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Abstract: Challenges in the water supply sector have hindered the advanced implementation of
artificial intelligence (AI) compared to other sectors. These challenges have not been sufficiently
examined in the existing literature. An empirical study was conducted within a public utilities
organization in the United Arab Emirates (UAE) to address this gap. An integrated approach
combining interpretive structural modeling (ISM) and fuzzy cross-impact matrix multiplication
applied to classification (MICMAC) analysis was utilized to identify the critical challenges and to
model and analyze the relationships among them. The ISM model provides significant advantages
by enabling decision-makers to visualize complex interactions, supporting the development of an
effective AI implementation strategy. The strategy should prioritize four critical challenges: the lack
of technical skills and knowledge, the limited availability of ready-to-use AI solutions, inadequate
water infrastructure, and concerns regarding privacy and data security. These challenges were
identified based on their positioning at the lowest level of the ISM model and their classification as
independent in the fuzzy MICMAC analysis. Addressing these four challenges will help to mitigate
the remaining six. The study’s findings and implications are expected to offer valuable guidance for
decision-makers in implementing AI technologies within water supply organizations, both in the
UAE and in countries with similar environments.
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1. Introduction

Water is essential for people, plants, animals, and for the economic progress of any
country. However, one in four people globally lack access to clean water and face chal-
lenges with water purity. Moreover, according to some estimates, two-thirds of the world’s
population is situated in regions with water scarcity for several reasons, including increas-
ing consumption, population growth, and the ramifications of climate change [1,2]. The
challenge is intensifying, with an expected increase in the urban population from 3.9 billion
in 2014 to 6.3 billion by 2050 [3]. While the rate of urbanization will differ by country, it
is especially prominent in Asia and Africa, with almost 90% of the growth in urban areas.
As a result, these metropolitan regions will depend heavily on existing water supplies,
presenting mounting challenges for water management. If this trend continues, by 2030,
the water demand could surpass availability by 40% [4].
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Certain regions, including the Middle East and North Africa, are recognized as some
of the most water-scarce regions globally [5]. These regions account for only about 1.4 per-
cent of the world’s renewable freshwater resources. Physical water scarcity is a frequent
issue in arid and semi-arid climates. For instance, nations such as the United Arab Emi-
rates (UAE) and Saudi Arabia struggle to meet their water needs due to inherently low
rainfall levels and limited water resources [5,6]. In contrast, some countries face severe
environmental challenges stemming from overconsumption of water, which accelerates
environmental degradation. The Aral Sea basin, shared by Kazakhstan and Uzbekistan,
illustrates this issue, where extensive irrigation practices have drastically reduced water
resources. This overuse has resulted in significant ecological damage, compromising clean
water availability for both human needs and ecological balance [7].

At this critical stage, organizations in the water supply sector need to revolutionize
their water management systems into more sustainable, intelligent, and resilient frame-
works by adopting Water 4.0 technologies. According to Sedlak [8], the initial phases of
water technology evolution were as follows: Water 1.0 was centered on the development
of centralized drinking water systems, Water 2.0 focused on the development of sewer
infrastructures for wastewater management, while Water 3.0 featured wastewater treatment
to mitigate pollution and environmental harm.

By employing a range of emerging technologies such as artificial intelligence, big-data
analytics, cloud computing, cyber-physical systems, and the Internet of Things, Water 4.0
can provide a better understanding of complex water management issues, enabling it to be
used in early warning, production, and decision-making processes. Additionally, Water
4.0 facilitates optimal water supply system management, allowing users to utilize limited
water resources more efficiently [9]. However, despite the considerable potential benefits
of these technologies, their application in the water sector is relatively less extensive
than their utilization in other sectors, including energy, healthcare, manufacturing, or
transportation [10,11].

Among these technologies, artificial intelligence (AI), in particular, has seen limited
adoption in water. Most of the reported work (a sample of which is discussed in Section 2.3)
has been conducted by researchers or AI vendors rather than practitioners, making it
challenging to assess how these advancements are perceived by water utilities [12]. To
explore the extent to which water utilities have actually implemented AI technologies, a
survey by Rapp et al. [12] revealed that only 24% of a random sample of 49 major water
utilities in the United States had adopted some form of AI technology. These applications
were largely experimental, manual, or partial models, falling short of fully integrated,
continuously operating systems. In the UAE, a leading utility organization—the subject of
this case study—has yet to implement any AI-related initiatives.

The factors contributing to this limited adoption of AI in the water sector remain
underexplored in the existing literature. To address this gap, this research investigated the
challenges associated with implementing AI technologies in the aforementioned utility
organization. As one of the few studies to address this issue in the water supply sector, it is
expected to provide insights into sector-specific challenges and offer a structured approach
to addressing them, which could be valuable for other utilities and related sectors.

The following is the structure of the rest of this article. The following section briefly
reviews the pertinent literature concerning artificial intelligence, both in the context of
the UAE and its implementation in the water supply sector. Subsequently, we outline the
methodological approach employed in our study. Following that, we present the obtained
findings and engage in a comprehensive discussion of the results. Then, we proceed with a
discussion on addressing the most critical challenges identified. Last are the final remarks,
limitations, and recommendations for the future, which are presented in the conclusions
section.
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2. Literature Review
2.1. Artificial Intelligence

Artificial intelligence (AI) is a quickly developing field that has revolutionized nu-
merous parts of daily living. It has its roots in the mid-twentieth century when computer
scientists first began to explore the possibility of machines that could think and learn
like humans [13]. In 1950, Alan Turing first identified the idea of AI in the “Turing Test”,
originally known as the imitation game [14]. Since then, technology has rapidly grown and
matured. Today, we are in an age where machines excel in tasks that necessitate intelligent
interactions, thanks to their ability to connect and visualize data. As we transition to the era
of Industry 4.0, the progress of AI is directed towards integrating it with other technologies
like big data and cloud computing. This integration enables AI to tackle massive tasks and
expand its applications across various fields. Thus, AI is not a new field of study, but it
has garnered renewed attention recently because of its remarkable advancements [15] and
intensified policy focus [16].

UNESDOC [17] defined AI systems as “technological systems capable of processing
information in a manner that imitates intelligent behavior”. Such systems typically encom-
pass control, learning, perception, planning, prediction, or reasoning functionalities. AI
systems consist of various approaches and technologies, which may include, among others,
artificial neural networks [18]; case-based reasoning [19]; cognitive mapping [20]; cyber-
physical systems [21,22], including autonomous machines and vehicles, computer vision,
facial and image recognition, human–computer interfaces, robotics, and speech recogni-
tion; fuzzy logic [23,24]; supervised and unsupervised machine learning [25]; machine
reasoning [26], such as knowledge representation and reasoning, optimization, planning,
predictive analytics, search, scheduling; multi-agent systems [27]; and natural language
processing [28].

2.2. Artificial Intelligence in the UAE

Many countries worldwide are trying to integrate into the AI-powered digital economy,
which is forecasted to contribute approximately USD 15.7 trillion to the global economy by
2030 [29]. In Africa and the Middle East, the AI market is anticipated to expand from USD
500 million in 2020 to USD 8.4 billion by 2026, representing a compound annual growth rate
of 47.8%. In 2020, the UAE’s AI market was valued at USD 290 million [30]. It is projected
to grow at a compound annual growth rate of 28.54% from 2024 to 2030, with the market
size expected to reach USD 4.29 billion by 2030 [31]. Such rapid growth highlights the
country’s commitment to advancing AI and boosting economic development. This growth
aligns with the UAE government’s Strategy for Artificial Intelligence (AI), launched in
2017 to improve performance across all sectors by implementing a smart digital system
capable of efficiently addressing challenges. The goal is to establish the UAE as a global
AI investment and innovation leader while developing a high-value market [32]. The AI
strategy also complements the UAE Centennial 2071 plan, which focuses on preparing
future generations with the necessary skills and knowledge to navigate global changes,
positioning the country to become the world’s top nation by 2071.

To realize the UAE’s strategy objectives for AI, a Minister of State for Artificial Intel-
ligence was established to facilitate the adoption of more recent AI technologies across
governmental sectors [32]. An AI Council has also been formed, comprising ten members
from governmental entities, to explore the necessary foundational infrastructure to support
AI. AI Council members and the Minister of State for AI are to collaborate closely in devel-
oping government regulations to ensure the safe and responsible use of AI technologies
across the nation’s diverse sectors, including the water supply sector. Examples of these
regulations include the AI Ethics Principles and Guidelines, which emphasize transparency,
accountability, fairness, and the protection of human rights in AI applications [33].
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2.3. AI Implementation in the Water Supply Sector

The role of the water supply sector in any country is crucial in ensuring access to
clean and safe water for its communities. However, this sector encounters various general
challenges. First, it operates primarily in the public domain [34], with water considered
something that should be accessible to all with adequate quality and quantity [35]. Second,
water management involves several conflicting constraints, including scarcity, limited space,
and the availability of funds for constructing and upgrading essential infrastructure [36].
Third, many water-associated problems have a spatial dimension [37], often accompanied
by specialized infrastructure requirements [38]. Lastly, particularly concerning climate
change, uncertainty adds to the numerous challenges in the water sector [39].

The challenges mentioned above, along with others, can be effectively addressed
through the adoption of AI technologies. Table 1 presents a sample of these applications,
illustrating how AI can be applied across various domains, including operations manage-
ment, modeling, optimization, prediction, and forecasting. These applications demonstrate
the significant potential of AI to enhance efficiency, resilience, and sustainability in the wa-
ter sector, empowering water utilities and resource managers to tackle pressing challenges
more effectively.

Table 1. Sample of applications.

Application Area Sample of Applications Reference(s)

Operations management Detection of accidental water contamination [40]
Detection of damage to pipes in an earthquake’s
aftermath [41]

Modeling

Identifying and managing leaks [42–44]
Modeling water quality [45,46]
Extracting surface water [47]
Inferring body of water types from urban
high-resolution remote sensing images [48]

Optimization Developing and applying a conceptual model for
aquifer vulnerability assessment [49]

Prediction and forecasting

Determining an optimal policy for releasing
water from a reservoir [50]

Optimizing reservoir operating rules [51]
Identifying water pollution characteristics and
trace sources [52]

Prediction of water demand [53–56]
Prediction of groundwater level [57,58]
Forecasting the formation of trihalomethanes [59]

In operations management, AI enables real-time detection and response to critical
issues. For example, systems that detect accidental water contamination [40] or assess dam-
age to pipes after earthquakes [41] empower utilities to mitigate risks promptly, ensuring
public safety and maintaining operational continuity. Modeling applications further extend
the capabilities of water management by identifying and managing leaks [42–44], modeling
water quality [45,46], and extracting surface water [47]. Advanced techniques, such as
using high-resolution remote sensing for inferring body of water types [48] or conducting
aquifer vulnerability assessments [49], provide decision-makers with valuable insights to
manage water resources more effectively.

Optimization is another key area where AI offers significant value. For instance, it
facilitates the determination of optimal water release policies [50] and reservoir operation
rules [51], allowing for more efficient resource allocation and reduced water wastage.
Predictive and forecasting applications are vital for proactive water management. These
include predicting water demand [53–56], forecasting groundwater levels [57,58], and
anticipating the formation of harmful substances such as trihalomethanes [59]. These
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predictive tools enable utilities to prepare for future challenges, ensuring the sustainability
and quality of water supply. However, despite these benefits, the water supply sector, like
other industries, faces unique challenges that may hinder the adoption of AI technologies.

While numerous studies have examined the challenges of implementing AI in sectors
like construction [60], manufacturing [61,62], public services [63,64], and healthcare [65–69],
research focusing on the unique challenges in the water supply sector remains limited.
In this context, Fu et al. [70] explored the transformative potential of AI in modernizing
urban water infrastructure (UWI) to enhance reliability, resilience, and sustainability. The
study aimed to provide a comprehensive framework aligning AI with UWI development
through five key pathways: decentralization, circular economy, greening, decarboniza-
tion, and automation. Through a literature review and conceptual analysis, the authors
synthesized insights to offer a comprehensive perspective. The study highlights the vital
role of AI analytics—descriptive, diagnostic, predictive, and prescriptive—in enhancing
UWI performance while addressing challenges related to cyber-physical infrastructure,
institutional governance, socio-economic systems, and technological development. Key
challenges include limited data availability, insufficient monitoring systems, high imple-
mentation costs, and public resistance. However, the study’s reliance on secondary data
and its predominant focus on cyber-physical aspects, with less emphasis on social and
behavioral dynamics, limits its ability to provide actionable insights or address the complex-
ities of AI integration comprehensively. Rather than relying solely on a conceptual analysis,
Vekaria [71] employed surveys and pilot interviews to evaluate AI implementation across
water utilities, emphasizing diversity in scale and geography. Responses were gathered
from 10 utilities—6 large-scale, 2 medium-scale, and 2 small-scale—spanning various states
in the United States, with all participants being public utilities. The surveys, structured
around the seven pillars of the aiWATERS framework, aimed to capture AI practices, chal-
lenges, and adoption willingness. Supported by a literature review, the study identified
challenges include trust and transparency, data management-related challenges, ethical
and social concerns, and domain knowledge integration challenges. Despite uncovering
valuable insights, the study acknowledged limitations in its sample size and emphasized
the need for a broader validation of the aiWATERS framework.

3. Methodology

This research employed a case study approach to identify the critical challenges (CCs)
to artificial intelligence implementation in the water sector, model the associations among
these CCs, and categorize them based on their dependence power and driving power. The
subject of the case study was a prominent utility provider in the UAE known for generating,
transmitting, and distributing electricity, water, and gas. This organization was selected
because it had yet to implement any AI-related initiatives in the water sector. However, it
is currently moving towards adopting AI to align with the strategic goals for AI set by the
UAE. The methodological approach involved combining interpretive structural modeling
(ISM) with fuzzy cross-impact matrix multiplication applied to classification (MICMAC)
analysis to achieve these objectives.

ISM is a well-known process that helps to identify the connections among components
that describe a problem or issue [72]. It allows for the modeling of the variables and
the structure of their interrelationships. Participants can share insights and develop a
mutual grasp of how the variables interrelate without needing to understand the complex
underlying mathematics. Their input is converted into a visual model consisting of nodes
and arcs. The nodes symbolize the variables involved, and the arcs depict the directionality
of the relationships. ISM is often combined with MICMAC analysis, which was introduced
by Duperrin and Godet [73].

The purpose of MICMAC analysis is to classify variables into four groups based on
their driving and dependence powers. The first group consists of autonomous variables,
characterized by having both low driving and low dependence power. The second group
includes dependent variables, which display high dependence power but low driving
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power. The third group comprises linkage variables demonstrating strong driving and
dependence powers. Lastly, the fourth group contains independent variables, marked by
high driving power but low dependence power.

Researchers generally employ two versions of MICMAC analysis: the classical version
(e.g., [74–76]) and the fuzzy version (e.g., [77–79]). The classical version considers only
binary relationships, while the fuzzy version incorporates the strength of relationships
using fuzzy set theory. Due to this advantage, we adopted the fuzzy version for our
analysis.

Comparatively, when assessing the merits of ISM and fuzzy MICMAC against other mod-
eling techniques such as the Decision-Making Trial and Evaluation Laboratory (DEMATEL),
developed by the Geneva Research Centre of the Battelle Memorial Institute [80,81], and
the Analytic Network Process developed by Saaty [82], several distinctions become appar-
ent. DEMATEL is proficient in mapping out cause-and-effect relationships among system
factors but falls short in outlining a clear hierarchical organization of these relationships.
On the other hand, ISM, enhanced by fuzzy MICMAC analysis, excels in identifying and
visualizing a structured stratification of variables, categorizing them based on their influ-
ence and dependency within the system. This ability to demarcate a clear hierarchy among
variables provides a strategic advantage in pinpointing critical intervention leverage points.
Additionally, while ANP offers a sophisticated framework for addressing feedback and
interdependencies within a network of criteria and alternatives, its complexity often limits
practical application.

As depicted in Figure 1, the process of utilizing ISM–fuzzy MICMAC analysis for
modeling and analyzing CCs consists of three main stages:

1. Identifying the CCs to implement artificial intelligence in the water sector;
2. Examining the contextual relationships between the CCs;
3. Categorizing the CCs according to their driving and dependence power.
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3.1. Identifying CCS

For identifying CCs, a preliminary list of 29 challenges was compiled by reviewing recent
studies exploring AI integration across various sectors [60–71]. Subsequently, a panel of six
experts, in addition to one of the co-authors, was formed. These experts, who have diverse
backgrounds, positions, and experience levels (as shown in Table 2), play a crucial role in
implementing any new processes or technologies in the case study.
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Table 2. Demographic information of experts.

Job Title Years of Experience Department

Deputy Manager 6 Research and Development
Head 6 Water Planning Section
Head 15 Water Services Section
Operations Engineer 3 Water Planning Section
Operations Engineer 6 Project Management Office

During a brainstorming meeting where the preliminary list of 29 challenges was used as a
reference (which experts could alter, expand, or reduce), the experts pinpointed ten challenges
as the CCs for implementing AI in their organization. Brainstorming is a widely used group
approach for generating ideas, enabling the extraction of profound knowledge in a relatively
brief timeframe [83]. Table 3 presents a summary of each of the identified CCs.

Table 3. Identified CCs.

S/N CCi Description

1 High
implementation cost

AI systems require specialized hardware, such as GPUs, and
compatible software, which can be costly to purchase and maintain.
Besides the hardware and software aspects, implementing AI
systems requires the recruitment of proficient specialists possessing
specialized skills and expertise, typically commanding high
salaries.

2 Privacy and data
security concerns

The reliance of AI systems on substantial volumes of sensitive data
poses a challenge in preserving the confidentiality of this
information, especially considering the growing frequency of data
breaches and cyber-attacks.

3 High R&D cost
Developing new AI technologies and improving existing ones
requires significant investment in R&D, which can be expensive for
organizations.

4
Trust and
transparency-related
issues

AI systems are occasionally perceived as enigmatic entities,
implying that their internal mechanisms and decision-making
processes are not easily comprehensible, even to the users or
developers involved.

5 The bias problem
The effectiveness of AI systems is directly tied to the quality of their
training data. If the training data for an AI system are biased, the
resulting output will also be biased.

6 Lack of data
managementsystem

A lack of a comprehensive data management system can hinder the
availability, quality, accessibility, privacy, security, and compliance
aspects of data.

7 Lack of technical
skills and knowledge

Implementing AI systems requires specialized technical skills and
knowledge in developing and integrating AI systems into existing
infrastructure and deploying them in real-world settings.

8
Responsibility and
accountability-
related issues

AI systems are designed to make decisions and take actions
without human intervention, making it challenging to determine
who is responsible for their outcomes. This can lead to questions
about accountability in the event of unintended consequences or
harm caused by AI systems.

9 Limited ready-to-use
AI solutions

There is a scarcity of readily available AI solutions that can be
implemented in the water industry.

10 Incompetent water
infrastructure

Incompetent water infrastructure includes outdated systems,
limited connectivity, insufficient computing infrastructure, and the
necessity for infrastructure upgrades to facilitate the integration of
AI.

3.2. Examining the Contextual Relationships Between the CCs

In this stage, the relationships between the identified CCs were examined through the
following five sequential steps:
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• Creating a structural self-interaction matrix (SSIM);
• Creating an initial reachability matrix from the SSIM;
• Generating the final reachability matrix;
• Identifying the level of each CCi;
• Constructing an ISM hierarchical graphical model.

During a separate brainstorming session, the experts’ panel created the SSIM (Table 4)
through a pairwise comparison of CCs using the following symbols:

1. V indicates that CCi influences CCj (a forward relationship).
2. A indicates that CCj influences CCi (a backward relationship).
3. X signifies bidirectional relationships, indicating that CCi and CCj influence each

other.
4. O indicates that CCi and CCj are unrelated.

Table 4. Structural self-interaction matrix.

S/N 10 9 8 7 6 5 4 3 2 1

1 A A O A A O O A O
2 A O V O O O V V
3 A A O A A O O
4 O O X A A O
5 O O O A A
6 A O O O
7 O O O
8 O O
9 O

10

As illustrated in Table 5, the SSIM was transformed into an m × m initial reachability
matrix, where m is the total number of CCs. This transformation involved replacing the
four symbols (V, A, X, or O) with ones and zeros, according to the following substitution
rules:

• “If the (i, j) entry in the SSIM is V, then the (i, j) entry in the initial reachability matrix
becomes one, and the (j, i) entry becomes zero.

• If the (i, j) entry in the SSIM is A, then the (i, j) entry in the initial reachability matrix
becomes zero, and the (j, i) entry becomes one.

• If the (i, j) entry in the SSIM is X, then the (i, j) entry in the initial reachability matrix
becomes one, and the (j, i) entry becomes one.

• If the (i, j) entry in the SSIM is O, then both the (i, j) and (j, i) entries in the initial
reachability matrix become zeros” [84].

Table 5. Initial reachability matrix.

S/N 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0
2 0 1 1 1 0 0 0 1 0 0
3 1 0 1 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 1 0 0
5 0 0 0 0 1 0 0 0 0 0
6 1 0 1 1 1 1 0 0 0 0
7 1 0 1 0 1 0 1 0 0 0
8 0 0 0 1 0 0 0 1 0 0
9 1 0 1 0 0 0 0 0 1 0
10 1 1 1 0 0 1 0 0 0 1
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The initial reachability matrix, however, only captures the direct relationships between
CCs. The principle of transitivity was utilized to obtain a final reachability matrix that
counts for direct and indirect relationships, as shown in Table 6. This matrix was obtained
by repeatedly multiplying the initial reachability matrix by itself using Boolean matrix
multiplication until it reached a stable state.

Table 6. Final reachability matrix.

S/N 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0
2 1 1 1 1 0 0 0 1 0 0
3 1 0 1 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 1 0 0
5 0 0 0 0 1 0 0 0 0 0
6 1 0 1 1 1 1 0 1 0 0
7 1 0 1 0 1 0 1 0 0 0
8 0 0 0 1 0 0 0 1 0 0
9 1 0 1 0 0 0 0 0 1 0
10 1 1 1 1 1 1 0 1 0 1

After constructing the final reachability matrix, the next step was determining the
hierarchical level of each CCi within the ISM graphical model. This was achieved by
identifying the overlap between the antecedent and reachability sets for each CCi. The
reachability set of a given CCi includes all the CCs it can influence, while the antecedent set
consists of the CCs that can influence it. Once the reachability and antecedent sets for each
CCi were established, their intersection was determined. Any CCi where the antecedent
set and intersection set were identical was classified as a bottom-level CCi in the ISM
hierarchical model. After identifying the bottom-level CCs, they were removed from the
reachability and antecedent sets. This process was repeated to identify the next hierarchical
level of CCs. The iterative process continued until all the CCs were organized into four
levels, as displayed in Table 7.

Table 7. Levels of the CCs.

S/N Reachability Set Antecedent Set Level

1 1 1, 2, 3, 6, 7, 9, 10 IV
2 1, 2, 3, 4, 8 2, 10 II
3 1, 3 2, 3, 6, 7, 9, 10 III
4 4, 8 2, 4, 6, 8, 10 III
5 5 5, 6, 7, 10 III
6 1, 3, 4, 5, 6, 8 6, 10 II
7 1, 3, 5, 7 7 I
8 4, 8 2, 4, 6, 8, 10 III
9 1, 3, 9 9 I
10 1, 2, 3, 4, 5, 6, 8, 10 10 I

The last step of this stage involved constructing a graphical model that visualizes
the relationships between the identified CCs. Transitivity was removed to simplify the
model and make it easier to interpret, resulting in a simple hierarchy graphical model with
nodes and arcs. The nodes represent the CCs and are positioned in the model according
to their identified levels. The arcs indicate the presence of direct interactions between
them. Specifically, if CCi directly affects CCj, a directed arc is drawn from CCi to CCj. The
constructed hierarchy graphical model is shown in Figure 2. As shown in this figure, this
model organizes the CCs into different levels. At the bottom level, a lack of technical skills
and knowledge (CC 7), limited ready-to-use AI solutions (CC 9), and incompetent water
infrastructure (CC 10) are positioned, highlighting them as fundamental issues that impact
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higher-level CCs. At the top of the hierarchy, high implementation cost (CC 1) is shown as
an ultimate challenge, influenced by the CCs below.
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3.3. Categorizing the CCs

To categorize CCs, we started by substituting the “1” values in the initial reachability
matrix with weighted values that reflect the strength of each relationship. This was carried
out following the principles of fuzzy set theory [85]. Various forms of membership functions
are used in this context, but the triangular function is the most widely adopted [86].
Equation (1) describes the method for determining the lower bound (“p”), the upper bound
(“r”), and the value (“q”) for the triangular membership function “µÃ(x)” in a fuzzy set
“A”, where p < q < r.

µÃ(x) =


0 x < p

x−p
q−p p ≤ x ≤ q
r−x
r−q q ≤ x ≤ r
0 x > r

 (1)

The weights were assigned via the following process. During a subsequent brain-
storming session, the panel of experts assessed the strength of the relationships between
the CCs using the linguistic variables outlined in Table 8. These variables were then con-
verted into their corresponding triangular fuzzy numbers. Once these fuzzy numbers were
transformed into the best nonfuzzy performance (BNPij) values, as defined by Equation (2),
the matrix of fuzzy direct relationships was created, as shown in Table 9.

BNPij =
[(r − p) + (q − p)]

3
+ p (2)

Table 8. The scale of fuzzy linguistic variables.

Linguistic Variable Triangular Fuzzy Number

Very low influence (0.0, 0.1, 0.3)
Low influence (0.1, 0.3, 0.5)
Medium influence (0.3, 0.5, 0.7)
High influence (0.5, 0.7, 0.9)
Very high influence (0.7, 0.9, 1.0)
Complete influence (1.0, 1.0, 1.0)
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Table 9. The fuzzy direct relationship matrix.

S/N 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0
2 0 0 0.5 0.9 0 0 0 0.9 0 0
3 0.3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0.7 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0.3 0 0.3 0.5 0.5 0 0 0 0 0
7 0.9 0 0.9 0 0.5 0 0 0 0 0
8 0 0 0 0.5 0 0 0 0 0 0
9 0.7 0 0.9 0 0 0 0 0 0 0
10 0.7 0.5 0.7 0 0 0.9 0 0 0 0

Apart from direct relationships, there are also indirect relationships among CCs. To
consider both types of relationships, we repeatedly performed fuzzy matrix multiplica-
tion on the fuzzy direct relationship matrix until a stable matrix was obtained (Table 10).
By totaling all the values in column j of this matrix, the dependence power of CCj was
determined. In contrast, the driving power of CCi was calculated by summing all the
values in row i of the same matrix. Based on these calculated values, a driving-dependence
power diagram was constructed, divided into four quadrants: autonomous, dependent,
independent, and linkage. This diagram is depicted in Figure 3.

Table 10. Stabilized matrix.

S/N 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0
2 0.3 0 0.5 0.9 0 0 0 0.9 0 0
3 0.3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0.7 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0.3 0 0.3 0.5 0.5 0 0 0.5 0 0
7 0.9 0 0.9 0 0.5 0 0 0 0 0
8 0 0 0 0.5 0 0 0 0 0 0
9 0.7 0 0.9 0 0 0 0 0 0 0
10 0.7 0.5 0.7 0.5 0.5 0.9 0 0.5 0 0
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4. Findings and Discussion

A UAE public utility organization was chosen as a case study to examine the chal-
lenges of implementing AI in the water supply sector, employing an integrated approach
involving ISM–fuzzy MICMAC analysis. The researchers identified ten CCs by reviewing
the literature and consulting with experts. Two observations can be made regarding these
CCs. Firstly, several of them—specifically, incompetent infrastructure, high implementation
costs, lack of technical skills and knowledge, and limited ready-to-use AI solutions—align
to some extent with challenges identified in the broader literature [87]. For example, Luthra
et al. [62] highlighted issues such as inadequate technological infrastructure, financial
constraints, and resistance to change as significant challenges to AI adoption in the public
manufacturing sector, while Kumar et al. [64] similarly noted policy and regulatory gaps,
infrastructure deficiencies, and stakeholder resistance in the public distribution system.
Additionally, Chatterjee et al. [63] identified data privacy, security risks, and regulatory
compliance as key challenges, which are also among the identified CCs. Two identified CCs,
namely high implementation costs and a lack of technical skills and knowledge, are also
consistent with findings in the water sector, as reported by Fu et al. [70].

Secondly, none of these CCs are related to social concerns such as job security, differing
from the findings by Nam [88], which highlight the association between job insecurity and
technology usage. This discrepancy may reflect the current state of the organization in the
case study, which has yet to fully implement AI technologies. At this stage, its focus may
be more on overcoming initial barriers—such as technical and financial constraints—rather
than addressing secondary or long-term social concerns like privacy and workforce impli-
cations. As AI adoption progresses, these social challenges may become more significant.

The identified CCs were structured into a hierarchical graphical model depicted in
Figure 2, which comprised four levels. At the lowest level, we found a lack of technical
skills and knowledge (CC 7), limited ready-to-use AI solutions (CC 9), and incompetent
water infrastructure (CC 10). Addressing these CCs should be conducted first for any effort
to implement AI. Among these CCs, CC 9 represents an external challenge that necessitates
substantial investment in research and development (R&D). This is evident in the ISM
model (Figure 2), which depicts a direct relationship between CC 9 and the high cost of
R&D (CC 3) at Level 3.

According to the ISM model, a lack of technical skills and knowledge (CC 7) directly
affects two other CCs at Level 3 of the ISM model: high R&D cost (CC 3) and the bias
problem (CC 5). The insufficiency of skills and knowledge (CC 7) directly contributes to the
emergence of algorithm biases (CC 5) due to flawed statistical assumptions, inappropriate
model selection, incorrect data preprocessing techniques, and other factors. CC 7 can also
lead to inefficient R&D processes, resulting in longer development cycles, reliance on trial-
and-error approaches, and an increased likelihood of errors or the need for rework. These
inefficiencies contribute to higher R&D costs (CC 3). Additionally, organizations lacking
internal expertise may have to seek external consultants or contractors, leading to additional
expenses. Given that the development of AI solutions necessitates an investment in R&D,
it is evident that a high R&D cost (CC 3) will lead to a high cost of AI implementation (CC
1), located at the highest level of the ISM model.

Regarding the other internal challenge at the lowest level, namely incompetent in-
frastructure (CC 10), the ISM model indicates that this challenge directly affects privacy
and data security concerns (CC 2) and the lack of a data management system (CC 6), both
positioned at Level 2 of the model. The relationships between CC 2, CC 10, and CC 6
can be described as follows: Incompetent infrastructure refers to inadequate or outdated
hardware, network capabilities, and security measures within the organization’s techno-
logical setup. This inadequacy can result in insufficient security measures, updates, and
regulation compliance, impeding data protection and privacy. Moreover, it hinders effective
data storage, processing, and advanced analytics capabilities, limiting the extraction of
meaningful insights from data. Therefore, addressing CC 10 will contribute to addressing
CC 2 and CC 6.
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Additionally, Figure 2 demonstrates that CC 6 directly influences trust and transparency-related
issues (CC 5). Furthermore, CC 5 has a bidirectional relationship with another CCi at the same level,
namely responsibility and accountability (CC 8). The relationship between CC 6, CC 5, and CC 8 can
be explained as follows: The absence of proper data management increases the risk of incomplete or
inaccurate information, eroding trust in the data and their insights. Transparency is compromised
when stakeholders cannot rely on the reliability and completeness of the data. The lack of a
suitable system also obstructs visibility, making establishing clear accountability and demonstrating
transparency in data management practices challenging. This lack of visibility raises concerns
about data governance, compliance, and adherence to ethical standards, thereby undermining
trust. Addressing trust and transparency issues (CC 5) ultimately promotes responsibility and
accountability in AI systems (CC 8). Transparent and explainable AI systems enable developers and
organizations to better understand their behavior, identify biases or unintended consequences, and
adopt responsible and accountable AI practices.

One advantage of utilizing fuzzy MICMAC analysis is categorizing variables into
four groups (autonomous, dependent, independent, and linkage). However, the driving-
dependence power diagram in Figure 3 illustrates that no linkage CCs exist for implement-
ing AI, but there are autonomous, dependent, and independent CCs.

Found in the upper-right quadrant of the driving-dependence power diagram pre-
sented in Figure 3, autonomous CCs exhibit a weak driving power and a weak level of
dependency. CCs 5, 6, and 9 fall into this group. Resolving any challenge within this group
will have minimal or no impact on addressing CCs in other groups. Likewise, tackling CCs
from other groups will insignificantly influence the resolution of these specific CCs.

Situated in the lower-right quadrant of the driving-dependence power diagram (Figure 3),
dependent CCs demonstrate weak driving power and substantial dependency. Resolving any
challenge within this group will have minimal or no impact on addressing CCs in other groups.
Conversely, tackling CCs from other groups will significantly influence the resolution of these
specific CCs. CC 1, CC 3, CC 4, and CC 8 belong to this particular group.

Located in the upper-left quadrant of the driving-dependence power diagram (Figure 3),
independent CCs display a strong driving power and a weak level of dependency. Resolving
CCs from other groups will have minimal or no impact on the resolution of these specific CCs.
However, addressing any challenge within this group will help to resolve other CCs in the other
groups. CC 2, CC 7, and CC 10 are included in this group.

5. Addressing the Most CCs

CCs placed at the lowest level of the ISM model and/or those classified as independent
CCs should be prioritized in any AI implementation efforts. As depicted in Figures 2 and 3,
these CCs are privacy and data security concerns (CC 2), limited ready-to-use AI solutions
(CC 9), a lack of technical skills and knowledge (CC 7), and incompetent water infrastructure
(CC 10). CC 2 is an independent CC, while CC 9 is located at the lowest level of the ISM
model. CC 7 and CC 10 are located at the lowest level of the ISM model and are categorized
as independent CCs. This section offers recommendations to tackle these most pressing
CCs.

5.1. Lack of Technical Skills and Knowledge

To tackle the challenge of a lack of technical skills and knowledge, adopting an
approach involving offering training programs, creating cross-functional teams, and lever-
aging external resources is recommended.

The programs must be customized to different levels of expertise and cater to technical
and non-technical professionals. These programs might cover providing employees with
AI fundamentals, programming languages, machine learning algorithms, and data analysis
techniques. Such programs can be offered in collaboration with educational institutions
or AI training providers. Alongside investing in comprehensive upskilling and training
initiatives, addressing the deficiency in technical expertise requires cooperation between
various departments within the organization to bridge the knowledge gap and gain a
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comprehensive understanding of AI implementation. This cooperation can be achieved
by creating cross-functional teams comprising individuals with diverse skills, such as
data scientists, domain experts, and IT professionals. To streamline the process and offer
practical guidance for team composition and management, thereby enhancing the chances
of success, it is recommended to consider team role frameworks, such as the one prescribed
by Belbin [89].

Moreover, organizations can leverage external resources to bridge the technical skills
gap. Collaborative partnerships with technology vendors, start-ups, and research in-
stitutions can provide access to expertise, tools, and pre-built AI solutions. Engaging
consultants and experts in AI implementation can offer valuable guidance and accelerate
the learning curve. Furthermore, participation in industry networks, conferences, and
online communities can facilitate knowledge exchange and keep organizations updated on
AI advancements.

5.2. Limited Ready-to-Use AI Solutions

The preferred approach has been an in-house development because AI solutions im-
plemented in a specific industry may not easily translate to other sectors [90]. This method
offers several advantages, such as tailoring solutions to precise requirements, maintaining
control over the process, and adapting to evolving organizational needs. Nevertheless,
developing AI solutions from scratch is time-consuming and intricate, involving extensive
research, development, and testing. Therefore, it is advisable to begin by building upon
existing applications described in the literature and adopting established patents. This ap-
proach minimizes the risk of failure and enhances the likelihood of successful AI solutions.
Furthermore, adopting existing patents ensures that the developed AI solutions fall within
the bounds of intellectual property rights, mitigating potential legal challenges that may
arise from reinventing patented technologies.

Irrespective of whether the development process starts from scratch or builds on
reported applications, it is essential to consider the concept of AI-based teammates in
human–AI collaboration in developing AI solutions. This notion emphasizes integrating
AI systems as interactive and cooperative partners working in synergy with humans,
combining human intelligence with AI capabilities [91].

The framework for assessing benefits and risks proposed by Richards et al. [88] can
be adopted for the responsible and safe deployment of AI solutions. This framework
outlines three stages for deploying AI solutions: theoretical screening, proof of concept,
and practical scale-up. Theoretical screening focuses on identifying potential areas within
a water system where AI interventions could be beneficial, along with selecting the most
suitable AI system to deliver these benefits. Proof of concept involves testing the AI system
prototype in a lab setting and assessing its performance in a real-world scenario that closely
mirrors the intended environment. Finally, practical scale-up includes monitoring the actual
usage of the AI system to ensure that it aligns with its intended purpose and evaluating its
performance to confirm it meets expected standards.

5.3. Incompetent Water Infrastructure

While AI can benefit the water sector regardless of infrastructure updates, an updated
water infrastructure provides a solid foundation for effective AI integration [90]. As
Richards et al. [92] highlighted, the effectiveness of AI is contingent on the quality of the
systems it is integrated with and the individuals overseeing its development. An upgraded
water infrastructure facilitates enhanced data collection, compatibility with AI platforms,
extensive sensor coverage, and improved automation capabilities.

Conducting a thorough assessment to identify areas of weakness and inefficiency is the
first step towards upgrading the existing water infrastructure. Accordingly, a plan should
be made to target infrastructure for repairs or upgrades so that the updated water infras-
tructures can incorporate modern technologies, ensuring compatibility and interoperability
with AI platforms and applications. These allow smooth integration and seamless commu-
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nication between AI systems and the existing infrastructure, enhancing the effectiveness of
AI algorithms. To succeed, achieving infrastructure improvements requires collaboration
among water utility stakeholders, including technology providers, government agencies,
and funding institutions. Moreover, establishing public–private partnerships can facilitate
the exchange of expertise, resources, and funding opportunities. Such collaborative efforts
drive innovation, promote knowledge sharing, and accelerate the implementation of AI in
water infrastructure.

5.4. Privacy and Data Security Concerns

AI systems are vulnerable to various types of attacks, such as manipulating input data
or exploiting weaknesses in their algorithms. These attacks can have serious consequences,
including altering results or compromising users’ privacy and security [93]. Addressing
these privacy challenges is crucial, and safeguarding personal information should be
a top priority. Alongside data protection, it is essential to consider the regulatory and
ethical frameworks that guide the responsible use of AI, particularly regarding privacy and
security [63].

Security concerns around AI systems are also increasing due to the risks they face
during implementation. Vulnerabilities can arise from factors such as weak AI algorithms,
the manipulation of training data, poor system design, or flaws in their execution. These
risks may lead to adversarial attacks, biased models, information leaks, or harmful decision-
making. Therefore, ensuring robust security for AI systems is essential to prevent these
issues.

In relation to privacy and data security, the developed ISM model has shown a direct
link between incompetent water infrastructure and these concerns. Improving water
infrastructure can also help to address privacy and security issues. These challenges can be
better managed by investing in strong infrastructure that uses industry-standard security
protocols, regular updates, and strict privacy regulations. Furthermore, implementing a
comprehensive framework with key elements such as risk assessments, data protection
policies, AI model security, monitoring, transparency, and continuous improvement is
recommended. One example of such a framework is developed by Villegas-Ch and García-
Ortiz [61]. However, these efforts need to be supported at the government level, as effective
regulation plays a crucial role in instigating necessary actions, controlling adherence to
high standards, and protecting users’ rights. The UAE government has already taken steps
in this direction by issuing several laws and regulations to safeguard personal data and
ensure the secure use of digital technologies [94]. These regulations not only set essential
benchmarks but also foster an environment where privacy and security are prioritized,
demonstrating the importance of regulatory support in achieving secure and user-centered
digital infrastructure.

6. Conclusions

This study examined the CCs that impede the implementation of AI in the water
sector, utilizing a prominent service utility organization in the UAE as a case study. The
employed approach of ISM–fuzzy MICMAC analysis provided a comprehensive framework
for identifying and classifying CCs that impede the implementation of AI in this sector.
Initially, the CCs were identified based on the existing literature and subsequently refined by
a panel of experts to a list of ten perceived CCs. The same panel of experts then assessed the
relationships between each pair of CCs. Using the ISM technique, a four-level hierarchical
graph was established to represent these relationships. The binary relationships were later
converted into weights as part of the fuzzy MICMAC analysis, facilitating the classification
of CCs into groups.

Visualizing the relationships among the CCs through the developed ISM model offers
significant advantages, as graphical feedback is faster and more comprehensive than nu-
merical feedback when dealing with complex multidimensional information. As a result,
decision-makers can visualize the interconnections between CCs, gaining insights into how
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addressing one challenge can directly and indirectly impact other linked CCs. This under-
standing proves invaluable in formulating an efficient and effective AI implementation
strategy. The strategy should prioritize efforts to address four specific CCs, namely the
lack of technical skills and knowledge, the limited availability of ready-to-use AI solutions,
incompetent water infrastructure, and privacy and data security concerns. These CCs have
been identified based on their classification by fuzzy MICMAC as independent CCs and/or
their positioning at the lowest level of the ISM model. A comprehensive discussion on
addressing these CCs has been presented.

The findings and recommendations of this study not only address the specific chal-
lenges of implementing AI in the water supply sector within the UAE but also offer a
roadmap for broader sectoral advancement. By focusing on overcoming initial technical
and infrastructural challenges, investing in human capital, and ensuring ethical and secure
AI integration, the water sector can navigate the complexities of AI adoption, enhancing
efficiency, sustainability, and service quality. Addressing challenges such as skill gaps and
outdated infrastructure could yield long-term social and economic benefits, particularly
in regions prioritizing AI as part of their national strategies, like the UAE. However, it is
important to recognize that AI’s transformative potential in the water sector hinges on the
successful execution of strategic and coordinated efforts involving key stakeholders, includ-
ing government agencies, technology providers, water utility organizations, and academic
institutions, to overcome the multifaceted challenges associated with its implementation.

As with most research endeavors, recognizing and acknowledging the limitations of
this study is essential. One limitation is that this case study focused on a single organization
in the UAE, meaning that the findings may primarily apply to organizations operating in
the UAE or in similar environments. Additionally, the study only used dependence power
and driving power metrics to identify the most critical CCs. Future research could explore
other supplementary metrics to provide a more comprehensive understanding of the
identified CCs. Another limitation lies in the reliance of the ISM–fuzzy MICMAC approach
on expert input to define and establish relationships among the challenges, introducing a
degree of subjectivity. Moreover, this study did not examine the associations between CCs
and specific organizational characteristics, such as size or ownership type. Further research
could investigate how these characteristics impact the identified CCs, offering additional
insights. This study also emphasized the importance of regulatory support in addressing
privacy and data security concerns. Future work could focus on fostering collaborations
between governments and organizations to create global benchmarks for secure and ethical
AI adoption. Such benchmarks could ensure alignment with international standards and
promote the widespread, responsible implementation of AI technologies across diverse
sectors.
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