User Defined Function: lidar_3D

UoSNWO0O06 revision 01

NIVERSITY OF
TRATHCLYDE

User Defined Function: lidar_3D

M T Stickland, S Fabre, T Scanlon

January 2010

University of Strathclyde NORSEWInD Report UoSNWO006

Department of Mechanical Engineering
University of Strathclyde

75 Montrose St, Glasgow

G1 1XJ

Fax +44 141 552 5105 Email: matt.stickland@strath.ac.uk
Tel: +44 141 548 2842

User Defined Function: lidar_3D

UoSNWO0O06 revision 01

ABSTRACT

This report describes the User Defined Function Lidar_3D used to interrogate FLUENT data
files to provide the relevant data for the MathCAD LiDAR simulation program. The UDF was
written in the C programming language and compiled using Microsoft visual studio 2008.
This report contains a listing of the program (version 1.03).

This report contains a description of the methodology required to compile the UDF so that it
may be called by an "execute on demand" call from FLUENT.

The report also includes a description of the input and output data file formats.

User Defined Function: lidar_3D

UoSNWO0O06 revision 01

1. INTRODUCTION ..ottt sttt et e e sr e s e e ne e smee e 4
2. PROGRAM LISTING ..ottt sttt sttt sne e s eene e 4
3. INSTINFO FILE FORMAT ...ttt sttt s 10
4. COMPILE PROCEDURE........ctiiieiiiittecee ettt 12
D[=Tot o] VA A ¥ Lot (U] = TP PP PP PP PP PP PP PP TP PP 12
(0o T 00T o 11T~ I V=T U L | PSR 12
RUNNING The UDF IN FLUNETeviiiiiiiee ettt e e e e st e e s s e e e s snnaeaeeas 13
UDF QUEPUL FIlE . neiiiiieeiee ittt ettt e et e e e e e e sesabbaeeeeseesseastbeeeeeeessesssresesesessennnns 14

5. REFERENCES ...ttt s aa e 14

User Defined Function: lidar_3D

UoSNWO0O06 revision 01

1. INTRODUCTION

This report describes how the FLUENT data files were interrogated by the User Defined
Function (UDF) "libudf2". The UDF was written in the C programming language and
compiled using Microsoft visual studio 2008. A listing of the program version 1.03, which
was the version in use at the time that this report was written, can be found in section # of
this report.

This report contains a description of the method required to compile the UDF so that it may
be called by an "execute on demand" call from FLUENT.

The report also explains how the UDF works though the comments made within the
program listing in section 2

2. PROGRAM LISTING

/*This UDF provided relates to a support query. This UDF should be
treated as

a guideline outlining the application. This is not a consultancy
project

and has not therefore been checked under our consultancy procedures. It
is

your responsibility to check the validity of any simulation utilizing
this

UDF. Additionally, UDF support for current license

holders will be limited to guidance related to communication between a
UDF

and the FLUENT solver. Other aspects of the UDF development process
that

include conceptual function design, implementation (writing C code),
compilation and debugging of C source code, execution of the UDF, and
function design verification will remain the responsibility of the UDF
author.

Feedback, comments or queries are most welcome*/

#include "‘point_in_cell_h"
#include "math._h"

/*below is the macro that determines the location of the monitor points
and outputs required information. This is the only macro that requires
modification to

account for different points distribution or to change the output
method*/

/* note that phi is the cone angle */

/* note psi is the asimuth angle */

User Defined Function: lidar_3D

UoSNWO0O06 revision 01

DEFINE_ON_DEMAND(lidar_3d)
{

int yorn, zone;

float xloc, yloc, zloc, height, dh, h, nh, ver;
float u, v, w, X, y, z, hmeas[50];

float phi_deg=30.4, phi_rad;

float npoints=50;

float pi=3.14159;

float psi_deg, psi_inc, psi_rad;

float ploc[50][3], VIos[50][50], asangle[50];
int 1,j,nj;

char dummy;

FILE *exp_Tfile_ptr;
FILE *inp_file_ptr;

Domain *d;
Thread *ct;
cell_t c;

real point[3];

ver=1.03;
Message("'lidar simulation program version %.2f started \n'", ver);
/* open a file to write data */

exp_FTile ptr=fopen(‘'data.dat","w');
/* open a file to read data */

inp_file_ptr=fopen(instinfo.dat","r™);

/* printf (“enter the measurement height of the lidar \n"); */
/* scanft ('%f'", &height); */

/* printf (“"enter the offset from the origin of the lidar x y and z
\n'"); */

/* scanft ('%F %F %f", &xloc, &yloc, &zloc); */

if (inp_file_ptr '=NULL)

{

fscanf(inp_fTile_ptr, "%s %s %s %s %s %s %s \n", &dummy,
&dummy, &dummy, &dummy, &dummy, &dummy, &dummy);

fscanf(inp_fTile_ptr, "%d %d %f %f %f %f %f \n", &zone,
&yorn, &height, &nh, &xloc, &yloc, &zloc);

}

else

User Defined Function: lidar_3D

UoSNWO0O06 revision 01

{
printf('no file name \n"");
}

fclose(inp_file_ptr);

/* inputs required for the fluent UDF get domain defines the entire
domain and lookup thread get the thread
number for the specified zone in the given domain */

d = Get_Domain(l);
ct = Lookup_Thread(d, zone);

Message(''\n %d heights to be calculated \n", nh);

dh=height/nh;

phi_rad=phi_deg*pi/180;
psi_inc= 2*pi/50;

if (yorn == 1)

{

Message(''verbose output version %.2f \n", ver);

for (J=1; j<=nh; j++)

{
Messig?("measurement height %d being calculated \n", j);
2gg?nt%(exp_file_ptr, "measurement height %.2F m \n",h);

/* to find the velocity at the measurement height directly above
the lidar */

/* define the point at the measurement height directly above */
point[0]= xloc;

point[1]= yloc;

point[2]= zloc + h;

/*pointer to the cell containing the xyz location*/

c = cell_containing_point(point, ct);

/* find the three components at that point */

u=C_U(c,ct);

v=C_V(c,ct);

w=C_W(c,ct);

fprintf(exp_Ffile ptr, " data at %6.1F m directly above lidar \n",
h);

fprintf(exp_Ffile ptr, ™ X y z u \% w
\n");

User Defined Function: lidar_3D

UoSNWO0O06 revision 01

fprintf(exp_Ffile_ptr, "%6.1F %6.3F %6.3F %6.3F %6.3F %6.3F
\n",point[0],point[1],point[2], u, v, w);

fprintf(exp_Ffile ptr, "Lidar simulation data \n');

fprintf(exp_file_ptr, psi X y z u \Y

w VIos \n");

for (1=0;i1<=49; i++)
{

/* calculate the x, y and z locations of the scan points
above an origin of 0, 0, 0 */

psi_rad=i*psi_inc;

psi_deg=psi_rad*180/pi;

ploc[i][0]= h*sin(phi_rad)*sin(psi_rad)/cos(phi_rad) ;
ploc[i][1]= h*sin(phi_rad)*cos(psi_rad)/cos(phi_rad) ;
ploc[i][2]= h;

}

for (i=0;i<=49; i++)
{

/* apply an offset to the measurement locations due to the
lidar not being sited at the origin */

/* and assign the location of the measurement point to the
array point which is the

x y and z location that will be interrogated to find the u,
v and w at that point*/

psi_rad=i*psi_inc;
asangle[i]=i*psi_inc;
psi_deg=psi_rad*180/pi;

point[0]= ploc[i][0] + xloc;
point[1]= ploc[i][1] + yloc;
point[2]= ploc[i][2] + zloc;

/* put the x y and z values into variables that are easily
recognised for calculating Vlos */

x=ploc[1][0];
y=plocLi][1];
z=ploc[i]1[2];
/*pointer to the cell containing the xyz location*/

c = cell_containing_point(point, ct);

User Defined Function: lidar_3D
UoSNWOQOO06 revision 01

/*get the u, v and w velocity components in that cell */

u=C _U(c,ct);
v=C_V(c,ct);
w=C_W(c,ct);

/*calculate the V line of sight based on the x, y and z with
the Lidar at the origin */

Vios[j1[i]=(u*X+v*y+w*z)/sqrt(xX*x+y*y+z*z);

/* put the offset so that the location of the measuremement
points are in the simulation coordinate system */

ploc[i][0] + xloc;
ploc[i][1] + yloc;
ploc[i][2] + zloc;

X
y
z

fprintf(exp_Ffile ptr, "%6.1F %6.3F %6.3F %6.3F %6.3F %6.3F
%6.3F %6.3F \n",psi_rad, X, vy, z, u, v, w, VIios[JlLi]):;

}
}

else

{
Message('abreviated output version %.2f \n', ver);
fprintf(exp_Ffile_ptr, "%.2F \n",nh);
for (J=1; j<=nh; j++)
{
Message(“'measurement height %d being calculated \n", j):;
h=dh*j ;
fprintf(exp_Ffile_ptr, "%.2F \n",h);
point[0]= xloc;
point[1]= yloc;
point[2]= zloc + h;
c = cell_containing_point(point, ct);
u=C _U(c,ct);
v=C_V(c,ct);
w=C_W(c,ct);

fprintf(exp_file_ptr, "%6.1F %6.3F %6.3F %6.3F %6.3F %6.3F
\n",point[0],point[1],point[2], u, v, w);

for (i=0;i<=49; i++)
{

psi_rad=i*psi_inc;

User Defined Function: lidar_3D
UoSNWOQOO06 revision 01

psi_deg=psi_rad*180/pi;

ploc[i][0]= h*sin(phi_rad)*sin(psi_rad)/cos(phi_rad) ;
ploc[i][1]= h*sin(phi_rad)*cos(psi_rad)/cos(phi_rad) ;
ploc[i][2]= h;

}

for (i=0;i<=49; i++)
{

psi_rad=i*psi_inc;
asangle[1]=i*psi_inc;
psi_deg=psi_rad*180/pi;

point[0]= ploc[i][0] + xloc;
point[1]= ploc[i][1] + yloc;
point[2]= ploc[i][2] + zloc;

x=ploc[i][0];
y=ploc[i][1];
z=ploc[i][2];

c = cell_containing_point(point, ct);
u=C_U(c,ct);
v=C V(c,ct);
w=C_W(c,ct);

VIos[J1[i]=(u*xX+v*y+w*z)/sqrt(X*x+y*y+z*z);

x = ploc[i][0] + xloc;
y = ploc[i][1] + yloc;
z = ploc[i][2] + zloc;

fprintf(exp_Ffile ptr, "%6.1F %6.3F %6.3F %6.3F %6.3F %6.3F
%6.3F %6.3F \n",psi_rad, x, vy, z, u, v, w, VIios[Jl[LiD):
}
}
}
fclose(exp_Tile_ptr);

Message('lidar simulation ended \n');

cxboolean outward_face(face_t T, Thread *ft, cell_t c, Thread *ct)
{

Thread *ctl;

cell_t ci;

ctl = THREAD_T1(ft);

iF(NULLP(ctl))return TRUE; /* face on boundary */

cl = F_C1(Ff,ft);

User Defined Function: lidar_3D
UoSNWOQOO06 revision 01

if ((c==cl)&&(ct==ctl))return FALSE; /* face"s cl is c so F inward to
c */

return TRUE;
}

cxboolean point_in_cell(real point[ND_ND], cell_t c, Thread *ct)
t

int i;

real dist;

real p_rel[ND_ND], f_cen[ND_ND], A[ND_ND];

face t T;

Thread *fTt;

cxboolean inside = TRUE;

c_face_loop(c, ct, i)

if(inside)

f=C_FACE(c, ct, i);
ft=C_FACE_THREAD(c, ct, i);
F _CENTROID(F cen,f,ft);
F_AREA(A,f,ft);
NV_W(p_rel,=,point,-,f cen); /* point relative to f _cen
*/
dist=NV_DOT(p_rel,A);
if (outward_face(f,ft,c,ct)) /* Count as inside if dist ==
0.0 */
{if (dist > 0.0) inside = FALSE;}
else
{if (dist < 0.0) inside = FALSE;}
}
}

return inside;

}
cell_t cell_containing_point(real point[ND_ND], Thread *ct)
{

cell_t c;
cell_t c _in = NULL CELL;
begin_c_loop(c,ct)
if(c_in == NULL_CELL) /* if cell not found yet */

if (point_in_cell(point, c, ct)) c in = c;
}

end_c_loop(c,ct)
return c_in;

3. INSTINFO FILE FORMAT

The file instinfo.dat, table 1, contains the instructions for the UDF about where to
interrogate the FLUENT data set.

User Defined Function: lidar_3D

UoSNWO0O06 revision 01

Zone

Verbose

Height

nh

Xloc

yloc

zloc

Zone Vebose Height Nh Xloc Yloc zloc

0 40 20 129 129 25.5

table 1; instinfo.dat file format

The zone is defined by Fluent and is the region in the domain that contains the fluid. It
can be found by selecting Define/Boundary conditions/Zone from the main FLUENT
menu. if in the Zone table the fluid surrounding the rig is selected then the number
shown in the ID box at the bottom of the wind is the number to be entered. if this
number is not correct then the following error message should appear

Error:

FLUENT received fatal signal (ACCESS_VIOLATION)
1. Note exact events leading to error.

2. Save case/data under new name.

3. Exit program and restart to continue.

4. Report error to your distributor.

Error Object: ()

EitherOor 1

If 0 then all that is echoed to the FLUENT window is the sequential number of the
height being interrogated

If 1 then the velocity data from the interrogation is echoed to the FLUENT window.

The height above the lidor that is to be interrogated

The number of heights to be interrogated. The location of the measurement heights
are then height/nh plus increments of height/nh op to height

The location of the LiDAR in the x direction of the fluent coordinate system in the same
scale as the fluent model

The location of the LiDAR in the y direction of the fluent coordinate system in the same
scale as the fluent model

The location of the LiDAR in the y direction of the fluent coordinate system in the same
scale as the fluent model

User Defined Function: lidar_3D

UoSNWO0O06 revision 01

4. COMPILE PROCEDURE

To compile a UDF to interrogate the FLUENT data file a suitable C compiler and linker needs
to be installed. The compiler and linker used in this case was Microsoft Visual Studio 2008
which is the one recommended by FLUNT. comprehensive details of creating UDF can be
found in the relevant ANSYS FLUENT documentation.

Directory Structure

The library structure was created off of the directory containing the dat files

.dat directory
ntx 86

— 2d Depending on which solver NB will
also require others if parallel

—— 3d

src Put all source code in here along with

header files to be used if they are not in the
fluent/src

copy user_nt.udf and makefile_nt.udf from the main /fluent/src directory into the new /2d
or /3d directory.

copy the source file for the UDF into the /src directory

Compiling The Udf

edit user_nt.udf

change SOURCES to include the new source file, VERSION to 2d or 3d depending on model,
PARALLEL NODE to none if serial solver.

rename makefile_nt.udf to makefile

User Defined Function: lidar_3D

UoSNWO0O06 revision 01

If the following error message appears during compilation

makefile [51]: fatal error U105 need to define the environment variable FLUENT _INC
the makefile needs to be edited to include

FLUENT_INC=c:\fluent.inc

It may be necessary from the console to run vcvars32.bat if editing the makefile does not
work first time.

The path statement must include all directories that contain files that are going to be
compiled or accessed during the compile process. To modify the path click on the start
button, right click on computer, click on properties, click advanced settings, under the
advanced tab click on environment variables, in the system variables edit the path
statement.

Open the Visual Studio command prompt window

In the command prompt window change directory to the /3d (assuming that the simulation
is 3d) directory that contains the makefile. run nmake in this directory.

Running The UDF In FLUNET

When compilation has been successful the UDF needs to be loaded and run in FLUENT. From
the main fluent window select define/userdefined/functions/manage menu load the
compiled UDF

if successful a message similar to

Opening library "libudf2"...

Library "libudf2\ntx86\3d\libudf.dll" opened
lidar_3d

Done.

will appear in the console where lidar_3d is the UDF defined in the compiled code.
after the simulation has completed or the data has been opened from an existing run the
UDF is executed by selecting define/userdefined/execute one demand and then selecting the

UDF from the drop down list.

NB if the lidar_3D UDF is run the zone in the instinfo.dat file must correspond to the fluid
region.

User Defined Function: lidar_3D

UoSNWO0O06 revision 01

UDF Output File

The lidar_3D UDf creates an output file data.dat The format of the file is shown in table 2.

Number of
heights
height
2
<
point x point y point z u Y w -%”
=
c
psi (rad) X y z u v w Vlos B 5
(@] [t
5 3
psi (rad) X y z u v w Vlos 2 B bt
w© © o
g7 g
psi (rad) X y z u v w Vlos 2 &

table 2; lidar_3D UDF output file format

The output file from the UDF is read by the MathCAD LiDAR simulation program details of
which can be found in the program description document [1].

5. REFERENCES

1. Stickland, M., Scanlon, T., Fabre, S., "MathCAD program; ZephIR_lidar_sim" report
for EU NORSEWInD, UoSNWO003, January 2010

User Defined Function: lidar_3D

UoSNWO0O06 revision 01

