






the improved design, but the rest of the cost items

are more or less inflexible.

6.4 The 16 kn container ship design

An even slower design travelling at 16 kn with a

capacity of about 5000 TEUs was also investigated.

This resulted in a ship with the particulars given in

Table 4. It is an extreme container ship design, com-

ing closer to slow cargo ship designs. Employing

the traditional naval architecture methodology, the

design specifications and the owner’s requirements

were transformed into requirements for the lines

plan. The hull design was developed using data

from the well-known FORMDATA Series [37, 38].

The preliminary body plan of the design is shown in

Fig. 18, and the corresponding capacity plan in

Fig. 19. The capital cost in this case was reduced

both for the reduction in the machinery cost and for

the reduction in the steel cost. The latter was

assumed to be reduced by a factor of 3.5 3 103 US$/

ton, resulting in a reduction of US$9 3 106 on top of

Fig. 15 The total TEU capacity as a function of the cross-section capacity

Fig. 14 GA of the reference container ship

Fig. 16 Reference ship voyage cost breakdown
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the machinery cost savings. The 16 kn improved

design voyage cost breakdown is shown in Fig. 20.

The results of this case study show that the dras-

tic reduction in the EEDI does not correspond to

drastic changes in the average cost per TEU. On the

contrary, the significant fixed cost of cargo handling,

the reduced number of round trips per year, and

the reduced TEU capacity by almost 9 per cent

diminishes the gains made by a reduction in the

speed (–3 per cent). In addition, two more ships are

now required in order to maintain the schedule,

which means a higher capital investment to provide

the same liner service. However, it should be noted

that herein the probable reductions in the outfitting

weight and the related cost, in view of the reduced

ship length and capacity, could not be exactly

accounted for and were assumed conservatively

with marginal impact on the ship’s capital cost. The

same applies to consideration of the reduction in

the machinery costs, noting that the reduction in

the speed by 9 kn, or 36 per cent with respect to the

reference ship’s speed of 25 kn, led herein to a

reduction in the powering by merely 69 per cent,

although further reductions could be achieved with

detailed hull-form optimization. Thus, the above

conclusions will be conservative in general but show

the techno-economic limits of slow steaming. In

Table 5 the Quantum design developed by DNV, the

reference ship, and the two designs developed by

SDL are compared. All designs have adequate bal-

last tank capacities and their maximum draughts

meet the LLC requirements.

7 THOUGHTS ON THE EEDI

Using the EEDI in the above studies as a merit func-

tion for design optimization, it is inevitable that a

few remarks should be made on this new environ-

mental footprint index. The proper definition of the

EEDI may be disputed. One main contradiction in

the definition of the EEDI is that, although the aim

is fundamentally to maximize the efficiency, the

index in its present form should be minimized.

Although this may be easily corrected by consider-

ing the reciprocal value of the EEDI, another

Fig. 17 21 kn improved design voyage cost breakdown

Table 3 Main dimensions of the 21 kn improved

design

L 233 m
B 45.6 m
T 13.5 m
TEU 5500
Speed 21 kn
Displacement ’ 87 000 ton
Cb 0.59
Lightship ’22 200 ton
BHP ’29 000 kW (–48%)
EEDI 16.30 (–33%)
Average cost per TEU US$1056 (–6%)
Number of ships for the

schedule
5.6 (instead of 4.9); thus + 1 ship

Capital value US$82 3 106

Depreciation time 20 years
Interest rate 8%
OPEX 7700 US$/day

Table 4 Main dimensions of the 16 kn improved

design

L 230 m
B 44 m
T 13.0 m
TEU 4978
Speed 16 kn
Displacement ’105 000 ton
Cb 0.78
Lightship ’20 600 ton
BHP ’17 200 kW (–69%)
EEDI 9.725 (–60%)
Average cost per TEU US$1086 (–3%)
Number of ships for the

schedule
6.9 (instead of 4.9); thus + 2 ships

Capital value US$71 3 106

Depreciation 20 years
Interest rate 8%
OPEX 7700 US$/day
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Fig. 18 Body plan of the 16 kn container ship design (from reference [39] with permission)

Fig. 19 Capacity plan of the 16 kn container ship design (from reference [39] with permission)

Table 5 Comparison of the designs

Parameter (units) Value for the following

DNV Quantum design Reference ship 21 kn SDL PDT design 16 kn SDL traditional design

Length (m) 272.3 (overall) 263 (bp) 233 (bp) 230 (bp)
Breadth (maximum/WL) (m) 49.0/42.5 40.0/40.0 45.6/45.6 44.0/44.0
Draught (m) 12.0 14.00 m 13.5 m 13.0 m
TEU 6210 5500 5500 5000
Cb 0.57 0.61 0.59 0.78
BHP (kW) 23 000* 55 000 29 000 17 200
Speed (kn) 21 25 21 16
DWT/TEU 8.78 12.36 11.76 16.96

*Installed 33 MW.
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drawback cannot be remedied, namely that the phy-

sics of the ship’s powering are not properly reflected

in the EEDI; thus, the impact of the size of the vessel

and the installed power are not taken into account

in the existing formulation. It could be argued that

for the naval architect there are some very tradi-

tional and reliable measures for the assessment of

the hull and propulsion efficiency, such as the well-

known British Admiralty constant or the related

Heickel coefficient defined as

K =

ffiffiffiffi
D
p

PB

 !1=3

U (2)

where D is the displacement, PB is the engine power,

and U is the ship’s trial speed. Either the Admiralty

constant or the Heickel coefficient could be modi-

fied accordingly to take into account any improve-

ments regarding the fuel consumption savings or

the use of fuels that emit less CO2 (i.e. have a lower

CF). In this case an alternative EEDI* definition

could be in the form

EEDI� = hull efficiency index3energy efficiency

index3fuel CO2 efficiency index (3)

Another effective way to assess the efficiency of

transport vehicles (of any type, i.e. land-borne, air-

borne, and waterborne vehicles) is the well-known

Gabrielli–von Kármán (GK) [33] diagram. The diagram

shows the required power per tonne of weight at a

given speed of transport. The lower this ratio is for a

given speed, the higher the efficiency. The GK diagram

depicts the physical and technological limitations of

the various means of transportation. In Fig. 21 the

design points of the reference container ship and of

the 21 kn improved design are plotted. It is obvious

that, from the GK transport efficiency point of view,

the improved design proves to be not better than the

initial design, although it demonstrates an improved

EEDI, which is not considered herein.

8 CONCLUSIONS

The work presented herein demonstrated the applic-

ability of a holistic ship design approach using a PDT

to optimization at the conceptual design stage. The

PDT developed initially for the implementation of the

LOGBASED methodology in ro–ro ship design has

been further enhanced to facilitate the design of other

ship types, such as bulk carriers, tankers, and container

ships. The tool can help the decision maker to assess

the ship design space of the transportation system

rationally in its business concept and to estimate the

environmental impact and the economic incentives.

Case studies of an AFRAMAX oil tanker, two 5500 TEU

container ships, and one 5000 TEU container ship were

presented herein to demonstrate the developed con-

cept. The tool can also be used to assess the operating

CO2 index of a ship in a given trading scheme, using

the existing methods in the LOGBASED module 4. This

is a further step in the initial LOGBASED methodology,

thereby improving the interaction between yards,

operators, and other market stakeholders when search-

ing for optimal ship design solutions.
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