Investigation of influence of thermal coefficients on 2-D WH/TS OCDMA code propagation in optical fiber

T.B. Osadola¹, S.K. Idris², I. Glesk³, W.C. Kwong⁴
1. Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow
2. Hofstra University, Hempstead, USA.

In this paper we present an extension of our previous investigation [1] of the effect of environmental temperature variation on the bit error rate (BER) performance of multiwavelength 2-dimensional wavelength hopping time spreading optical code division multiple access (2D-WH/TS OCDMA) signals that utilises picosecond pulses for code formation. Using equations already derived in [1] for modelling the effects of temperature variation on autocorrelation signal resulting from the decoding of an incoherent 2D-WH/TS OCDMA encoded signal which consists of \(w \) wavelength pulses each having a pulsewidth of \(\tau \) after propagating in \(L \) (Km) of fibre, we arrive at the expression for the envelope of the resulting autocorrelation peak \(S_t \).

\[
S_t = \sum_{k=0}^{w-1} P_k \exp \left\{ -1.87 \left[\frac{k}{\tau} \left[D_{\text{temp}} \times \Delta T \times \Delta A \times L \right] \right] \right\} \tag{1}
\]

\(D_{\text{temp}} \) (ps/nm•km/°C) is the thermal coefficient of the fiber [2,3], \(\Delta T \) (°C) is the average change in temperature experienced by transmission fiber, \(\Delta A \) (nm) is the spectral spacing between 2D-WH/TS OCDMA code wavelengths pulses, and \(\Delta L \) (nm) is the pulse spectral line width of each wavelength pulse within the code.

Having obtained the maximum possible autocorrelation peak \(S_t \) for each degree of temperature change, we analysed the effect of this reduction in \(S_t \) with respect to temperature variation by substituting \(S_t \) for \(\Delta T \) in the equation for \(\text{Pe} \) (BER) as previously derived in [1] and we obtain the equation below

\[
P_e = \frac{1}{2} \sum_{j=0}^{S_t} (-1)^j \left(\frac{w}{2} \right)^j \left(1 - \frac{\tau}{\Delta T} \right)^{\frac{j}{1-k}} \tag{2}
\]

Figure 1 shows the envelope of \(S_t \) for an 8 wavelength 2D-WH/TS OCDMA signal after propagation in a 10km optical fibre link \(D_{\text{temp}} = -0.0025 \) ps/nm•km/°C, \(\Delta A = 0.8nm \) and \(\Delta L = 1.4nm \), \(N_o = \) code length with initial pulsewidth of 2ps. Three different scenarios have been illustrated in the figure for \(\Delta T = 0, 10 \) and 20 degrees respectively.

![Fig. 1. Maximum obtainable autocorrelation peak (S_t) as \(\Delta T \) increases over a 10 km.](image1)

![Fig. 2. Minimum obtainable BER as \(\Delta T \) increases over a 10 km and 20 km link respectively with 32 simultaneous users.](image2)

To evaluate the effect of the \(\Delta T \) induced reduction in \(S_t \), the minimum possible bit error rate performance for \(K = 32 \) simultaneous users at 2.4Gb/s data rate was recorded from calculations obtained using Eq. 2 for \(\Delta T \) between 0 and 20°C over a 10km and 20km fiber optic link. The results are presented in Figure 2. We found that trade-offs must be made between number of simultaneous users and transmission distance in order to maintain performance.

References