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In this paper, we assess whether and when multi-country studies pay off for fore-
casting inflation and output growth. Factor stochastic volatility is adopted to allow for
cross-country linkages and model economies jointly. We estimate factors and rely on
post-processing, rather than expert judgement, to obtain an estimate for the number of
factors. This is different from most existing two-step approaches in the factor literature.
Our approach is then used to extend the existing unobserved components model,
which assumes that 34 economies are independent. The results suggest that allowing
for cross-country linkages yields inflation and output growth forecasts that are highly
competitive with those obtained from estimating economies independently. Zooming
into the forecast performance over time reveals that allowing for cross-country linkages
is of particular importance when interest centres on forecasting periods of uncertainty.
Another key finding is that the estimated global factors are correlated with the domestic
business cycle. We interpret this to mean that part of the variation captured in global
factors reflects a global business cycle.

© 2023 The Author. Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Since the seminal work by Stock and Watson (2007),
he unobserved components (UC) model with stochas-
ic volatility (SV) is commonly used for modelling latent
tate vectors. These latent state vectors can be inter-
reted as long-run equilibrium levels, and the UC model
as enjoyed great popularity. Surprisingly, to the best of
ur knowledge, existing literature imposes an assump-
ion of independence across economies. However, studies
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Saeed Zaman for helpful comments. For the purpose of open access, the
author has applied a Creative Commons Attribution (CC BY) licence to
any Author Accepted Manuscript version arising from this submission.
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of global macroeconomic developments argue that na-
tional macroeconomic developments depend on interna-
tional conditions. The dependence holds for both the real
business cycle (see Kose, Otrok, & Whiteman, 2003) and
inflation (see Ciccarelli & Mojon, 2010).

Investigating whether and when allowing for cross-
country linkages pays off for inflation and output forecast-
ing is the key objective of the present paper. Building on
recent advances in econometrics, we adopt factor stochas-
tic volatility (FSV) to allow for cross-country linkages and
model economies jointly. To avoid omitting some poten-
tially important factors, we adopt shrinkage techniques
which use the sparsification on factor loadings and rely
on post-processing to obtain an estimate for the number
of factors.

From an empirical standpoint it is necessary to in-
vestigate how these techniques perform overall and over
tional Institute of Forecasters. This is an open access article under the
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ime. We show this by carrying out a thorough forecast-
ng experiment involving 34 economies. The economies
onsidered include 23 advanced economies (AEs) and 11
merging market economies (EMEs). We include two vari-
bles in each economy (quarterly CPI inflation and output
rowth).
Our results show that the cross-country linkage tech-

iques yield forecasts that are competitive with the ones
btained from estimating economies independently.
hen the focus is on forecasting periods of uncertainty,
e find that these techniques can provide great improve-
ents.
Additionally, we find that the slope of the Phillips

urve is lower when using FSV. This seems to be rel-
vant to the debate over the flattening of the Phillips
urve. However, we think one needs to interpret this
ower value with some care. By checking the correlation
etween the estimated global inflation factors and the
omestic business cycle, we find they are positively corre-
ated. In this sense, we interpret this to mean that part of
he variation captured in global inflation factors reflects a
lobal business cycle. Adding these factors can reduce the
mitted-variable bias.
This paper is organised as follows. Section 2 reviews

he related empirical literature and explains our con-
ributions. In Section 3, we first discuss the UC model
or individual economies and then introduce our new
odel. The details of our new model include FSV and
n elaborated account of the sparsification. Section 4 il-
ustrates some full-sample results by fitting our model
o 34 economies. Section 5 describes an out-of-sample
orecasting exercise. We provide evidence that our pro-
osed model can improve forecasting overall and over
ime. Finally, Section 6 concludes.

. Relationship to prior work

To make clear our contributions, we first briefly sum-
arise the most closely related studies of the unobserved
omponents model and global uncertainty. We then detail
ey differences in our analysis compared to these studies.
n broad terms, our work extends the literature by a
ombination of allowing for cross-country linkages, the
se of sparsification, and considering a large number of
conomies.

he unobserved components model A large body of
esearch has emerged on extending the UC model. One
trand of extensions has focused on introducing more in-
icators into the conditional mean. Another strand has fo-
used on adding bounds on parameters. These extensions
verlook the international comovement.
There has been a lot of recent research devoted to

ntroducing suitable indicators into the UC model. These
ndicators are guided by either economic theory or em-
irical research. For instance, inspired by the Phillips
urve, Stella and Stock (2013) extend the univariate UC
odel in Stock and Watson (2007) to a bivariate UC
odel, and assume that it is the inflation gap and un-
mployment gap that drive the Phillips curve.1 Based on

1 The inflation gap is the deviation of inflation from its trend, and
similarly the unemployment gap is the deviation of the unemployment
rate from its trend.
904
public commentary that central bankers pay consider-
able attention to measures of long-run inflation expecta-
tions, Chan, Clark, and Koop (2018) develop a bivariate UC
model by introducing survey-based long-run forecasts of
inflation. To directly address critiques of omitted-variable
and omitted-equation bias pointed out by Taylor and
Wieland (2016), Zaman (2022) further extends the bi-
variate UC model to a large-scale UC model and jointly
estimates trends of several macroeconomic variables. The
observed flattening of the Phillips curve has generated
various explanations of this conundrum, and some stud-
ies highlight the role played by global factors. There-
fore, Kabundi, Poon, and Wu (2021) introduce global
factors (global output and oil price) into the bivariate UC
model. In this paper, we follow Stella and Stock (2013) to
incorporate the Phillips curve into the UC model. One may
question the existence of the Phillips curve, but McLeay
and Tenreyro (2020) emphasise that the Phillips curve
exists and that policymakers are completely aware of
its existence. Hasenzagl, Pellegrino, Reichlin, and Ricco
(2022) develop a model of inflation dynamics based on
the view that the Phillips curve is one of three important
components. Stock and Watson (2008) raised the point
that the Phillips curve is useful for conditional forecasting.
So we expect that the Phillips curve still exists, even
though we are observing that it has flattened (e.g., Ball &
Mazumder, 2011; Blanchard, Cerutti, & Summers, 2015;
Hall et al., 2013).

In parameter-rich models, it is common to use tight
priors on coefficients or on error variances (or covariance
matrices). And sometimes, directly introducing restric-
tions on parameters can avoid them moving into un-
desirable regions. Such restrictions have been explored
in many studies. For instance, Chan, Koop, and Potter
(2013) bound both the inflation persistence, to avoid the
explosive region of the parameter space, and the slope
of the Phillips curve, to ensure a slope that is consis-
tent with the economic theory. In this paper, we follow
them to restrict the inflation persistence and the slope
of the Phillips curve. But there are some differences on
the Phillips curve. We acknowledge that using output in
log levels gives the usual price Philips curve specifica-
tion where the level of inflation is linked to the output
gap as a measure of excess capacity. However, in this
paper, we use output growth, not output in log levels.
The reasons are as follows. The trend-cycle decomposi-
tion might be sensitive to how the trend is modelled
(see Grant & Chan, 2017; Perron & Wada, 2009). For
the trend, log output is upward trending, and only a
drift is able to generate such a trend. Grant and Chan
(2017) further find that this drift for the U.S. is sub-
ject to structural breaks, but whether this is true for
other countries is an empirical question. The focus of this
paper is forecasting, not the estimate of output trend.
For the output gap, it is a cycle, and the econometric
literature assumes that it is a stationary process with
stochastic cyclical behaviour. Prominent researchers have
proposed various methods to impose the stationary con-
dition on the AR(2) process. Which method would be
suitable in a multi-country study is another empirical
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uestion.2 For instance, it can be computationally efficient
o use the method by Grant and Chan (2017), where they
irectly bound the AR(2) coefficients. But Planas, Rossi,
nd Fiorentini (2008) stress that putting a prior on AR(2)
oefficients makes it difficult to reproduce our knowledge,
nd the implied distribution for the periodicity and am-
litude can be counter-intuitive. Given the amplitude and
eriodicity of the cyclical movements, they propose to use
trigonometric specification to re-parameterise the AR(2)
rocess, but they exclude a moving-average term. Hasen-
agl et al. (2022) brings back the moving-average term. If
e use output growth, we do not need a stationary AR(2)
rocess, thus avoiding the need to compare the various
ethods to impose a stationary condition. Output growth

s not a measure of slack, but the use of growth as an
lternative is not new. On the Taylor rule, Orphanides
2001) argues that a Taylor rule that reacts to output
rowth may be more stabilizing than a rule that responds
o the output gap. Bullard and Eusepi (2005) develop a
ule that responds to the growth gap, rather than output
ap. On the Phillips curve, Sbordone (2002) derives a
hillips curve as a function of trend growth. Mattesini
nd Nisticò (2010) study implications of trend growth
n inflation dynamics. Tchatoka, Groshenny, Haque, and
eder (2017) compare the Phillips curve using the output

ap and growth. They find that the results remain essen-
ially unchanged when employing output growth, so they
oncentrate on output growth. Gross and Semmler (2019)
ind that output growth correlates strongly with the slack
easure (one-sided Hodrick–Prescott filter-based output
ap) and could be an alternative to assess the empirical
ink between inflation and real activity.

As to the relationship of our paper to prior studies of
he UC model, while our paper shares the two strands of
xtensions (introducing more indicators and constraining
arameters to lie in reasonable intervals), we believe our
aper provides further extensions. Firstly, we propose an
pproach to allow for cross-country linkages in the multi-
ountry UC model. However, previous studies assume that
ountries are independent of each other. The idea that
ational macroeconomic developments depend on inter-
ational conditions is not new. Kose et al. (2003) find that
he world common component to expenditure time series
f 60 countries explains between one-fourth and one-half
f the variance of these series in OECD countries. Ciccarelli
nd Mojon (2010) provide evidence that a simple average
f 22 OECD countries’ inflation accounts for almost 70% of
he variance of inflation in these countries. So one aim of
his paper is to study whether allowing for cross-country
inkages will improve forecasts of variables in UC models.
econdly, we allow for cross-country linkages through
lobal factors. These factors are estimated from the model.
his is different from studies which use some specific
ariable to be a proxy of a global factor. In the empirical
pplication, we argue that introducing global factors will
elp reduce the omitted-variable bias in a single-country
C model.

lobal uncertainty Several ways to estimate global un-
ertainty have been proposed in the literature. Mumtaz

2 We thank the referee for pointing us in this direction.
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and Theodoridis (2017) use a factor-augmented vector
autoregression (VAR) model with a common stochastic
volatility and a country-specific stochastic volatility. Pfar-
rhofer (2019) uses a global vector autoregressive spec-
ification with FSV in the errors to estimate the impact
of global uncertainty on six economies. Cuaresma, Hu-
ber, and Onorante (2019) use a large-scale Bayesian VAR
with FSV to investigate the macroeconomic consequences
of international uncertainty shocks in G7 countries. Car-
riero, Clark, and Marcellino (2020) measure international
macroeconomic uncertainty by featuring the error volatil-
ity with a factor structure containing time-varying global
components and idiosyncratic components.

As to the relationship of our paper to prior studies
on measuring global uncertainty, our paper is closely
related to the FSV specification used in Cuaresma et al.
(2019) and Pfarrhofer (2019). The contribution of this
paper is that we use sparsification to avoid omitting
some potentially important factors, whereas prior studies
rely on expert judgement (either by subjectively choos-
ing the number or by relying on principal component-
based analysis). The sparsification method, proposed by
Chakraborty, Bhattacharya, and Mallick (2020), obviates
the need to specify a prior on the rank (in this paper, the
rank is equivalent to the number of factors), and shrinks
the regression matrix towards a low-rank structure. This
sparsification method allows us to estimate the factors
and use post-processing to obtain an estimate for the
number of factors.

Our FSV specification shares with Mumtaz and Theodor
idis (2017) the feature of allowing for both common
and country-specific stochastic volatility. It is empiri-
cally important to allow for stochastic volatility. Ignoring
stochastic volatility is expected to exaggerate movements
and potentially create transient variations in filtered es-
timates (see Huber, Pfarrhofer, & Piribauer, 2020; Sims,
2001; Stock, 2001). One difference from Mumtaz and
Theodoridis (2017) is that we use sparsification to re-
move stochastic volatility in a data-based manner. This is
important in the heavily parametrised setting. A similar
strategy has been explored in Huber et al. (2020). In this
paper, we shrink both factor volatilities and idiosyncratic
volatilities. This is consistent with Carriero et al. (2020).
They find that, in a three-economy macroeconomic data
set (U.S.A., euro area, and U.K.), the idiosyncratic com-
ponent of volatility displays very little time variation.
Removing SV in a data-based manner is flexible since it
can shrink small time variation to zero while retaining
large time variation (e.g., more volatile countries).

As regards the relationship of our paper to Carriero
et al. (2020), there are mainly two differences. The first
difference is about the number of factors. Carriero et al.
(2020) rely on principal component-based analysis, while
we use sparsification and rely on post-processing. The
second difference is that the model in Carriero et al.
(2020) features common factors in both volatilities and
in the conditional mean of the VAR. In this paper, we
only allow common factors to affect the volatilities of
the included variables. The reason that we do not allow
common factors to affect the levels is that in the three-
economy case, Carriero et al. (2020) find they will suffer
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rom the convergence issue of the Markov chain Monte
arlo (MCMC) sampler if two common factors are both
ncluded in the conditional mean. So they include one
ommon factor in the conditional mean. We might have
he same issue since we include more factors and our data
re shorter.
One other difference between our paper and a num-

er of others in multi-country studies is that we study
4 economies, including 23 advanced economies and 11
merging market economies, whereas others focus on
arge economies, small advanced economies, or emerging
arket economies. As examples, Carriero et al. (2020)

ocus on large economies, Cross, Kam, and Poon (2018) fo-
us on small advanced economies, Mumtaz and Theodor-
dis (2017) focus on 11 OECD countries, and Carrière-
wallow and Céspedes (2013) focus on emerging market
conomies.

. Sparse factor stochastic volatility for a multi-
ountry UC model

This section begins by detailing the unobserved com-
onents model for individual economies, and then
ntroduces factor stochastic volatility to allow for cross-
ountry linkages. We refer to the model as a multi-
ountry UC-FSV model. We then describe sparsification.
inally, we summarise the model.

.1. Multi-country UC-FSV model specification

We begin with the UC model for output and inflation.
n particular, we start from a constant coefficient UC
odel for inflation, πi,t , and output growth, yi,t , of the

form:

πi,t − τπ
i,t = ρi(πi,t−1 − τπ

i,t−1) + αi(yi,t − τ
y
i,t ) + ϵπ

i,t , (1)
yi,t − τ

y
i,t = ϕi,1(yi,t−1 − τ

y
i,t−1) + ϕi,2(yi,t−2 − τ

y
i,t−2) + ϵ

y
i,t ,

(2)

τπ
i,t = τπ

i,t−1 + ϵτπ
i,t , ϵτπ

i,t ∼ N (0, σ 2
iτπ ), (3)

τ
y
i,t = τ

y
i,t−1 + ϵ

τy
i,t , ϵ

τy
i,t ∼ N (0, σ 2

iτy), (4)

where i denotes economy i, i = 1, . . . ,N . At time t , πi,t is
the inflation of economy i, and yi,t is the output growth of
economy i. τπ

i,t and τ
y
i,t are their trends. These trends are

unobserved latent states. In this paper, we refer to them
as trend inflation and trend growth.

Eq. (1) is inspired by the Phillips curve. We assume
that it is the inflation gap and growth gap that drive the
Phillips curve. To ensure stationarity, we bound ρi and αi
to be positive and less than one—that is, 0 < ρi < 1 and
0 < αi < 1—which also ensures that the Phillips curve has
a positive slope. Chan, Koop, and Potter (2016) and Zaman
(2022) also bound the coefficients and emphasise the
importance of bounding.

Thus, the first equation embodies a Phillips curve, but
we are assuming constant coefficients. Many papers have
emphasised that the Phillips curve has flattened post-
2007 (see Simon, Matheson, & Sandri, 2013) and have
proposed allowing for time variation in the coefficients to
capture this behaviour (see Zaman, 2022). It seems to be
906
more sensible to start from a UC model with time-varying
coefficients. However, using the data in our empirical
work (from 1995Q1 to 2018Q1), we considered a model
where ρi and αi vary over time, and found that the Bayes
factor supports constant coefficients (see Appendix A).
Accordingly, the main model does not have time variation
in the coefficients.

The second equation implies AR(2) behaviour for the
growth gap. The AR(2) assumption is empirically sensible
and commonly used. Note that we are assuming constant
coefficients in the growth gap equation. This assumption
has also been used in Chan et al. (2016), Kabundi et al.
(2021), and Zaman (2022). In the broader output litera-
ture, Carriero et al. (2020) and Koop, McIntyre, Mitchell,
Poon, et al. (2020) also assume constant coefficients.3

Eqs. (3) and (4) assume a random walk process for
trend inflation and trend growth. This specification is used
in Cogley and Sbordone (2008). They find that statistical
models with time-varying drifts are able to explain the
behaviour of inflation and output growth quite well. For
time-varying drift, they assume it follows a random walk.

Thus far, we have specified a UC model for a single
economy. In particular, it is a bivariate UC model and in-
corporates the features from empirical findings (constant
coefficients). However, conventional literature would next
assume that the errors are independent across economies.
It is with this assumption that we part from them.

As discussed above, the assumption of independence
across economies might not be plausible when there is
significant commonality across economies. To capture
such commonality in uncertainty, we assume that, for
all economies, the errors in inflation gap equations are
driven by common factors and the errors in growth gap
equations are driven by common factors. This can be done
through factor stochastic volatility (FSV).

To facilitate the FSV specification, at time t , we store all
errors in the inflation gap equations in an N-dimensional
vector ϵπ

t ; that is, ϵπ
t = (ϵπ

1,t , . . . , ϵ
π
N,t )

′. ϵπ
i,t is the error

for economy i. Similarly, we store all errors in the growth
gap equations in an N-dimensional vector ϵ

y
t ; that is, ϵ

y
t =

(ϵy
1,t , . . . , ϵ

y
N,t )

′. ϵ
y
i,t is the error for economy i. Through

FSV, ϵπ
t can be decomposed as:

ϵπ
t = Lπ f t + uπ

t (5)(
uπ
t

f t

)
∼ N

( (
0N

0rπ

)
,

(
Σπ

t 0rπ

0N Ωπ
t

) )
(6)

and ϵ
y
t can be decomposed as:

ϵ
y
t = Lyg t + uy

t (7)(
uy
t

g t

)
∼ N

( (
0N

0ry

)
,

(
Σ

y
t 0ry

0N Ω
y
t

) )
(8)

where f t = (f1,t , . . . , frπ ,t )′ is an rπ -dimensional vector of
latent factors, and Lπ is the associated N × rπ loading ma-
trix. Similarly, g t = (g1,t , . . . , gry,t )

′ is an ry-dimensional
vector of latent factors, and Ly is the associated N × ry
loading matrix. Furthermore, we follow Chan (2022) to

3 Since we use output growth, we do not bound the constant
coefficients in the growth gap equation.
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ssume that the factor loading matrices Lπ and Ly are both
lower triangular matrix with ones on the main diagonal
nd rπ ≤ (N − 1)/2, ry ≤ (N − 1)/2.4 Let nl,π denote
he number of free elements in Lπ , then nl,π = N × rπ −
(1+rπ )rπ

2 . Let nl,y denote the number of free elements in Ly,
hen nl,y = N × ry −

(1+ry)ry
2 .

We assume that inflation gap and growth gap equa-
ions across economies are driven by different factors, f t
and g t . This assumption is for reasons of parsimony. If
the interest is in understanding the underlying causal re-
lationship between output and inflation across countries,
then the dependence assumption across the factors would
make sense. One possible method is to assume that both
f t and g t follow a VAR process.5

Based on preliminary empirical work that shows that
errors in inflation gap equations exhibit stochastic volatil-
ity, we assume that the disturbances uπ

t exhibit stochas-
tic volatility. This is why the error variance of uπ

t is
Σπ

t . Regarding growth gap equations, with the exception
of Mertens (2014) and Zaman (2022), previous literature
assumes that the errors remain homoscedastic; that is,
uy
t are homoscedastic. However, we assume that the dis-

turbances uy
t exhibit stochastic volatility. This is why the

rror variance of uy
t is Σ

y
t . Such a specification will capture

time variation in output variance unique to that economy.
It has been used in Carriero et al. (2020) and Cesa-Bianchi,
Pesaran, and Rebucci (2020). If the error is homoscedastic,
our specification of the log volatility can (nearly) remove
SV in a data-based manner (through the horseshoe prior).

For the latent factors f t and g t , we assume that they
exhibit stochastic volatility. This is why the error variance
of f t is Ωπ

t and the error variance of g t is Ω
y
t .

The resulting time-varying variance matrix is Σπ
t =

diag(eh
π
1,t , . . . , eh

π
N,t ),

Σ
y
t = diag(eh

y
1,t , . . . , eh

y
N,t ), Ωπ

t = diag(eh
f
1,t , . . . , eh

f
rπ ,t ),

and

Ω
y
t = diag(eh

g
1,t , . . . , eh

g
ry,t ).

We use exp(hπ
t /2) to measure the idiosyncratic infla-

tion uncertainty, exp(hy
t /2) to measure the idiosyncratic

growth uncertainty, exp(hf
t /2) to measure the global in-

lation uncertainty, and exp(hg
t /2) to measure the global

rowth uncertainty. To facilitate the expression, we store
he four types of log volatilities in an Nh-dimensional
ector ht = (hπ

t , hy
t , h

f
t , h

g
t ) where Nh = 2N + rπ + ry. We

ummarise the definitions and descriptions of uncertainty
n Table 1.

4 Chan, Koop, and Yu (2021) show that we do not need a lower
triangular loading matrix when the factors are heteroscedastic. If we
stick to a lower triangular matrix, the prior will be order-dependent. In
our empirical application, we experimented with different orderings of
economies. We found that our conclusion did not change. So we simply
followed the ordering from the database where we downloaded the
data. In Appendix G, we report some results on the number of factors
when the factor loading matrices are full.
5 We leave this flavour to the future.
907
3.2. Sparsification

One of our contributions is the use of sparsification.
We use sparsification to estimate the factor loadings and
rely on post-processing to obtain an estimate for the
number of factors. We also use sparsification to remove
stochastic volatility in a data-based manner. In this sub-
section, we first talk about the number of factors and then
about removing stochastic volatility.

To facilitate the discussion, note that a generic horse-
shoe prior takes the form:

βj | λ
β

j , τ β
∼ N

(
0, λβ

j τ β
)

, (9)

λ
β

j ∼ C+(0, 1), (10)

τ β
∼ C+(0, 1), (11)

where C+(·, ·) denotes the half-Cauchy distribution, λ
β

j
is the local shrinkage parameter, and τ β is the global
shrinkage parameter. In Appendix H, we show that the
horseshoe prior can take a hierarchical form using inverse-
gamma hyper-priors, and in the estimation we use the
inverse-gamma representation.

The number of factors This is done through the prior on
the factor loading matrix. To avoid specifying a prior on
the number of factors, Chakraborty et al. (2020) consider a
potentially full-rank matrix and shrink out the redundant
columns. Then they post-process the posterior draws to
get the posterior estimate of the rank of the matrix (in
this paper, the rank of a matrix is the number of factors).
We follow their method. Theoretically, one can use a full
matrix. In our case, this means setting the number of
factors to the number of economies N . However, we do
not do this.6 Thanks to the bulk of empirical studies, some
guidance on the number of factors is available. We choose
a slightly higher number.7

To assign shrinkage priors on factor loading matri-
ces (Lπ and Ly), we use the horseshoe prior and spec-
ify a column-specific global shrinkage parameter and an
element-specific local parameter. For instance, for Lπ , let
Lπ,j denote the jth column of factor loading matrix Lπ .
hen the prior on the ith element in Lπ,j is the horseshoe

prior with a column-specific global shrinkage parameter
(Lπ,j) and an element-specific local parameter (Lπ,ij).

The final step is to post-process the posterior draws.
e threshold the singular values of the factor loading
atrix and estimate the rank as the number of non-
ero thresholded singular values. We refer our readers
o Chakraborty et al. (2020) for more details.

o remove stochastic volatility To allow the data to de-
ide whether there is time variation in their log volatility,
e model the evolution of the log volatility as a random

6 In fact, we experimented with this but found that the computation
became a burden and that the forecast performance did not improve
much.
7 For instance, Carriero et al. (2020) find that there is one global

factor driving the 19-country GDP. What we did was to set the number
of global output factors to two.
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Table 1
Definitions and descriptions of uncertainty exp(ht/2).
Definition Description of uncertainty exp(ht/2)

Idiosyncratic inflation uncertainty exp(hπ
t /2), the standard deviation of uπ

t

Idiosyncratic growth uncertainty exp(hy
t /2), the standard deviation of uy

t

Global inflation uncertainty exp(hf
t /2), the standard deviation of f t

Global growth uncertainty exp(hg
t /2), the standard deviation of g t

Global inflation factor f t
Global growth factor g t
w

h

walk. This random walk is in non-centred parameteri-
sation. Then we use a global–local shrinkage prior (the
horseshoe prior) to control time variation. More specif-
ically, for each j = 1, . . . ,Nh, the evolution of the log
olatility is modelled as:

j,t = hj,0 + ωh
j h̃j,t (12)

˜ j,t = h̃j,t−1 + +ϵh
j,t , ϵh

j,t ∼ N (0, 1)

The non-centred parameterisation decomposes a time-
varying parameter hj,t into two parts: a time-invariant
art hj,0, and a time-varying part ωh

j h̃j,t . The time-varying
art has a constant coefficient ωh

j , which controls the
ime variation. If the error is homoscedastic, then we
xpect that ωh

j may be zero (or close to zero). If the error
s heteroscedastic, then we expect that ωh

j is different
rom zero. This case is exactly the advantage of global–
ocal shrinkage priors. Many papers have documented
hat global–local shrinkage priors can cope with the case
here a matrix is characterised by zero and non-zero
lements (e.g., Kastner & Huber, 2020; Polson & Scott.
hrink globally, 2010). So we use the empirically suc-
essful global–local shrinkage prior, namely the horseshoe
rior, for ωh

j .
If the error (factor) really is homoscedastic, the horse-

hoe prior will shrink ωh
j to (nearly) zero and automat-

cally remove (or nearly remove) the SV from the error
factor). The horseshoe prior has a global shrinkage pa-
ameter. It will push all elements (ωh

j ) towards zero. We
ssume that there is a single global shrinkage parame-
er. This is a restricted version of the horseshoe prior
n Feldkircher, Huber, Koop, and Pfarrhofer (2021). They
pecify that the global shrinkage parameter differs across
conomies and across equations within a given economy.
owever, we notice that such a flexible prior is used for
he coefficients in their panel VARs. Our horseshoe prior
s for the time-varying part of log volatility. Since the log
olatilities all represent the uncertainty, we expect that
hey have a single global shrinkage parameter. To capture
he differences across factors, economies, and equations,
e rely on the local shrinkage parameter.
For ωh

j , we consider the horseshoe prior. For the time-
nvariant part of log volatility, hj,0, we also consider the
orseshoe prior. Such priors might be too strong on log
olatility, so in Appendix G, we consider a normal prior
ith zero mean and variance one on hj,0.
To complete the priors, we assume that the constant

oefficients and initial states (ρ , α , ϕ , τπ , τ
y ) follow
i i i,j i,1 i,1

908
a normal distribution with zero mean and variance ten.8
The error variances (σ 2

τπ and σ 2
τy) are assumed to follow

an inverse-gamma distribution IG(10, 0.18).

3.3. Summarizing the model

To summarise the model including all economies:

πt − τπ
t = P(πt−1 − τπ

t−1) + A(yt − τ
y
t ) + Lπ f t + uπ

t ,

f t ∼ N (0, Ωπ
t ), uπ

t ∼ N (0, Σπ
t )

yt − τ
y
t = Φ1(yt−1 − τ

y
t−1) + Φ2(yt−2 − τ

y
t−2)

+ Lyg t + uy
t , g t ∼ N (0, Ω

y
t ), uy

t ∼ N (0, Σ
y
t )

τπ
i,t = τπ

i,t−1 + ϵτπ
i,t , ϵτπ

i,t ∼ N (0, σ 2
iτπ ), i = 1, . . . ,N

τ
y
i,t = τ

y
i,t−1 + ϵ

τy
i,t , ϵ

τy
i,t ∼ N (0, σ 2

iτy) (13)

hj,t = hj,0 + ωh
j h̃j,t

h̃j,t = h̃j,t−1 + ϵh
j,t , ϵh

j,t ∼ N (0, 1), j = 1, . . . ,Nh

here πt = (π1,t , . . . , πN,t )′ is an N × 1 vector, τπ
t =

(τπ
1,t , . . . , τ

π
N,t )

′ is an N × 1 vector, P = diag(ρ1, . . . , ρN )
is an N × N matrix, A = diag(α1, . . . , αN ) is an N × N
matrix, yt = (y1,t , . . . , yN,t )′ is an N × 1 vector, τ

y
t =

(τ y
1,t , . . . , τ

y
N,t )

′ is an N × 1 vector, Φ1 = diag(φ1,1, . . . ,

φN,1) is an N ×N matrix, and Φ2 = diag(φ1,2, . . . , φN,2) is
an N × N matrix.

In what follows, we use ‘‘the multi-country UC-FSV’’
for the model defined through Eq. (13). Many models can
be written as a restricted version of the multi-country UC-
FSV model. These restrictions can help us to investigate
some aspects of our model. The restricted models, along
with their acronyms, are as follows:

(1) UC-FSV-ry = 0: this is the restricted version of the
UC-FSV where there are no common factors in growth
gap equations; that is, ry = 0. And errors in growth gap
equations are allowed to exhibit stochastic volatility.

(2) UC-FSV-ry, rπ = 0: this is the restricted version of
UC-FSV where there are no common factors in inflation
gap and growth gap equations; that is, rπ = 0, ry =

0. Errors in inflation gap and growth gap equations are
allowed to exhibit stochastic volatility.

(3) UC-FSV-ry, rπ = 0, ωh
y = 0: this is the restricted

version of UC-FSV where there are no common factors
in inflation gap and growth gap equations—that is, rπ =

0, ry = 0—and errors in growth gap equations uy
t are

omoscedastic, while errors in inflation gap equations uπ
t

8 Remember that we bound ρi and αi to be positive and less than
one.
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xhibit stochastic volatility. This is the model that is used
n Chan et al. (2016) and Stella and Stock (2013).9

. Full-sample results

.1. Data

The data are the quarterly consumer price index (CPI)
nd the quarterly real gross domestic product (GDP) for
4 economies: 23 advanced economies (AEs)10 and 11

emerging market economies (EMEs).11 They span the
period from 1995Q1 to 2018Q1. The choice of countries
and the sample size were based on data availability.
The series include the headline consumer price index
(CPI), representing domestic headline inflation, and real
gross domestic product (GDP), which reflects domestic
demand. Real GDP data were obtained from Haver An-
alytics. We transformed the data to annualised growth
rates as: 400log(zt/zt−1). And because the growth gap
equation follows an AR(2) process, our estimation starts
from 1995Q4. We set rπ = 5 and ry = 2. That is, we
include five factors in inflation gap equations and two
factors in growth gap equations. The posterior results are
based on 100,000 draws after a burn-in period of 20,000.

4.2. Overview of empirical results

We divide our full-sample results into three
sub-sections. The first sub-section is the estimate of global
inflation uncertainty exp(hf

t /2) and global growth uncer-
ainty exp(hg

t /2). Then we report the correlation between
lobal inflation factors and domestic business cycles.
The second sub-section is the sparsification. We use

parsification to avoid omitting some potentially impor-
ant factors and to remove stochastic volatility in a data-
ased manner. We report the posterior estimates of the
umber of factors. The evidence of removing stochastic
olatility is provided in Appendix F.
The third sub-section is the Bayesian model compar-

son. We compare the multi-country UC-FSV with the
lternative models (UC-FSV-ry = 0, UC-FSV-ry, rπ = 0,
nd UC-FSV-ry, rπ = 0, ωh

y = 0) described in Section 3.3.

.3. Estimates of global uncertainty

Although the multi-country UC-FSV estimates of global
ncertainty reflect contemporaneous effects of global fac-
ors on (the volatility of) macroeconomic data, the effect
s also directly related to the loadings on global factors.
hese loadings are reported in Appendix B. We report the
osterior mean of the five factors’ loadings (recall that we
et rπ = 5), but only the 16% and 84% quantiles of the first
actor’s loadings for brevity. Most of the economies have

9 The coefficients in this paper are restricted to be constant.
10 Australia, Belgium, Canada, Denmark, Finland, France, Germany,
reece, Hong Kong, Ireland, Israel, Italy, Latvia, Lithuania, the Nether-
ands, Portugal, Slovakia, South Korea, Spain, Sweden, Switzerland, the
.K., and the U.S.A.
11 Bolivia, Brazil, China, Hungary, Indonesia, Mexico, the Philippines,
ussia, South Africa, Thailand, and Turkey.
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sizable loadings on the first global inflation factor, and
the quantiles (except for Russia and Brazil) do not include
zero. Then we report the loadings on the global growth
factor. The quantiles of the first global growth factor for
all economies do not include zero. This provides strong
evidence of significant commonality of output growth in
the 34 economies. Carriero et al. (2020) obtain similar
result in their case of a 19-country GDP data set.

Fig. 1 displays the posterior estimates of global un-
certainty obtained from the multi-country UC-FSV using
the full sample. The left panel is the estimate of global
inflation uncertainty, and the right panel is global growth
uncertainty. In both figures, the solid lines represent the
posterior means of the first uncertainty, while the dotted
lines are the associated 16% and 84% quantiles. The dashed
lines represent the posterior means of the remaining un-
certainties. For instance, with regard to global inflation
uncertainty, we set rπ = 5. So we obtain the poste-
ior estimates of the five global inflation uncertainties
rom MCMC, including their posterior means and quan-
iles. Then, in Fig. 1(a), we plot the posterior means and
uantiles of the first global inflation uncertainty (see the
olid lines and dotted lines), but for brevity, we only plot
he posterior means of the remaining uncertainties (the
econd, third, fourth, and fifth uncertainties) using dashed
ines.

As indicated in Fig. 1(a), we only observe evident
nd meaningful time variation in the first global infla-
ion uncertainty. The estimated global inflation uncer-
ainty shows significant increases around some of the
olitical and economic events that Bloom (2009) high-
ights as periods of uncertainty, including 9/11, the Enron
candal, the second Gulf war, and the Global Financial
risis period. These spikes associated with the global
actor are documented in Kastner and Huber (2020) us-
ng U.S. macroeconomic data. Since our data come from
4 economies, the consistency (between the estimates
n Kastner and Huber (2020) and in our study) indicates
hat global macroeconomic uncertainty is closely related
o uncertainty in the U.S., which might not seem surpris-
ng given that the international economy is tied to the U.S.
conomy. One spike that is not documented in Kastner
nd Huber (2020) is that volatility increases from 2013
nward. This may indicate that such an increase is driven
y economies other than the U.S. In addition, at the
nd of our sample (2018Q1), global inflation uncertainty
till exists and continues to influence all economies un-
er consideration. This is supported by a related study,
amely Forbes (2019). They add commodity price volatil-
ty to explain inflation and find that commodity price
olatility plays a large role in CPI inflation.
However, we find a different story with regard to the

ime variation in global growth uncertainty from Fig. 1(b).
irst, the two global growth uncertainties both increase
uring the Global Financial Crisis (GFC) of 2008, but ex-
ept for this, we do not observe other meaningful time
ariation from the second global growth uncertainty.12
efore the GFC, there was global growth uncertainty but it

12 This is the first reason for including only two factors in the growth
gap equation.
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Fig. 1. Posterior estimates for global inflation uncertainty exp(hf
t /2) and global growth uncertainty exp(hg

t /2) under the multi-country UC-FSV. The
solid lines represent the posterior means of the first global uncertainty, while the dotted lines are the associated 16% and 84% percentiles. The
dashed lines represent the posterior means of the remaining uncertainties.
Table 2
Posterior estimates of correlation between global
inflation factors and domestic business cycles.

Correlation

Mean 0.22
16% quantile 0.19
84% quantile 0.25

did not show much time variation. Then, during the GFC,
such uncertainty increased substantially. In the aftermath
of the GFC, it decreased sharply and, importantly, in 2015
global inflation uncertainty reached a very low level.13
These features are documented in Carriero et al. (2020)
in their 19-country GDP data set.

Next, Table 2 reports the correlation between global
inflation factors f t and domestic business cycle (yi,t −τ

y
i,t )

on average. We check this correlation mainly because we
get a lower α when adding FSV (see Table 13 in Appendix
C). Recall that α is the slope of the Phillips curve. This
may give us an impression that allowing for cross-country
linkages will flatten the Phillips curve. But we think we
need more care when interpreting this lower value. So we
checked the correlation between two variables: global in-
flation factors, f1,t ,14 and domestic business cycles, (yi,t −
τ
y
i,t ). Then we took the average across economies.
The results show that the estimated global inflation

factor is positively correlated with domestic business cy-
cles. We interpret this to mean that part of the vari-
ation captured in the global inflation factor reflects a
global business cycle. Introducing factors could reduce the
omitted-variable bias.

13 This is the second reason for including only two factors in the
growth gap equation.
14 f1,t is the global inflation factor with the highest variation. Since
other factors are quite flat and do not have meaningful interpretations,
we do not consider them.
910
4.4. Sparsification: Number of factors

To obtain the posterior estimate of the number of
factors, we post-process the posterior draws by thresh-
olding the singular values of the factor loading matrix,
and then estimating the rank as the number of non-zero
thresholded singular values. One choice of the threshold is
proposed in Chakraborty et al. (2020). Using their choice,
we get the result in Table 3. We have inflation gap equa-
tions and growth gap equations. The second column is
singular values for inflation gap equations, and the third
column is singular values for growth gap equations. The
first row reports the threshold. The number of factors
is determined as the number of singular values larger
than the threshold. In growth gap equations, we find that
there is one singular value (119.82) that is larger than
the threshold (= 108.46). This means that there is one
global factor in the growth gap equations. This finding is
consistent with prior studies.

In the inflation gap equations, we find that there is
no singular value that is larger than the threshold (=
118.47). This means that there is no global factor in the
inflation equation.15 Even if in the full-sample result we
do not find strong evidence of global factors in inflation
gap equations, in the out-of-sample forecasting exercise
we find that the FSV specification does improve the fore-
cast of inflation (although the improvement of forecasting
inflation is smaller than the improvement of forecasting
growth; see Section 5).

15 In Appendix G, we provide additional results that provide ro-
bustness checks on the estimate of the number of factors. The two
dimensions to assess the robustness are (1) the identification constraint
on the factor loading matrices Lπ and Ly , and (2) the shrinkage on the
time-invariant part of log volatility hj,0 . Our conclusion remains the
same. Another method for choosing the number of factors is by the
model’s forecast performance, for instance, a table reporting the sum
of one-step-ahead log predictive likelihoods, as in Table 4, but with
different numbers of factors.
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Table 3
Posterior number of factors.
Singular values Inflation equation Output equation
(descending) threshold = 118.47 threshold = 108.46

First 49.08 119.82
Second 23.33 45.85
Third 5.17 20.62

4.5. Bayesian model comparison

As discussed above, the computation of marginal like-
ihoods can be a challenge when there are a large num-
er of states. Therefore, we use an approximation of
he marginal likelihood (see Cross, Hou, & Poon, 2020;
eweke, 2001; Geweke & Amisano, 2010). They propose
hat conditioning on the estimation period, the sums
f one-step-ahead joint log predictive likelihoods of 34
conomies can be viewed as an approximation to the
arginal likelihood, and therefore provide a direct
easure of in-sample fit. We compare four competing
odels: the multi-country UC-FSV, UC-FSV-ry = 0, UC-

FSV-ry, rπ = 0, and UC-FSV-ry, rπ = 0, ωh
y = 0.

Before computing the sums of one-step-ahead joint log
predictive likelihoods, we need to define some basics. Let
ŷ(i,j)t+k denote, at time t , the k-step-ahead forecast of the
jth variable in the ith economy, and let y(i,j)t+k denote the
actual value. In our empirical work, i = 1, . . . ,N with
N = 34 and j = 1, 2, where j = 1 denotes inflation and
j = 2 denotes growth. Y(i,j)

1:t stores the data up to time t ,
so ŷ(i,j)t+k = E (y(i,j)t+k | Y(i,j)

1:t ). Then we compute the k-step-
ahead log predictive likelihoods (LPLs) at time t of the ith
economy and the jth variable:

LPLt,i,j,k = log p(ŷ(i,j)t+k = y(i,j)t+k|Y
(i,j)
1:t ), t = T0, . . . , T − k

Then the sums of one-step-ahead joint log predictive
likelihoods are computed:

LPL·,·,·,1 =

T−1∑
t=T0

n∑
i=1

2∑
j=1

log p(ŷ(i,j)t+1 = y(i,j)t+1|Y
(i,j)
1:t )

Our estimation period starts from 1995Q4 (to 2018Q1),
and the forecasting evaluation period starts from 2003Q1.
We provide the sums of one-step-ahead joint log predic-
tive likelihoods of the 34 economies in Table 4.

In Table 4, the results are presented relative to the
forecast performance of the UC-FSV-ry, rπ = 0, ωh

y =

0: we take differences, so that a positive number in-
dicates that a model is forecasting better than the UC-
FSV-ry, rπ = 0, ωh

y = 0.16 The results show that the
multi-country UC-FSV provides the best fit compared to
all other models. In addition, since we find that UC-FSV-
ry, rπ = 0 provides higher model fit than UC-FSV-ry, rπ =

0, ωh
y = 0, we view this as more evidence in support of

allowing for idiosyncratic stochastic volatility in growth
gap equations.

16 Note that we only take the sum, and not the average. That may be
why the number seems so large. For instance, the sum of LPLs under
UC-FSV is 895.02. Their average over time is 14.67. If we take the
average across economies, it is 0.43.
911
Table 4
Sum of one-step-ahead log predictive likelihoods.
Model Against UC-FSV-ry, rπ = 0, ωh

y = 0

UC-FSV-ry, rπ = 0, ωh
y = 0 0

UC-FSV-ry, rπ = 0 520.37
UC-FSV-ry = 0 658.57
UC-FSV 883.34

5. Out-of-sample forecasting results

Since our modifications are about uncertainty, we fo-
cus on the density forecast. We use data from 1995Q4 to
2002Q4 as an initial estimation period, and we use data
through 2002Q4 to produce k-step-ahead forecast distri-
butions. We consider forecast horizons of k = 1, 4, 8, 12,
16 quarters. So our forecast evaluation period begins in
2003Q1. We divide our out-of-sample forecasting results
into three parts: forecasting inflation, forecasting out-
put growth, and jointly forecasting inflation and output
growth. For each part, we discuss the results in three di-
mensions. The first dimension is the aggregate forecasting
performance over time and across economies (the aggre-
gate LPL, by summing all economies and all time periods).
Since we observe international macroeconomic uncer-
tainty, it is natural to expect that considering such uncer-
tainty will provide more accurate forecasts in economic
recessions. Thus, the second dimension is about forecast-
ing performance over time. (We can study how the sums
of LPLs change over time by summing all economies at
time t .) After providing evidence that our multi-country
UC-FSV can produce more accurate forecast in economic
recessions, we further study whether such good forecast
performance is driven by particular economies. Hence,
the third dimension is about the forecasting performance
at the level of the particular economy. All results are
presented relative to the forecast under UC-FSV-ry, rπ =

0, ωh
y = 0: we take differences, so a positive number

indicates that a model is forecasting better than the UC-
FSV-ry, rπ = 0, ωh

y = 0.

5.1. Forecasting inflation

We first report the aggregate forecasting performance
for inflation over time and over economies in Table 5. It is
calculated by summing the LPLs for the N economies over
T0 to T − k (and recall that j = 1 denotes inflation):

LPL·,·,1,k =

t=T−k∑
t=T0

n∑
i=1

log p(ŷ(i,1)t+k = y(i,1)t+k |Y
(i,1)
1:t )

The results show that the model with cross-country
linkages in inflation (UC-FSV-ry = 0 and UC-FSV) pro-
vides more accurate forecasts for inflation than the model
without cross-country linkages (UC-FSV-ry, rπ = 0 and
UC-FSV-ry, rπ = 0, ωh

y = 0) at all horizons.
The forecasting results of inflation in Table 5 demon-

trate the benefits of allowing for cross-country linkages,
hich is done by considering global inflation uncertainty

n our paper. It is natural to expect that the good forecast-
ng results may largely arise from periods of uncertainty.
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Table 5
Sum of k-step-ahead log predictive likelihoods for 34-country inflation.
Model k = 1 k = 4 k = 8 k = 12 k = 16

UC-FSV-ry, rπ = 0, ωh
y = 0 0 0 0 0 0

UC-FSV-ry, rπ = 0 −4.27 71.83 127.82 138.85 185.26
UC-FSV-ry = 0 98.92 265.09 286.02 350.53 333.11
UC-FSV 101.63 257.39 294.76 379.19 356.89
To investigate this point, we calculate the sums of LPLs
over time. As in Feldkircher et al. (2021), a common
method is to sum the LPLs for the N economies at time
t:

LPLt,·,1,k =

n∑
i=1

log p(ŷ(i,1)t+k = y(i,1)t+k |Y
(i,1)
1:t )

For instance, suppose we are at the time point of 2007Q4.
Then k = 1 means we are forecasting the data in 2008Q1,
and k = 4 means we are forecasting the data in 2008Q4.
So this method helps to answer (at time t) which model
can provide the most accurate forecast in the future.

However, recall that global inflation uncertainty shows
significant increases around 2008 and 2015 (see Fig. 1(a),
and because our forecast starts from 2003Q1, we omit
the increase in 2001). Such global inflation uncertainty
drives strong co-movement across economies. So a more
interesting study is to investigate whether this global in-
flation uncertainty can improve the forecast performance
during periods of uncertainty. For instance, suppose that
we want to know which model can provide the most
accurate forecast of 2008Q1. Different forecast horizons
will provide the forecast made at a different time t . If k =

1, then this means the forecast is made at 2007Q4 (one
step ago). If k = 4, then this means the forecast is made
at 2007Q1 (four steps ago). Overall, the difference is the
x-axis. Suppose that we are at time t . In Feldkircher et al.
(2021), the x-axis is t and represents when we make the
forecast, but in our paper, the x-axis is t+k and represents
when to forecast. This is how we produce Fig. 2. About the
starting time, since we make the first forecast at 2002Q4,
if k = 1, the time to forecast (at 2002Q4) is 2003Q1, so
in Fig. 2, the x-axis (time to forecast) starts from 2003Q1
when k = 1. If k = 4, the time to forecast (at 2002Q4)
is 2003Q4, so in Fig. 2, the x-axis (time to forecast) starts
from 2003Q4 when k = 4. Similarly, if k = 16, the time
to forecast (at 2002Q4) is 2006Q4, so in Fig. 2, the x-axis
(time to forecast) starts from 2006Q4 when k = 16.

We plot the results (against UC-FSV-ry, rπ = 0, ωh
y =

0) in Fig. 2 (but for brevity, we only plot the results of UC-
FSV). To forecast inflation during periods of uncertainty
(like 2008), we find good overall forecast performance
for UC-FSV at all horizons, particularly at long horizons.
This indicates the importance of taking into account cross-
country linkages for improving forecasts of inflation, es-
pecially to forecast periods of uncertainty. To forecast
more stable periods, it does not hurt to take into account
cross-country linkages.

The sums of LPLs over time in Fig. 2 are for the 34
economies. Someone may question whether the good
forecasting result is driven by particular economies. To
investigate this point, we present the forecasting results
912
for individual economies. The LPL of inflation for economy
i at time t is calculated as follows:

LPLt,i,1,k = log p(ŷ(i,1)t+k = y(i,1)t+k |Y
(i,1)
1:t )

We plot the results (against UC-FSV-ry, rπ = 0, ωh
y =

0) in Fig. 3. Here, the period of uncertainty that we plot
is 2008Q4, so the time to forecast is 2008Q4 (t + k =

2008Q4). If k = 1, then the time we make the forecast
is 2008Q3, and we find good overall forecast performance
for most economies, with more pronounced gains in ad-
vanced economies. (The first 23 economies are AEs, and
the following 11 economies are EMEs.) A similar pattern is
found if k = 16. The time we make the forecast is 2004Q4,
and we also find good overall forecast performance for
most economies. We also find significant gains in Spain
and the U.S.A. The gain is not so significant when k = 1
compared to when k = 16. In Fig. 3, we only plot the
shortest horizon, k = 1, and the longest horizon, k = 16.
For middle horizons (k = 4, 8, 12), we found good fore-
casting results across most economies and did not find
that a particular economy was important for driving the
good forecasting results. Overall, we find good forecast
performance for UC-FSV for most economies, where this
performance is not driven by particular economies.

5.2. Forecasting output growth

With regard to output growth, we report the sums
of LPLs of output over time and over economies in Ta-
ble 6. This is calculated by summing the LPLs for the N
economies over T0 to T − k (and recall that j = 2 denotes
output growth):

LPL·,·,2,k =

t=T−k∑
t=T0

n∑
i=1

log p(ŷ(i,2)t+k = y(i,2)t+k |Y
(i,2)
1:t )

The results show that the model that allows for both
idiosyncratic stochastic volatility and cross-country link-
ages in growth gaps provides the most accurate forecast
for output growth at all horizons.

Similar to the analysis of inflation, the second dimen-
sion of discussion for output growth is the sum of LPLs
over time (by summing all economies at time t), which
can be calculated by:

LPLt,·,2,k =

n∑
i=1

log p(ŷ(i,2)t+k = y(i,2)t+k |Y
(i,2)
1:t )

We plot the results (against UC-FSV-ry, rπ = 0, ωh
y =

0) in Fig. 4. To forecast output growth during periods
of uncertainty (like 2008), we find good overall fore-
cast performance for UC-FSV at all horizons. This indi-
cates the importance of taking into account cross-country
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Fig. 2. Sums of k-step-ahead LPLs of inflation for UC-FSV relative to UC-FSV-ry, rπ = 0, ωh
y = 0 over time. The x-axis is t + k and represents when

to forecast.
Fig. 3. Sums of k-step-ahead LPLs of inflation for economy i under UC-FSV relative to UC-FSV-ry, rπ = 0, ωh
y = 0.
Table 6
Sum of k-step-ahead log predictive likelihoods for 34-economy output growth.
Model k = 1 k = 4 k = 8 k = 12 k = 16

UC-FSV-ry, rπ = 0, ωh
y = 0 0 0 0 0 0

UC-FSV-ry, rπ = 0 577.02 694.98 811.01 797.25 684.98
UC-FSV-ry = 0 566.81 668.04 852.04 772.90 680.99
UC-FSV 762.93 1194.99 1211.17 1208.10 1052.36
913
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Fig. 4. Sums of k-step-ahead LPLs of output for UC-FSV relative to UC-FSV-ry, rπ = 0, ωh
y = 0 over time. The x-axis is t + k and represents when to

orecast.
inkages for improving forecasts of output growth, es-
ecially to forecast periods of uncertainty. To forecast
ore stable periods, it does not hurt to take into account
ross-country linkages.
To investigate whether the good forecast performance

s driven by particular economies, we calculate the sum
f LPLs of output growth for economy i at time t:

LPLt,i,2,k = log p(ŷ(i,2)t+k = y(i,2)t+k |Y
(i,2)
1:t )

We plot the results (against UC-FSV-ry, rπ = 0, ωh
y =

0) in Fig. 5. We choose 2008Q4 to represent the pe-
riod of uncertainty. For k = 1 and k = 16, we both
find good overall forecast performance for UC-FSV for
all economies. The highest gain is found for Hungary,
followed by Sweden. However, unlike the conclusion in
the case of forecasting inflation, where more pronounced
gains were found in AEs, we found significant gains in
both AEs and EMEs. This implies that allowing for idiosyn-
cratic stochastic volatility and cross-country linkages in
output growth is important for both AEs and EMEs.

5.3. Jointly forecasting inflation and output growth

With regard to the joint predictive density for inflation
and output growth, we first report the sums of joint LPLs
over time and over economies in Table 7. This is calculated
by summing the LPLs for the N economies over T0 to T −k
(and for all j, recalling that j = 1 denotes inflation and
j = 2 denotes output):

LPL·,·,·,k =

t=T−k∑
t=T0

n∑
i=1

2∑
j=1

log p(ŷ(i,j)t+k = y(i,j)t+k|Y
(i,j)
1:t )

The results show that the model that allows for id-
osyncratic stochastic volatility in output growth and
914
Table 7
Sum of k-step-ahead joint log predictive likelihoods for 34-economy
inflation and output growth.
Model k = 4 k = 8 k = 12 k = 16

UC-FSV-ry, rπ = 0, ωh
y = 0 0 0 0 0

UC-FSV-ry, rπ = 0 679.42 751.62 794.16 615.81
UC-FSV-ry = 0 898.62 1084.28 1084.13 1148.35
UC-FSV 1513.05 1545.20 1824.70 1672.17

cross-country linkages in both inflation and output
growth (UC-FSV) provides the most accurate joint fore-
casts of inflation and output growth at all horizons.17

Next, we study the time variation in forecast perfor-
mance to see whether the benefits arise from forecasts
during periods of uncertainty. So the second dimension
of discussion for the joint predictive density for inflation
and output growth is the sum of joint LPLs over time (by
summing all j and all economies at time t), which can be
calculated by:

LPLt,·,·,k =

n∑
i=1

2∑
j=1

log p(ŷ(i,j)t+k = y(i,j)t+k|Y
(i,j)
1:t )

We plot the results (against UC-FSV-ry, rπ = 0, ωh
y =

0) in Fig. 6. A pattern similar to that for inflation and
output growth was found. To jointly forecast inflation and
output growth during periods of uncertainty (like 2008),

17 We do not report the horizon k = 1 since this has been reported
in Table 4. We refer the reader to Table 4 to see the sum of one-
step-ahead joint log predictive likelihoods for 34-economy inflation and
output growth.
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Fig. 5. Sums of k-step-ahead LPLs of output in economy i for UC-FSV relative to UC-FSV-ry, rπ = 0, ωh
y = 0.
Fig. 6. Sums of k-step-ahead joint LPLs for UC-FSV relative to UC-FSV-ry, rπ = 0, ωh
y = 0 over time. The x-axis is t + k and represents when to

orecast.
e
j
s
f

L

e find good overall forecast performance under UC-
SV at all horizons. This indicates the importance of tak-
ng into account cross-country linkages (in inflation and
utput growth) for improving forecasts of inflation and
utput growth, especially during periods of uncertainty.

Finally, we investigate whether the good forecast per-
ormance of periods of uncertainty is driven by particular
915
conomies, so the third dimension of discussion for the
oint predictive density for inflation and output growth is
um of joint LPLs at the economy level (by summing all j
or economy i), which can be calculated by:

PLt,i,·,k =

t=T−k∑ 2∑
log p(ŷ(i,j)t+k = y(i,j)t+k|Y

(i,j)
1:t )
t=T0 j=1
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Fig. 7. Sums of k-step-ahead joint LPLs in country i for UC-FSV relative to UC-FSV-ry, rπ = 0, ωh
y = 0.
e plot the results (against UC-FSV-ry, rπ = 0, ωh
y = 0) in

ig. 7. A pattern similar to that for output was found. (This
s sensible since the gains in output are much larger than
he gains in inflation; see Fig. 3 and Fig. 5.) We found good
verall forecast performance for UC-FSV for all economies.

. Conclusion

This paper developed a multi-country unobserved
omponents model that allows for cross-country linkages
nd models economies jointly. The important feature is
ealised through factor stochastic volatility. The factor
tochastic volatility specification enables us to study the
ommonality in international macroeconomic uncertainty
global uncertainty). Another important feature of our
odel is the use of sparsification. We use sparsification

o estimate factor loadings and rely on post-processing
o obtain an estimate for the number of factors. We
lso use sparsification to remove stochastic volatility in
data-based manner. Recent research has been devoted

o speeding up computation, and one prominent devel-
pment is equation-by-equation estimation. The factor
tochastic volatility specification also enables us to esti-
ate this high-dimensional model equation-by-equation.
In an empirical application, we first presented evi-

ence of global uncertainty that coincided with major
conomic events. Part of the variation captured in the
lobal inflation factor reflected a global business cycle.
inally, we provided a detailed forecasting exercise to
valuate the merits of our model. We found that our
odel can provide more accurate density forecasts, espe-
ially if the aim is to forecast periods of uncertainty. And
916
such good forecast performance is for most economies,
and not driven by particular economies.
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