
A Deep Learning Based Approach to Semantic
Segmentation of Lung Tumour Areas in Gross

Pathology Images

Matthew Gil1,2,4[0000−0003−2108−3274], Craig Dick2, Stephen Harrow3, Paul
Murray1[0000−0002−6980−9276], Gabriel Reines March1,2[0000−0003−0761−0592], and

Stephen Marshall1[0000−0001−7079−5628]

1 University of Strathclyde, Glasgow, UK
2 NHS Greater Glasgow and Clyde, Glasgow, UK

3 NHS Lothian, Edinburgh, UK
4 matthew.gil@strath.ac.uk

Abstract. Gross pathology photography of surgically resected speci-
mens is an often overlooked modality for the study of medical images
that can provide and document useful information about a tumour be-
fore it is distorted by slicing. A method for the automatic segmenta-
tion of tumour areas in this modality could provide a useful tool for
both pathologists and researchers. We propose the first deep learning
based methodology for the automatic segmentation of tumour areas in
gross pathological images of lung cancer specimens. The semantic seg-
mentation models applied are Deeplabv3+ with both a MobileNet and
Resnet50 backbone as well as UNet, all models were trained and tested
with both a DICE and cross entropy loss function. Also included is a
pre and post-processing pipeline for the input images and output seg-
mentations respectively. The final model is formed of an ensemble of all
the trained networks which produced a tumour pixel-wise accuracy of
69.7% (96.8% global accuracy) and tumour area IoU score of 0.616. This
work on this novel application highlights the challenges with implement-
ing a semantic segmentation model in this domain that have not been
previously documented.

Keywords: NSCLC · Semantic Segmentation · Gross Pathology Pho-
tography.

1 Introduction

Pathology photography can be a useful tool for documenting ground truth
anatomy before it has been distorted by the slicing processes that are used for
whole slide imaging (WSI). Segmentation of regions in pathology photographs
can therefore provide ground truth for the shape of an area, or volume if three di-
mensions are considered, of a particular anatomical region. Additionally, current
pathological assessment of tumour size, which is a strong predictor of patient
outcomes [14], is generally made by measuring the gross length of the tumour
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across its largest dimension by hand with a ruler which often has to be reeval-
uated at the time of microscopic assessment [26]. Automatic segmentation of
gross tumour area would provide a more reliable method of estimating the tu-
mour volume and cellular load which are the metrics that are being estimated
by gross measurements with a ruler. Additionally, if a method of automatic seg-
mentation of singular tumours is successful it could then be expanded to be used
to pick up other more subtle nodules that could be easily missed by the naked
eye but may have been seen in radiology images and if used in real-time this
would allow the pathologist to sample these nodules at the time of dissection.
An automatic segmentation method for non-small cell lung cancer (NSCLC) tu-
mours in gross pathology photographs, therefore, has both clinical and research
applications. The work in this study aims to produce and test a methodology for
the automatic semantic segmentation of lung tumours in pathology photographs
of specimens that have been surgically removed from patients with NSCLC.

The procedures generally used to capture gross pathology photographs have
been described in [17]. Best practices include placing the pathology specimens
on a background that provides a good contrast between the specimen and back-
ground. The specimen should be well-lit with lighting located to the sides of
the specimen as overhead lighting is more likely to cause reflections that may
obscure anatomy. Excess moisture should also be removed from the surface of
the specimen as this may obscure the underlying anatomy through the liquids
opacity or the increased reflections this may cause. The specimen should also
be well framed, in focus and the imaging plane should be the same as the slic-
ing plane. The International Association for the Study of Lung Cancer (IASLC)
recommends pathology photography as a standard part of pathology processing
for NSCLC specimen processing after neoadjuvant therapy [27].

Gross pathology photography has been applied in some studies to provide
the information necessary to transform WSI so that the geometry of the images
more accurately represents what would have been observed in-vivo. This has
often been for the application of registering images from the PET and pathology
modalities [12, 16]. Gross pathology photography has been used as an important
feature in many studies where regions are generally segmented by experienced
pathologists. These studies include investigations into the mechanical properties
of tissues[21], ablation treatment monitoring [29] and histologically diagnosed
cardiac sarcoidosis [15]. A semi-automatic vector quantisation based pathology
segmentation approach has been applied to segment regions of fibrosis in gross
photographs to determine the overall prevalence of fibrotic tissue in lymph nodes
[10]. Hyperspectral image based tumour segmentation has also been applied for
application in real-time tissue classification during laparoscopic surgery [2].

An area where gross pathology photography has been applied more exten-
sively than lung the lung cancer domain is skin lesion photography. There are
similarities between lung lesion photography and skin lesion photography that
make the greater catalogue of previous work on skin lesion segmentation relevant
to this study. One such example is the work by Y. Yuan et al. who produced
a fully connected (FC) convolutional neural network (CNN) based approach for
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skin lesion segmentation with a Jaccard distance based loss function with their
highest performing method consisting of an ensemble of six separate FC CNNs
[31]. Q. Ha et. al detail their work on skin lesion segmentation that achieved 1st
place in the 2020 SIIM-ISIC melanoma classification challenge [6]. Their method
involved using an ensemble-based model that averages the average pixel predic-
tion scores of models using various versions of EfficientNet, SE-ResNeXt and
ResNeSt as the network backbone. Also included was a thorough image aug-
mentation pipeline. Additionally, the ISIC skin lesion segmentation challenge [4]
has run every year from 2016 until 2020 so there is a large back-catalogue of skin
lesion segmentation methods all trained and tested on a standardised dataset.
A detailed review of the skin lesion segmentation literature can be found in [7]
which summarises 356 publications on skin lesion segmentation and 238 on skin
lesion classification published between 2011 and 2022.

At the time of writing, the authors are not aware of any deep learning based
semantic segmentation of gross pathology photographs of surgically removed
tumours for any region of anatomy, this is supported by a google scholar search
on 23/02/2023 using the key words "gross", "pathology", "deep", "learning" and
"segmentation". Therefore the main contribution of this work is establishing the
feasibility of this particular application of deep learning.

1.1 Loss Functions

The choice of loss function when training a deep learning based semantic seg-
mentation model can have a large impact on the performance of the model. This
is especially true for problems with unbalanced datasets where a model may
greatly focus on increasing the accuracy of the class with the most instances
causing the accuracy of segmentation of the underrepresented class to be low.
For this particular study and more generally in many oncology based segmenta-
tion problems, the tumour class is underrepresented compared to the background
class but would be considered a more important class to accurately segment. For
this reason, the choice of loss function is important in this study.

Cross entropy is a distribution-based metric used for solving optimisation
problems that has seen much use in deep learning applications [20]. Balanced
cross-entropy (BCE) loss was introduced to improve performance when training
models on unbalanced datasets that have more examples of a particular class
than others by adding a weighting to the contribution each class to the loss
function [30]. For binary classification problems, the balanced cross-entropy loss
is expressed by equation 1 [25].

LBCE(y, ŷ) = − 1

N

N∑
n=1

(βynlog(pn) + (1− β)(1− yn)log(1− pn)) (1)

Where LBCE is the balanced cross-entropy loss, N is the total number of
individual pixels n. yn is a ground truth pixel value, pn is a predicted pixel
probability outcome and β is a factor used to apply a weighting to the classes.
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The DICE score was first proposed for use as a loss function for two class
segmentation problems by Milletari et al. [13]. This was expanded to the gener-
alised DICE loss function for multi-class classification problems by C. H. Sudre
et al. [25]. As the problem presented in this study is a two-class classification
problem, only the standard DICE loss function is required. This is described in
equation 2 where LDICE is the DICE loss [25].

LDICE(yn, pn) = 1−
∑N

n=1 2ynpn∑N
n=1 yn +

∑N
n=1 pn

(2)

2 Methods

Unless mentioned otherwise, any computational steps applied in the following
sections were applied using MATLAB ver R2022b (The MathWorks, Inc.).

2.1 Datasets

The data for this study comes from two separate datasets. Both datasets con-
sist of photographs of lung specimens that have been surgically resected from
patients with NSCLC. The specimens were all sliced as they would be for WSI
and photographs were taken of the slices. Manual segmentations of the tumour
boundary were produced by an expert pathologist using the software ImageJ
[24].

The first dataset, referred to from now on as dataset-A, contains gross pathol-
ogy photographs that were sliced and segmented using non-standard approaches.
The lung specimens from this dataset consist of entire lung lobes that were in-
flated with agar in an attempt to create a better correlation between the shape
of the ex-vivo specimens with their in-vivo shape. The lung specimens were
then suspended in agar, so that the three-dimensional information was preserved
through the slicing process, and sliced at 5mm intervals with photographs being
taken after every slice was removed. During the collection of this dataset, care
was taken in the lighting of the samples as well as partially drying the samples
so that minimal reflection and maximum tissue contrast could be produced. An
example of a photograph and its corresponding manual segmentation can be seen
in figure 1. More information on the data gathering and pathology processing
procedures for dataset-A can be found in [18].

The second dataset, which will be referred to as dataset-B, consists of pathol-
ogy specimens that were sliced and photographed freehand with only the stan-
dard pathology lab lighting used to light the specimens. In this dataset, less care
was taken to remove excessive moisture and reflections on the samples meaning
these photographs are of poorer quality than dataset-A. The number of patients
and images in each dataset is summarised in table 1.

Examples of gross pathology photographs from four separate patients are
shown in figure 2. This shows the variability in the tumours and some of the
different features that can be seen. For example figure 2 (b) shows a tumour
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Fig. 1. An example of (a) a gross pathology photograph and (b) its corresponding
manual tumour segmentation from dataset-A.

Table 1. Pathology photograph dataset information.

Dataset Number of
Patients

Number of
Images

Dataset-A 9 64
Dataset-B 6 52

Total 15 116

with a large necrotic core whereas figure 2 (d) shows a tumour with no necrotic
regions. Figures 2 (a),(b) and (d) all display regions with increased red or pink
colour, this is due to the tumour reducing the quality of fixation in these regions.
Figure 2 (c) shows an example where the tumour is displaying poorer contrast
to the healthy tissue than the other examples, likely due to this example being
an adenocarcinoma tumour.

2.2 Image Pre-processing and Data Augmentation

Before the pathology images and labels were used in training some pre-processing
steps were applied.

Non-Tissue Background Removal Many of the images contain a large level
of background area compared to the area of lung tissue. This was reduced by
manually cropping the images down to a rectangular shape closely bounding
the lung tissue. The aim of this step was to reduce the computational load of
training the models by decreasing the image sizes and to get the CNN to focus
more on areas of the lung specimen.

In all of the pathology photographs, the non-tissue background is well distin-
guished from the tissue regions of the image. This allows for the application of
non-learning based segmentation techniques to create a mask that removes the
background regions. As the pathology samples in dataset-A and dataset-B were
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Fig. 2. Examples of tumour regions in gross photographs for four separate patients.

prepared using different methodologies, the background regions in both datasets
are reasonably different. Dataset-A contains only regions of agar, these regions
are of a similar colour to much of the tissue regions. The tissue has also been
inflated with agar causing there to be regions of agar within the outer tissue
boundary. This means a colour-based approach to background segmentation is
not appropriate. Here we use spectral residual saliency detection approach as
described in [11]. This was applied in MATLAB using methods adapted from
[23].

Dataset-B contains samples either taken on a pathology slicing board or the
perforated metal pathology workstation. There are also often separate objects
such as rulers contained within the images. These images are less suited to the
spectral residual approach used for dataset-A but work well with a colour-based
approach due to the clear colour contrast between the tissue and non-tissue
regions of the image. For dataset-B a k-means clustering approach [1] is applied
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for colour segmentation where in this case k = 2. The parameters used in the
k-means clustering algorithm are shown in table 2.

Table 2. K-means segmentation parameters

Parameter Value
k 2

Number of clustering repetitions 3
Max Iterations 100

Accuracy Threshold 1.00e-04

Once a non-tissue background mask was produced it was used to set all the
pixels of the non-tissue background to intensity values of zero.

Data Augmentation The images were then converted to patches of size 224×224
for use with the neural network. When converting the images to patches, an
overlap of 50% was introduced in both the x and y image directions to conserve
spatial information occurring at the borders of the patches [8]. This produces
four times more patches than when the overlap is not included so it should be
noted that the network is seeing the same data four separate times over one
epoch of training on the patches.

A random rotation of the images between 0 and 360 degrees and a random
zoom between 0.8 and 1.5 times was applied to the images after every epoch
of training. The zoom here is important as the photograph height above the
pathology samples is not standard so there is a variation in the zoom level
within the datasets.

2.3 Segmentation Model

For the semantic segmentation task, an ensemble-based deep learning approach
was applied. This involved training multiple separate deep-learning models and
combining the output segmentations into a single averaged segmentation. This
was followed by post-processing of the ensemble model output through back-
ground masking and morphological steps to improve the output segmentation.
The full workflow of the final model is shown in figure 3 and described in the
following sections.

Several different network architectures were applied to the problem. Deeplabv3+
[3] was applied with both a ResNet50 [9] and MobileNetv2 [22] backbone as well
as UNet [19] with an encoder depth of 4. All of these networks were applied with
a binary pixel classification output with the pixel classifications as "tumour" or
"background". This means that both healthy lung tissue and the non-biological
content (slicing table etc.) of the image were included in the background class.
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Fig. 3. The full ensemble model workflow.

All of the network architectures were trained with both weighted cross entropy
and DICE loss functions. All of the models used pre-trained weights from Ima-
geNet [5]. As the content of ImageNet is greatly different from the content of the
datasets in this study, none of the layers of the models were frozen as is often
done for transfer learning.

The dataset was split into training and test sets by patient so that images
from one patient were only used for either training or testing. This is important
as the different slices from the same patient contain similar features, such as
the colour of the tumour and healthy tissue, that would bias the results if they
were included in both training and test sets. Using this approach, the data was
split into a training set containing 12 patients images and a test set containing
3 patients images. Using this approach causes the number of images in both the
training and test sets to change depending on which patients images were used
as there were more images available for some patients than others. This method
generally created a split of around 96/20 images in the training/test sets. A 5-
fold cross-validation approach was applied where all of the models were trained
separately on different sets of 12 patients and tested on the three that were not
included in the training set with the three test patients changing every fold. This
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allows for the model to be tested on the full dataset. The training parameters are
shown in table 3. All of the network training was performed on a single NVDIA
GeForce GTX 1080 Ti graphics card.

Table 3. Network training parameters for the individual models trained.

Model Network
Architecture

Loss
Function

Initial
LR

Drop
Rate

Drop
Factor Epochs

1 DeepLabV3+ ResNet50 BCE 0.001 5 0.2 20
2 DeepLabV3+ ResNet50 DICE 0.001 5 0.2 20
3 DeepLabV3+ MobileNetv2 BCE 0.001 5 0.2 20
4 DeepLabV3+ MobileNetv2 DICE 0.001 5 0.2 20
5 Unet (Encoder Depth: 4) BCE 0.001 5 0.2 20
6 Unet (Encoder Depth: 4) DICE 0.001 5 0.2 20

In addition to applying the models individually, an ensemble-based approach
was taken. To achieve this the individual pixel prediction probability outputs of
each individual network in table 3 were simply averaged.

2.4 Image Post-Processing

The deep learning models often correctly segment the region of tumour in the
input image but also labels some separate erroneous regions as tumour. These
incorrect regions can usually be removed through some morphological operations
that can be applied based on what is known about the task to improve the
segmentation results. The morphology steps are detailed in the list below:

1. Small objects with a size of fewer than 5000 pixels are removed from the
image (for reference, pixels are generally around 0.1x0.1mm).

2. A morphological closing operation is applied using a circular structuring
element with a radius of 20 pixels.

3. Any holes in the remaining objects are filled.
4. The total number of pixels in each remaining object is calculated. Only the

object made of the most pixels is kept as the final tumour segmentation.

Step 1 is applied to remove small isolated regions that were classified as tu-
mour as these are almost always incorrect classifications, this step also improves
the performance of all of the following steps. Steps 2 and 3 in the list above
are required because many NSCLC tumours contain necrotic cores. These re-
gions are pathologically and visually different from non-necrotic areas of tumour
which, combined with the fact that there are few different patient examples in
the datasets, causes them to be often misclassified as non-tumour. Simply clos-
ing and filling the tumour region generally fixes this problem. Step 4 can be
applied as we know that the images in our dataset are from patients with one
large NSCLC tumour.
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3 Results

3.1 Segmentation Metrics

The results of the 5-fold cross-validation are shown in tables 4 and 5 for datasets
A and B respectively. Generally for both datasets the ensemble model outper-
forms the individual models. Including the morphology steps improves the en-
semble results across all of the metrics showing that for this particular applica-
tion it is worthwhile to include them. The results on dataset-B are considerably
lower than those in dataset-A. This is expected due to the lower quality of images
in dataset-B.

Table 4. Results from testing on dataset-A.

Model Global
Accuracy (%)

Tumour
Accuracy (%)

Tumour
IoU

Background
IoU

1 93.9 69.3 0.486 0.905
2 89.9 58.7 0.332 0.854
3 91.9 57.4 0.396 0.876
4 88.1 52.3 0.262 0.832
5 90.3 56.6 0.366 0.884
6 87.2 52.3 0.296 0.826

Ensemble 95.7 63.8 0.521 0.923
Ensemble + Morphology 96.8 69.7 0.616 0.940

Table 5. Results from testing on dataset-B.

Model Global
Accuracy (%)

Tumour
Accuracy (%)

Tumour
IoU

Background
IoU

1 81.5 68.7 0.388 0.731
2 84.2 50.0 0.349 0.757
3 85.9 65.7 0.503 0.788
4 86.7 60.3 0.427 0.790
5 81.7 60.4 0.327 0.725
6 80.9 57.1 0.351 0.743

Ensemble 88.8 67.9 0.493 0.817
Ensemble + Morphology 89.2 68.6 0.504 0.822

3.2 Segmentation Examples

There is a large variety in the quality of the segmentation output of the ensem-
ble model depending on the input images, some examples of this are shown in
figure 4. Figure 4 (a.i) shows an example of a correct segmentation result on a
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tumour with good contrast between the healthy tissue and tumour tissue. The
tumour boundary in image (a.ii) aligns very closely with the ground truth mask
producing an IoU of 0.956 for this image.

Figure 4 (b.i) shows an example of a partially correct segmentation where
an area of necrosis has caused errors. This example has an IoU of 0.439 for the
tumour class. The segmentation contour in this image outlines the region of
lighter tissue which corresponds to the living tumour area. The necrotic area is
not included in the segmentation output but is part of the ground truth tumour
area as seen in image (b.ii). The model tends to misclassify necrotic regions as
non-tumour as there are not many examples of heavily necrotic tumours in the
training datasets and the coagulated blood that appears in this region also often
appears in areas of healthy tissue. In other necrotic examples, this can be fixed
by the post-processing morphology steps but in this case, as the living tumour
area does not fully enclose the necrotic region, these steps do not solve this
problem.

Figure 4 (c.i) shows an example of a failed segmentation with a tumour IoU of
only 0.035. Upon analysing this image within the context of the dataset it is seen
that image is from one of only two patients that had an adenocarcinoma tumour
in the datasets. Adenocarcinoma has a lepidic pattern of growth causing it to be
less contrasted against healthy tissue in gross images than other types of NSCLC.
All other images from this patient and the other patient with adenocarcinoma
have a similarly failed segmentation. It is clear from this that the dataset would
need to be expanded to include more adenocarcinoma examples.

4 Discussion

The classification of the entire pathology of the lung into the two categories of
tumour and non-tumour is an oversimplification that presents some problems for
the segmentation model. This is most notable with adenocarcinoma tumours that
are generally not recognised as tumours. Additionally, necrotic regions within the
tumour are often misclassified as non-tumour regions. This can generally be fixed
through the use of morphological image processing steps but it still highlights a
problem with the ground truth data. This would be improved by increasing the
dataset size to include more patients as the small dataset used in this study, with
only 15 separate patients, included only a few examples of different pathological
features such as adenocarcinomas and necrotic regions. A dataset containing a
similar number of images that were all from unique patients would likely increase
the performance of the trained models as this would allow the model to learn a
more comprehensive array of pathological features. In the skin lesion photograph
segmentation domain, large datasets such as the HAM10000 dataset [28], which
contains 10000 images and ground truth segmentations of skin cancer lesions,
allowing for highly accurate models to be produced. In addition to increasing
the dataset size, it may be beneficial to increase the number of classes used for
the segmentation to include different types of tissue though this would require
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Fig. 4. Three segmentation examples from separate patients are displayed. (a) shows
a good segmentation example, (b) shows a partially failed example due to a necrotic
region and (c) shows a fully failed segmentation due to the tumour being an adenocar-
cinoma. Images denoted with (i) are the original test images zoomed in on the tumour
area and images denoted with (ii) are the ground truth tumour segmentations. All
images have the automatic segmentation contour overlayed (green line).
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a time-intensive process of manual segmentation to produce the ground truth
labels.

The final results for dataset-A produced better scoring metrics than those
produced from dataset-B. This is unsurprising as, for the reasons described in
section 2.1, the images in dataset-B are of poorer quality than those in dataset-A.
This reduced image quality will increase the difficulty of segmentation first due to
the image features being obscured and secondly due to there being fewer of these
images of low quality in the overall training datasets. For further development
and application of a system for the automatic segmentation of gross pathology
photographs, care should be taken to ensure a high image quality by following
the photography steps outlined in [17], though the inclusion of lower quality
images in the training set may be beneficial to increase the robustness of the
model.

For applications in clinical use, it may be beneficial to include some user
input to produce a semi-automatic segmentation to decrease the chance of errors
and improve overall accuracy. This could involve simply selecting the correct
region from the output of the model to remove some of the morphology steps
or marking some tumour or background pixels to be input to the network. The
decision to choose a fully or semi-automatic approach would depend on the
specific application and pathology workflow that the model is to be included in.

5 Conclusion

In conclusion, deep learning-based methods for semantic segmentation have been
applied to the novel application of automatic segmentation of tumour areas in
gross pathology photographs of specimens from patients with NSCLC. A pipeline
for image preprocessing, model training and post-processing of the segmentation
output has been detailed and validated. This work has proven the possibility of
achieving this goal as well as highlighting some challenges for producing a fully
robust system. The main barrier to improving the performance is a lack of data
where the model produced in this work produced good results on more common
tumour examples, tumours with less common features were poorly segmented.
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