificial equilibrium points are then identified.
The stability analysis of these points reveal the region
where they are stable.

This investigation could potentially be useful for
designing missions to the Jupiter Trojans. This set of
asteroids, captured around the L4 and L5 points of the
Sun-Jupiter-Spacecraft system, has been recognized as
present target for space science missions; furthermore,
understanding them may lead to clues to the origin and
dynamical evolution of Jupiter itself [13]. Currently,
the Trojan Asteroids are completely unexplored and
largely unknown and any visit by a spacecraft will
revolutionize our current understanding of these bodies
[14]. Moreover, this paper highlights the possibility to
maintain strategic observation points close to a Jovian
Trojan with reduced requirements on fuel and without
the need for a state feedback control.

II. THE AUTONOMOUS COPLANAR CRFBP

The Autonomous Coplanar Circular Restricted Four
Body Problem (CRFBP) is the problem of describing
the dynamics of the motion of a “zero mass” body
PS subject to the gravitational field generated by an
assigned three body system (P1, P2 and P3) on a
two dimensional space. In this paper we analyze this
problem with the additional assumption that the third

Primary P3 has to be small enough such that it does
not effect the motion of the other two massive bodies
(and, for this reason, it will be identified hereafter with
the generic name of “Asteroid”).
The position of the Asteroid is set to correspond
to one of the triangular Lagrangian points of the
P1−P2−Spacecraft Restricted Three Body System,
which means that the Primaries form an equilateral
triangle. It is well known, in fact, that these points
are stable for values of the mass parameter µ smaller
than Routh’s critical mass −9±

√
69

18 in non-dimensional
units [15].

Moreover the orbits of the three Primaries are taken
to be circular, revolving around the barycenter of P1

and P2 with constant angular velocity ω such that,
choosing a frame of reference Ox,y , centered in the
center of rotation and revolving with the same angular
velocity ω of the bodies, the three masses are fixed. The
units of distance and mass are then scaled with the dis-
tance between P1 and P2 and the sum of their masses
respectively, while the gravitational constant G and the
rotational velocity ω are set to be one.
In this non dimensional units let µ, 1 − µ and ε be the
scaled mass of P2, P1 and P3 respectively:

µ = m2

m1+m2

1− µ = m1

m1+m2

ε = m3

m1+m2

As the planets are fixed and the origin of the system
of reference is set in the barycenter of the major pri-
maries, we can, without loss of generality, take the po-
sition of P1 and P2 to be (−µ, 0) and (1−µ, 0) respec-
tively, which implies that the position of the Asteroid
(see [16]) must be (Lx, Ly) = ( 1

2 −µ,
√

3
2 ) as in Fig.1.

P3H
1

2
-Μ,

3

2
L

P1 H-Μ,0L P2H1-Μ,0L

PS Hx,yL

Unit of measure 1 = 106 Km

y

x0.2 0.4 0.6 0.8-0.2-0.4-0.6-0.8 1-1

0.2

0.4

0.6

0.8

-0.2

-0.4

-0.6

-0.8

1

-1

Figure 1: The Autonomous Coplanar CRFBP; in a ro-
tating frame of reference, the planets are fixed and
form an equilateral triangle.
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The dynamics of the massless spacecraft (whose po-
sition is expressed in non-dimensional cartesian coor-
dinates x, y) is described by the system:{

ẍ = 2ẏ − ∂Ω
∂x

ÿ = −2ẋ− ∂Ω
∂y

(1)

were the augmented or effective potential is:

Ω = −
x2 + y2

2
−

(1− µ)

r1
−

µ

r2
−

ε

r3

the distance of the spacecraft from each of the three
primaries is:

r1 =
√

(x+ µ)2 + y2

r2 =
√

(x+ µ− 1)2 + y2

r3 =
√

(x− Lx)2 + (y − Ly)2

∂Ω
∂x (∂Ω

∂y ), denotes the partial derivative of Ω with
respect to x (y), while the “dot” denotes the differenti-
ation with respect to time.

In order to find the equilibrium points of the system,
the velocities ẋ, ẏ and the accelerations ẍ, ÿ are set to
be zero in (1) obtaining:{ ∂Ω

∂x = 0
∂Ω
∂y = 0

(2)

Or equivalently


x− (1−µ)(x+µ)√
(x+µ)2+y2

3 −
µ(x−(1−µ))√

(x−(1−µ))2+y2
3

− ε(x−Lx)√
(x−Lx)2+(y−Ly)2

3 = 0

y − (1−µ)y√
(x+µ)2+y2

3 −
µy√

(x−(1−µ))2+y2
3

− ε(y−Ly)√
(x−Lx)2+(y−Ly)2

3 = 0

(3)

The green, continuous and the blue, dashed lines in
Figure 2 represents the first and the second equation of
system (3) respectively; the two lines intersect only six
times forming the equilibrium points of the system as
it would become clear zooming in as in Figure 3.

Asteroid

Sun Jupiter

M1 M2M3

M4

M5

M6

Spacecraft

200 400 600 800-200 0-400-600-800
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800
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-800

Unit of measure 1 = 106 Km x

y

Figure 2: Equilibrium Points; the six intersections of
the lines are the solutions of system (3): the equi-
librium points of the system.
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Figure 3: Equilibrium Points; zooming on the Asteroid
and the two equilibrium points close to it.

The qualitative dynamics close to the asteroid do not
change for different masses ε ∈ (0, µ) of the Asteroid
in that there are always two equilibrium points config-
ured approximately at the same angle relative to the as-
teroid. However, quantitatively, as the mass increases
the equilibrium points are displaced further from the
asteroid, as shown in Figure 4. Thus, we would con-
clude that the only assumption on the mass of the As-
teroid is that it has to be small enough such that it does
not affect the motion of the other two Primaries.

3

2

1

3

2
1
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1
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Figure 4: Equilibrium Points; ∀ε ∈ (0, µ) the two lines
intersects twice in the region close to the Asteroid.

Hereafter, for simplicity of notation, (xe, ye) will
indicate a generic equilibrium solution of system (3).

III. STABILITY ANALYSIS

For the stability analysis a translation of the coordi-
nates to the generic equilibrium point (xe, ye) is per-
formed. {

x′ = x− xe
y′ = y − ye

(4)

For simplicity of notation the indices above x′ and y′
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are ignored.
The linearized motion close to the point (xe, ye) is:

ẋ = vx
ẏ = vy
v̇x = 2vy + αx+ χy
v̇y = −2vx + χx+ βy

(5)

with

α = 1 +
(1−µ)

[
2(xe+µ)

2−ye2
]

√
(xe+µ)2+y2e

5 +
µ
[
2(xe+µ−1)2−ye2

]
√

(xe+µ−1)2+y2e
5

+
ε
[
2(xe−Lx)2−(ye−Ly)2

]
√

(xe−Lx)2+(ye−Ly)2
5

β = 1 +
(1−µ)

[
−(xe+µ)

2+2ye
2
]

√
(xe+µ)2+y2e

5 +
µ
[
−(xe+µ−1)2+2ye

2
]

√
(xe+µ−1)2+y2e

5

+
ε
[
−(xe−Lx)2+2(ye−Ly)2

]
√

(xe−Lx)2+(ye−Ly)2
5

χ = 3

{
(1−µ)[(xe+µ)ye]√

(xe+µ)2+y2e
5 +

µ[(xe+µ−1)ye]√
(xe+µ−1)2+ye+25

+
ε[(xe−Lx)(ye−Ly)]√
(xe−Lx)2+(ye−Ly)2

5

}

Therefore the four eigenvalues of the system are:

Ψ1,2 = ±

√
−(4−α−β)+

√
(4−α−β)2−4αβ+4χ2

2

Ψ3,4 = ±

√
−(4−α−β)−

√
(4−α−β)2−4αβ+4χ2

2

(6)

It can be shown that, fixing a specific mass ε ∈ (0, µ)
for the Asteroid, and evaluating the eigenvalues corre-
sponding to both the equilibrium points, only one of
them will have positive Real part, which implies that
the natural equilibrium points are both saddle×center
points, i.e. linearly unstable, and therefore nonlinearly
unstable.

Evaluating the eigenvalues for the Sun-Jupiter-
Trojan Asteroid-Spacecraft system, where the mass of
the Asteroid is set to be 1015Kg (reasonable, since the
total mass of all the Trojan Asteroids is equal to 0.0001
times the mass of the Earth∼ 5.9736×1020Kg). Then,
as expected, both the equilibrium points M4 and M5

are unstable.
In particular, in non dimensional units, evaluating them
in M4 = (M4x ,M4y ) = (0.499044; 0.866021) yields:

Ψ1,2 = ±2.07049
Ψ3,4 = ±2.50695i

While for M5 = (M5x ,M5y ) = (0.499049; 0.86603)
we find:

Ψ1,2 = ±2.07047
Ψ3,4 = ±2.50693i

IV. THE LOW-THRUST AUTONOMOUS
COPLANAR CRFBP

The idea of this paper is to investigate the dynamics of
a low-thrust spacecraft in the Autonomous Coplanar

CRFBP. Using the thrust propulsion our spacecraft can
create artificial equilibrium points suitable for Asteroid
observation missions. In addition a subset of these
novel equilibrium points are proved to be stable such
that the motion will remain bounded in a small region
about them, with relatively low fuel requirements and
without the need for a state feedback control.

Given a maximum thrusting capability F expressed
in mN , which can be developed by the spacecraft, and
an approximate weight for the spacecraft Ws, eval-
uated in Tons, the maximal acceleration in the non-
dimensional units is given by:

a
nondim

= F
Ws

mN
T = F×10−6

Ws
· ms2

= F×10−6

Ws
· Kgm2

m3

Kg·s2

= F×10−6

Ws

d2P1/P2

(m1+m2)
1
G

(7)

where dP1/P2
means the distance in meters between the

two major Primaries.
Indicating the acceleration with an̂ = axx̄+ayȳ where

a =
√
a2
x + a2

y is the magnitude and n̂ is the direction
of the acceleration itself, a will therefore be contained
in (0; a

nondim
).

As mentioned in previous sections, an optimistic
but realistic, “near term”, reachable maximal thrusting
power F is taken to be 300mN .
In order to estimate the range of possible acceleration
on the spacecraft we fix it’s mass to be 1T .
For the Sun-Jupiter-Trojan Asteroid-Spacecraft system
the non-dimensional value of the maximum accelera-
tion anondim will therefore be 1.36765.

Moreover the acceleration has to be constant in the
direction of the perturbation, namely

∂

∂x
(an̂) =

∂

∂y
(an̂) = 0 (8)

Adding low-thrust to system (1) it becomes:{
ẍ = 2ẏ − ∂Ω

∂x + ax
ÿ = −2ẋ− ∂Ω

∂y + ay
(9)

with

Ω = −x
2+y2

2 − (1−µ)
r1
− µ

r2
− ε

r3

a =
√
a2
x + a2

y ≤ anondim

r1 =
√

(x+ µ)2 + y2

r2 =
√

(x+ µ− 1)2 + y2

r3 =
√

(x− Lx)2 + (y − Ly)2

Again, to find the equilibrium points, the velocities
ẋ, ẏ and the accelerations ẍ, ÿ are set to be zero in (9),
obtaining:
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{
ax = ∂Ω

∂x

ay = ∂Ω
∂y

(10)

That can also be seen as:

{
a = |∇Ω|
n̂ = − ∇Ω

|∇Ω|
(11)

System (11) states that, in order to get a new
equilibrium point, the acceleration on the spacecraft
due to the thrusters has to be equal in magnitude
(first equation) but opposite in direction (second
equation) to the acceleration on the spacecraft due to
the gravitational field at that point.

V. STABILITY ANALYSIS OF THE
LINEARIZED SYSTEM

Notice that, with a constant thrust, system (9),
once linearized, is equal to the linear system in (5)
and therefore the linear stability of the equilibrium
points resulting from system (11) will be given by the
analysis of the eigenvalues in (6).

By the Lyapunov Stability theorem (see for example
[17]), in order to obtain a linearly bounded motion,
the eigenvalues must have Real part less than or equal
to zero. In our case, recall (6), we cannot have a non
zero Real part, as it would imply that Re(Ψ1) > 0 or
Re(Ψ2) = Re(−Ψ1) = −Re(Ψ1) > 0 and/or the
same for Ψ3,Ψ4, thus leading to a saddle × saddle
or a saddle × center unstable equilibrium point
respectively.
Therefore, in this case, it is only possible to have
linearly bounded motion where Re(Ψk) = 0,
k = 1, 2, 3, 4

Thus, recalling (6), the conditions for the four
eigenvalues to be purely Imaginary are:

{
(4− α− β)2 − 4αβ + 4χ2 ≥ 0

−(4− α− β) +
√

(4− α− β)2 − 4αβ + 4χ2 ≤ 0
(12)

System (12) is satisfied by the “stable zone” of
Figure 5.
In particular the first inequality of the system is verified
by the points outside the dark-green, dashed line, while
the second by those outside the green, continuous line.
The intersection of these two zones, namely the
external part of the “four leaf clover” zone, is then the
area in which the linearized motion is stable. Notice
that, as shown before, the equilibrium points M4 and
M5 are linearly unstable.

Asteroid

M4

M5

Unstable zoneStable zone

388.387 388.402 388.418 388.433 388.449

674.003

674.018

674.034

674.049

674.065

674.08

674.096

Unit of measure 1 = 106 Km x

y

Figure 5: Linearly stable-unstable zones; system (12) is
satisfied by the points outside the “four leaf clover”,
the linearly stable zone.

Of course there exist an external limit of the linearly
stable zone as represented in Figure 6. In particular the
first inequality of the system is verified by the points
between the dark-green, dashed lines, while the second
by those between the green, continuous lines. The in-
tersection of these two zones is then the actual area in
which the linearized motion is stable.

Unstable zone

Stable zone

350.249 365.815 381.382 396.948 412.515 428.082

653.797

669.364

684.93

700.497

716.064

Unit of measure 1 = 106 Km x

y

Figure 6: The external stability boundary of the linearly
stable zone;(for displaying purpose the zone inside
the square is magnified by ∼ 50 times).

In the Sun-Jupiter-Trojan Asteroid-Spacecraft sys-
tem, the maximal possible thrust to remain within the
stability boundary will approximately be of magnitude
0.4826mN .
Anyway, in this paper, the actual thrust used is lower
than 10µN , that will enable to create artificial equilib-
rium points in the area between the two dark, purple
lines in Figure 7.

Four artificial equilibrium points A, B, C, D are
chosen in the linearly stable zone, at a distance from the
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unstable zone equal or higher than 2000km (see
Figure 7), since we want to remain as close as
possible to the Asteroid but far enough from the
unstable zone, such that even with injection errors
the spacecraft will remain in the stable zone (see Fig 7).

For the Sun-Jupiter-Trojan Asteroid-Spacecraft sys-
tem the four points are at a distance of approximately
15000km from the Asteroid.

Asteroid

M4

M5

Unstable zoneStable zone

A

B

C

D

388.387 388.402 388.418 388.433 388.449

674.003

674.018

674.034

674.049

674.065

674.08

674.096

Unit of measure 1 = 106 Km x

y

Figure 7: Adding the low-thrust; using a thrust lower
than 10µN , four equilibria A, B, C, D are cre-
ated in the stable zone, reachable with a thrust
∼ 0.0089mN .

To evaluate the thrust required to create an artificial
equilibrium point, for example in A = (Ax;Ay), the
computation of the gravitational field in this point is
needed.
In the Sun-Jupiter-Trojan Asteroid-Spacecraft system,
in non-dimensional units, it is:

ax = −Ax + (1−µ)(Ax+µ)√
(Ax+µ)2+A2

y

3 + µ(Ax+µ−1)√
(Ax+µ−1)2+A2

y

3

+ ε(Ax−Lx)√
(Ax−Lx)2+(Ay−Ly)2

3

= −0.0000195028

ay = −Ay +
(1−µ)Ay√

(Ax+µ)2+A2
y

3 +
µAy√

(Ax+µ−1)2+A2
y

3

+
ε(Ay−Ly)√

(Ax−Lx)2+(Ay−Ly)2
3

= −0.000035642
(13)

Such that the magnitude of required thrust is:

a =
√
a2
x + a2

y = 0.0000406289(∼ 0.0089mN)

(14)
This thrust is represented by the pink line in Figure 7

and, as we can clearly see, it is approximately the same
thrust required to create the other three equilibrium

points B, C and D.
We will analyze in detail the motion for A, since all
the four points have similar behaviors as we will show
graphically later on.

VI. INTEGRATING THE LINEARIZED MOTION

CallingA the Jacobian matrix corresponding to system
(5), namely:

A =


0 0 1 0
0 0 0 1
α χ 0 2
χ β −2 0

 (15)

The eigenvectors of the system are four vectors fj ∈
C4, j = 1, ..., 4 such that

Afj = Ψjfj, j = 1, ..., 6 (16)

Recalling that linearizing the system (9) yields the
linear system (5), whose eigenvalues are those in (6),
we take an equilibrium point within the linearly stable
zone (i.e. with purely imaginary eigenvalues), and thus
rearrange the eigenvalues in the form:

Ψ1 = λi
Ψ2 = −λi
Ψ3 = νi
Ψ4 = −νi

(17)

where

λ =

√
(4−α−β)−

√
(4−α−β)2−4αβ+4χ2

2

ν =

√
(4−α−β)+

√
(4−α−β)2−4αβ+4χ2

2

(18)

λ, µ ∈ R.

Being the eigenvalues two couples of complex con-
jugated values, the eigenvectors must be conjugated
too, namely f2 = f1

∗ and f4 = f3
∗, and therefore we

need just to find f1 and f3.

With a few algebraic manipulations it is possible to
calculate their explicit expressions:

f1 = [1,− χ
β+λ2 , 0,− 2λ2

β+λ2 ]T

+i[0, 2λ
β+λ2 , λ,− χλ

β+λ2 ]T

f3 = [1,−χ(α+ν2)
χ2+4ν2 , 0,− 2ν2(α+ν2)

χ2+4ν2 ]T

+i[0, 2ν(α+ν2)
χ2+4ν2 , ν,−χν(α+ν2)

χ2+4ν2 ]T

(19)

The matrix M of the change of coordinates which
diagonalize A will therefore be:
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M =


1 0 1 0

− χ

β+λ2
2λ

β+λ2
−χ(α+ν2)

χ2+4ν2
2ν(α+ν2)

χ2+4ν2

0 λ 0 ν

− 2λ2

β+λ2
− χλ

β+λ2
− 2ν2(α+ν2)

χ2+4ν2
−χν(α+ν2)

χ2+4ν2
)


(20)

Applying the transformation of coordinates M−1 on
X = [x, y, vx, vy]T , yields the new coordinates
ג = [ξ1, ξ2, ψ1, ψ2]T , namely:

ג =M−1X (21)

The transformation M is performed on the system
(5) to find it’s expression in the new coordinates:

ג̇ =M−1 Ẋ =M−1A X =M−1AM ג (22)

that can be rewritten as:

ג̇ = A′ ג with A′ =M−1AM (23)

Where A′ is:

A′ =


0 λ 0 0
−λ 0 0 0
0 0 0 ν
0 0 −ν 0

 (24)

Calling 0ג = [ξ0
1 , ξ

0
2 , ψ

0
1 , ψ

0
2 ]T the array of the initial

conditions of system (23), its solutions will be:

(t)ג = 0eג
A′t (25)

For the well known properties of the exponential of
a matrix, system (25) can be rewritten in a coordinate
form as:

ξ1(t) = cos (λt)ξ0
1 + sin (λt)ξ0

2

ξ2(t) = cos (λt)ξ0
2 − sin (λt)ξ0

1

ψ1(t) = cos (νt)ψ0
1 + sin (νt)ψ0

2

ψ2(t) = cos (νt)ψ0
2 − sin (νt)ψ0

1

(26)

Therefore the solution of system (9), given by
X(t) =Mג(t), are:

x(t) = ξ0
1 cos (λt) + ξ0

2 sin (λt) + ψ0
1 cos (νt)

+ψ0
2 sin (νt)

y(t) = − c
λ2+b (ξ

0
1 cos (λt) + ξ0

2 sin (λt))

+ 2λ
λ2+b (ξ

0
2 cos (λt)− ξ0

1 sin (λt))

− c(ν
2+a)

c2+4ν2 (ψ0
1 cos (νt) + ψ0

2 sin (νt))

+ 2ν(ν2+a)
c2+4ν2 (ψ0

2 cos (νt)− ψ0
1 sin (νt))

(27)

Notice that, evaluating x(0), y(0), vx(0) = ẋ(0) and
vy(0) = ẏ(0), as expected, yields:

x(0)
y(0)
vx(0)
vy(0)

 =M


ξ0
1

ξ0
2

ψ0
1

ψ0
2

 (28)

which is equal to (21) evaluated at t = 0.

These resulting orbits, solution of the linearized sys-
tem, are expressed in the system of reference translated
to the artificial equilibrium point xe, ye (recall (4))
such that they must be translated back to the barycenter
of P1 and P2.

a) after 1 Jovian year (∼ 12 Terrestrial years)

A

388.406 388.407 388.408 388.409 388.41

674.048

674.049

674.049

674.049

674.05

674.05

674.05

Unit of measure 1 = 106 Km x

y

b) after 2 Jovian years (∼ 24 Terrestrial years)

A

388.406 388.407 388.408 388.409 388.41

674.048

674.049

674.049

674.049

674.05

674.05

674.05

Unit of measure 1 = 106 Km x

y

c) after 12 Jovian year (∼ 150 Terrestrial years)

A

388.406 388.407 388.408 388.409 388.41

674.048

674.049

674.049

674.049

674.05

674.05

674.05

Unit of measure 1 = 106 Km x

y

Figure 8: The solution of the linearized system; the
purple, continuous line is the analytic solution of
the linearized system while the green, dashed line is
the numerical integration of the linearized system.
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The behavior of the analytic solution of the lin-
earized system, as shown by the purple, continuous line
in Figure 8 a), b), c), starting sufficiently close to the
point A, remains, as expected, bounded close to the ini-
tial point for a long period of time.
Just as a check, in the same graph the numerical in-
tegration is also performed represented by the green,
dashed line. As expected the numerical error (i.e. the
distance between the two solutions), although small,
increases with time confirming the analytical solution
and underlining the limits of the numerical method.

VII. INTEGRATING THE FULL
NONLINEAR SYSTEM

The next, final step is to investigate the full nonlinear
system in (9) and perform a numerical integration with
Mathematica using a Runge Kutta method, starting
sufficiently close to our point A. The result of the
integration, when starting with a null initial velocity, is
shown by the blue line in Figure 9.
The light purple, dashed line in the graph is, once
more, the analytic solution of the linearized system.
The comparison of the two solutions underlines that,
although quantitatively different, the qualitative dy-
namics behave in a similar, bounded way. As a result

A

388.406 388.407 388.408 388.409 388.41

674.048

674.049

674.049

674.049

674.05

674.05

674.05

Unit of measure 1 = 106 Km x

y

Figure 9: The bounded orbit around A; the blue, con-
tinuous line is the numerical integration of the non-
linear system, the purple, dashed line is the analytic
solution of the linearized system.

of the application of the same method to the points
B, C and D, the other three orbits are determined
that, starting sufficiently close to each point, remain
bounded around it.
In particular, for each of the four points, the motion
remains within the 2000km circular domain outside
the unstable zone as in Figures 10 and 11.

At last notice that, considering the couples A-C
and B-D, the behavior of the orbits in each couple is
very similar and furthermore the motion of the second
couple is bounded in an area smaller than the 2000km.

Asteroid

M4

M5

Unstable zoneStable zone

A

B

C

D

388.387 388.402 388.418 388.433 388.449

674.003

674.018

674.034

674.049

674.065

674.08

674.096

Unit of measure 1 = 106 Km x

y

Figure 10: The resulting orbits; thrusting∼ 0.009mN ,
each orbit remains in the 2000km domain.

a) Zooming on the orbit around the A point

A

388.406 388.407 388.408 388.409 388.41 388.411

674.047

674.048

674.049

674.05

674.051

674.051

Unit of measure 1 = 106 Km x

y

b) Zooming on the orbit around the B point

B

388.424 388.425 388.426 388.426 388.427 388.428

674.037

674.038

674.038

674.039

674.04

674.041

Unit of measure 1 = 106 Km x

y
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c) Zooming on the orbit around the C point

c

388.436 388.436 388.437 388.438 388.439

674.056

674.056

674.057

674.06

674.059

674.059

Unit of measure 1 = 106 Km x

y

d) Zooming on the orbit around the D point

D

388.417 388.418 388.419 388.419 388.42 388.421

674.066

674.067

674.068

674.069

674.07

674.07

Unit of measure 1 = 106 Km x

y

Figure 11: The four resulting bounded orbits; start-
ing close to each point we will remain within the
2000km circular domain outside the unstable zone.

VIII. SUMMARY

An Autonomous Coplanar CRFBP has been formu-
lated for both the purpose of mathematical interest
as well as to investigate potential applications in the
Sun-Jupiter-Trojan Asteroid-Spacecraft system.

A stability analysis of the linearized motion reveals
that the natural equilibrium points of the system are
unstable. A constant low-thrust is added to the space-
craft, which can generate a thrust up to 300mN . It is
then shown that a region of stable artificial equilibrium
points close to the Asteroid can be created using this
low-thrust propulsion.

As a result completely novel, bounded orbits
are proved to exist, that in the Sun-Jupiter-Trojan
Asteroid-Spacecraft system can be maintained with a
constant thrust lower than 10µN oriented in a fixed
direction. Furthermore these orbits remain within a
2000km circular domain inside the linearly stable
zone and approximately 15000km from the Asteroid.

In summary the possibility to maintain, with limited
fuel requirements, strategic, observational positions
close to an Asteroid is illustrated. This require-
ment is of huge importance for any discovery mission
either for observational, scientific or commercial fields.
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