1. Introduction

Deficiency in NO formation has been found in patients with primary pulmonary hypertension (Demoncheaux et al., 2005) and in the hypoxic rat model of pulmonary hypertension (Weerackody et al., 2009). Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide synthase (NOS), and mice that have very low BH4 tissue levels exhibit pulmonary hypertension (Khoo et al., 2005), which could be reversed by increasing BH4 through targeted transgenic overexpression of GTP cyclohydrolase 1 (GTP-CH-1) (Khoo et al., 2005). Using an experimental animal model of persistent pulmonary hypertension, it was found that the oxidised form, dihydrobiopterin (BH2) is raised in the lungs (Grobe et al., 2006). In another animal model of PPHN, it was found that the levels of GTPCH-1 were depressed; moreover the administration of BH4 combined with the superoxide dismutase mimetic MnTMPyP improved pulmonary artery relaxation (Nandi et al., 2006).

BH4 depletion is believed to be due to oxidative stress since SOD overexpression restores both BH4 content and activity of GTPCH-1, the rate-limiting enzyme in BH4 synthesis (Farrow et al., 2008). The endothelial NO synthase (eNOS) enzyme generates superoxide when BH4 levels decline or when it is replaced by an oxidised product, BH2 (Crabtree et al., 2009; Vasquez-Vivar et al., 2002).

In vitro administration of BH4, or its physiological precursor sepiapterin, restored endothelium-dependent relaxation of resistance arteries in animal models of cardiovascular disease (Pannirselvam et al., 2003; Tiefenbacher et al., 2000) and in patients with endothelium dysfunction (Heitzer et al., 2000a,b; Higashi et al., 2006; Eskurza et al., 2003; Tiefenbacher et al., 2000) and in patients with endothelium dysfunction (Heitzer et al., 2000a,b; Higashi et al., 2006; Eskurza et al., 2003; Tiefenbacher et al., 2000) and in patients with endothelium dysfunction (Heitzer et al., 2000a,b; Higashi et al., 2006; Eskurza et al., 2003; Tiefenbacher et al., 2000). Since BH4 is rapidly oxidised under physiological conditions, oral administration requires very high doses and is only briefly effective. Oral administration of BH4 has been reported to improve endothelium function (Cosentino et al., 2008; Eskurza et al., 2003; Tiefenbacher et al., 2000) and to reduce blood markers of oxidative stress in patients (Cosentino et al., 2008). Administration of BH4 attenuated the rise in pulmonary artery pressure and reduced muscularisation of...
distal pulmonary arteries in rats with monocrotaline-induced pulmonary hypertension (Francis et al., 2009).

We believe that analogues of BH₄ with stable oxidative states might be better alternatives to improve impaired relaxation associated with endothelial dysfunction and will indirectly substitute forBH₄ in the vasculature. To explore this possibility, two analogues of BH₄, namely 6-hydroxymethyl pterin (HMP) and 6-acetyl-7,7-dimethyl-7,8-dihydropterin (ADDP), were obtained from the products of a large synthetic programme to generate biologically active pteridines (Al Hassan et al., 1985). They were selected for their chemical stability and similarity to the structure of BH₄ (Suckling et al., 2008). The tetrahydro derivative of HMP has been shown to be a BH₄ substitute (Kotsonis et al., 2001).

In the current study, we investigated the effects of these two analogues on normal as well as BH₄-depleted pulmonary arteries. We also report in vivo administration of ADDP on endothelium-dependent vasorelaxation in a rat model of hypoxic pulmonary hypertension.

2. Methods

2.1. Artery ring experiments

Male Sprague–Dawley rats of body weight approximately 175–350 g were killed by cervical dislocation. The heart and lungs were placed in either the chilled Krebs–Henseleit solution in experiments where normal untreated arteries were used and in chilled tissue culture medium when the artery rings were treated to deplete the endogenous levels of BH₄. The main pulmonary artery along with its right and left extra pulmonary branches were dissected and divided into four rings each 2–3 mm long. Pulmonary artery rings were mounted on to a pair of intraluminal wires under 1 g resting force in 15 ml organ baths containing oxygenated (20% O₂, 5% CO₂ and 75% N₂ gas mixture) Krebs–Henseleit solution at 37 °C and contractile force was measured.

Depletion of cellular BH₄ was carried out using 2,4-diamino-6-hydroxypyrimidine (DAHP), which inhibits GTPCH₁, the key ratelimiting enzyme in the synthesis of endogenous BH₄ (Bagi and Koller, 2003; Kinoshita et al., 1997; Wang et al., 2008). Artery rings were incubated for 6 h at 37 °C in minimum essential medium containing DAHP (10⁻² M) (Kinoshita et al., 1997). Control arteries received similar incubation omitting DAHP.

In experiments showing the effects of BH₄, ADDP or HMP in normal or BH₄-depleted arteries the following protocol was used. After 1 h equilibration of the tissue, arteries were precontracted with phenylephrine: 3.6 × 10⁻⁸ M (the EC₅₀ concentrations determined from preliminary studies) followed by relaxation with 10⁻⁵ M carbachol to check for the integrity of the endothelium. Preparations were rejected if they did not produce a minimum of 80% relaxation to carbachol. One parallel ring was checked for the integrity of the endothelium. Preparations were rejected if they did not produce a minimum of 80% relaxation to carbachol.

In order to investigate if ADDP or HMP elicits a protective function on the already existing NO in the tissues, the rings were contracted with phenylephrine and a dose–response curve to NO donor, spermine NONOate, was produced followed by washing and equilibration for 30 min and then the rings were preconstricted with phenylephrine and incubated with a single concentration of the analogues (3×10⁻⁷ M) at which maximum relaxation was originally seen followed by another dose–response curve to spermine NONOate.

In order to investigate the hypothesis that O₂⁻ production might be leading to the contraction generated by BH₄, we studied the effects of superoxide scavenger, Mn(III) tetrakis [1-methyl-4-pyridyl] porphyrin (MnTMPyP), on the BH₄-induced contraction. Arteries were preconstricted with phenylephrine and a concentration–response curve to BH₄ was generated. All drugs were then washed out and MnTMPyP (30 μM) was incubated for 30 min. Previous studies performed in the lab have shown that the above incubation parameters are optimal for scavenging O₂⁻ by MnTMPyP. Following incubation with MnTMPyP and preconstriction with phenylephrine, a final concentration response curve to BH₄ was produced in the presence of MnTMPyP.

The values are expressed as means±standard errors of means (S.E.M.) where n= number of arterial rings from separate animals. Statistical tests were performed using analysis of variance general linear model (repeated measures design). Repeated measures design was used to compare two cumulative dose response curves generated in two different tissues. A crossover design was used to compare two cumulative curves generated before and after they were treated with the test drug. The statistical package used was Minitab. The differences were treated significant if the P value ≤ 0.05.

2.2. Chronic hypoxic rats

All procedures under this project have been performed under the UK Animals (Scientific Procedures) Act 1986. Male Sprague–Dawley rats of body weight 125–150 g were placed in a hypobaric chamber at 600 millibar pressure for a 14 day period. Animals in the hypobaric chamber had pulmonary hypertension (mean pulmonary arterial pressures in hypoxic rats 20.1 ± 0.9 mm Hg; in normoxic rats 11.9 ± 0.9 mm Hg; P ≤ 0.0001; n = 8–10) and right ventricular hypertrophy (ratio of right ventricular weight/weight of the left ventricle + septum in the hypoxic rats 0.41 ± 0.007 compared to the normoxic control rats 0.26 ± 0.004, P ≤ 0.0001; n = 31). At the end of this period the rats were deeply anaesthetized with sodium pentobarbitone (2 ml/kg intraperitoneal injection) and ventilated. The thorax was opened and the pulmonary artery was cannulated and perfused with heparinized Krebs–Henseleit solution (119 mM NaCl, 25 mM NaHCO₃, 11 mM glucose, 4.6 mM KCl, 1.2 mM MgCl₂, 1.2 mM KH₂PO₄ and 2.5 mM CaCl₂ with 100 units/ml heparin, 4% albumin and 1 mM flurbiprofen) in a recirculating circuit. Perfusion was constant flow with measurement of perfusion pressure at the pulmonary artery cannula. A cannula was inserted into the trachea for ventilation of the lungs with either a normoxic (20% O₂, 5% CO₂, and 75% N₂) or hypoxic (0% O₂, 5% CO₂, and 75% N₂) atmosphere.

Slight tone was induced in the perfused lungs using the thromboxane A₂ mimetic, 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F₂α (U46619, 3×10⁻⁵ M) given as a bolus dose to the perfusion circuit. Relaxation was induced using the endothelium-dependent vasorelaxant, calcium ionophore A23197, added in increasing doses. During the course of the experiments no visible lung oedema was observed and this was confirmed by measuring the weights of the lungs at the end of every experiment.

Drug-treated rats received ADDP during the period that they were in the hypoxic chamber. ADDP was administered to the rats via subcutaneous injections to give a dose of 14.1 mg/kg/day as daily injections in the morning for both the hypertensive and the normotensive groups of rats. The ADDP solution for injection contained ADDP 100 mM ADDP dissolved in dimethyl sulfoxide. The subcutaneous site of injection was in the neck region or on the back of the rats avoiding the spine, and was changed every day in order to prevent soreness at the site of injection.
Immunohistochemistry was used to perform eNOS staining on the lung sections as previously described (Grant et al., 2006). Lungs from normoxic and chronically hypoxic rats, which have been treated with or without ADDP were perfused with formalin, dehydrated, and embedded in paraffin wax and 3 μm sections were cut. The lung sections were rehydrated, treated with 0.3% H₂O₂ for 10 min to block endogenous peroxidase activity and then heated by microwave to expose the antigens. The sections were blocked with 20% normal goat serum then incubated for 1 h with mouse monoclonal anti-human eNOS primary antibody (1:2000) (BD Transduction Laboratories). Sections were then treated with biotinylated secondary antibody (30 min) followed by avidin-labelled horseradish-peroxidase (40 min) and then 0.5% diaminobenzidine tetrahydrochloride activated with 30% H₂O₂ (10 min). The sections were counterstained with haematoxylin. The slides were coded so that the investigator was not aware of their identity during scoring. Sections were viewed under 400× magnification allocating intensity scores from 0 – 3 for each section, where 0 represents no staining, 1 is mild or uneven staining, 2 is moderate staining and 3 represents maximum staining observed with the antibody at the highest level of eNOS expression encountered. Intermediate intensity levels gave scores of 0.5, 1.5 and 2.5. In each staining run negative controls were included, where sections were not treated with primary antibody.

The values are expressed as means ± standard errors of means (S.E.M.) where n = number of animals. Statistical tests were performed using analysis of variance general linear model (repeated measures design) to compare two cumulative dose–response curves generated in two different tissues, using Minitab. Histological scores were compared using Student’s unpaired t-test. The differences were treated significant if the P value ≤ 0.05.

2.3. Drugs and solutions

BH₄ stock solution was stored at −20 °C and minutes before the addition into the bath a single aliquot was taken out, thawed and diluted. Working solutions were kept on ice at all times when outside and protected from light. Stock solutions of the ADDP and HMP (2 mM) were dissolved in 2 M NH₄OH. Further dilutions were made with distilled water and these were stored at 4 °C.

BH₄, DAHP and L-NAME were bought from Sigma Aldrich Ltd, Poole, Dorset, UK; Spermine NONOate from Merck Biosciences Ltd, Beeston, Nottingham, UK; Ham’s medium (Nutrient mixture HAM F-12) and Waymouth medium MB 752/1 with L-glutamine were from Invitrogen Ltd, Paisley, UK. ADDP and HMP were synthesised as previously described (Suckling et al., 2008).

3. Results

3.1. Artery ring experiments

Both analogues of tetrahydrobiopterin produced dose-dependent relaxation in pulmonary arteries treated with DAHP. ADDP (6-acetyl-7,7-dimethyl-7,8-dihydropterin) produced a maximum relaxation at 0.3 μM of 28.1 ± 4.3% and HMP (6-hydroxymethyl pterin) produced a maximal relaxation at 0.3 μM of 18.8 ± 10.4% (Fig. 1A, B). ADDP-induced and HMP-induced relaxation were completely abolished following preincubation with the NO synthase inhibitor, L-NAME (300 μM) (Fig. 1A, B). However, in pulmonary artery rings that had not been treated with DAHP, ADDP had no significant effect, and the relaxation generated by HMP was reduced (Fig. 1C, D).

Relaxation induced by the NO donor spermine NONOate was unaltered by co-administration of either ADDP 0.3 μM or HMP 0.3 μM in DAHP-pretreated artery rings (Fig. 2A). Similarly, incubation with either ADDP or HMP (0.3 μM) did not have any effect on endothelium-dependent vasorelaxation caused by carbachol in pulmonary arteries pretreated with DAHP (Fig. 2C, D).

Contrary to the effects of the BH₄ analogues ADDP and HMP, BH₄ itself did not produce any significant relaxation over a concentration range of 10⁻⁸–10⁻⁵ M. No relaxation occurred in pulmonary arteries, whether they had been pretreated with DAHP or not (Fig. 3A, B). Indeed the highest concentration of BH₄ induced a significant contraction (Fig. 3A, B). In addition, in pulmonary arteries we found that incubation with BH₄ (100 μM) resulted in reduction of potency of carbachol-induced relaxation at the initial concentrations without altering the maximum relaxation obtained (Fig. 4A). The superoxide scavenger, MnTMPyP 30 μM did not prevent the contraction produced by BH₄ in pulmonary arteries (Fig. 4B).

![Fig. 1. Effects of ADDP and HMP in DAHP-treated (A, B respectively) and untreated (C, D respectively) phenylephrine-precontracted pulmonary arteries (■ = ADDP, □ = ADDP + L-NAME, ▲ = HMP, △ = HMP + L-NAME, ● = vehicle control). Values are expressed as means ± S.E.M. and n = 5–9. *P ≤ 0.05 or **P ≤ 0.01 versus solvent control and +++P ≤ 0.01 or +++++P ≤ 0.001 versus L-NAME.](image-url)

3.2. Effects of treatment with ADDP on relaxation responses of calcium ionophore in isolated perfused lungs

Following preconstriction with U46619, responses to the endothelium-dependent vasorelaxant, calcium ionophore A23187, were measured in perfused lungs from pulmonary hypertensive and normotensive rats. Calcium ionophore A23187 completely relaxed the pulmonary circulation of both pulmonary hypertensive and normotensive rats. Chronic treatment of the rats with ADDP potentiated pulmonary relaxation in response to A23187 both in pulmonary hypertensive and in normotensive rats (Fig. 5A, B). Calculation of the EC50 values confirmed the potentiation effect of ADDP treatment in pulmonary relaxation in response to A23187 both in pulmonary hypertensive and in normotensive rats (Fig. 5A, B). Calculation of the EC50 values confirmed the potentiation effect of ADDP treatment in
both normoxic as well as hypoxic rat lungs as shown by the significant leftward shift in the calcium ionophore A23187 dose–response curves generated in the ADDP-treated rat lungs compared to the untreated rat lungs (1.1±0.1×10^{-6} M versus 1.5±0.1×10^{-6} M in normoxic ADDP-treated and untreated rats respectively, P value ≤ 0.05, n=8–20; 1.2±0.2×10^{-6} M versus 1.7±0.1×10^{-6} M in hypoxic ADDP-treated and untreated rats respectively, P value ≤ 0.05, n=8–20).

3.3. Effects of treatment with ADDP on eNOS expression

Lung samples from untreated and ADDP-treated rats were stained for eNOS immunoreactivity. eNOS immunoreactivity was present throughout the vascular endothelium of small and large pulmonary arteries. Quantitative staining intensity analysis showed that eNOS immunostaining was significantly higher in the pulmonary hypertensive rat lungs when compared to the normotensive controls. Normotensive rats that had been treated with ADDP had significantly higher eNOS expression when compared to the normotensive rats that had received vehicle. In pulmonary hypertensive rats, eNOS expression was already at a high level and was not further increased by treatment with ADDP (Fig. 6).

4. Discussion

In the search for improved molecules that can reverse BH4 deficiency, sepiapterin has been administered to diabetic rats (Pannirselvam et al., 2003), however it requires conversion by sepiapterin reductase within cells. 5-Methylfolate has been found to improve endothelium function in rats that were depleted of BH4 (Hyndman et al., 2002), however it is not clear whether this relatively bulky molecule can bind stably to the pterin binding site on eNOS. Numerous analogues of BH4 have been synthesised, however where these have been tested they inhibit, not stimulate, eNOS (Bömmel et al., 1998; Fitzal et al., 2002; Fröhlich et al., 1999; Gibraeil et al., 2000; Gorren et al., 2000).

Our results show that the BH4 analogues, ADDP and HMP, cause vasorelaxation in pulmonary arteries that have been depleted of endogenous levels of BH4 by incubation with DAHP. ADDP-induced and HMP-induced relaxation was completely abolished by incubation with L-NAME indicating that relaxation is due to NO formation from eNOS expression in pulmonary arteries.
NOS. This is consistent with the generation of NO by ADDP demonstrated in cultured cells (Suckling et al., 2008). Since ADDP and HMP did not modify vasorelaxation induced by the NO donor spermine NONOate, the analogues are not acting via potentiation of NO already present within the artery environment. Since ADDP and HMP did not cause any vasorelaxation when arteries retained their normal BH4 content, it is likely that ADDP and HMP cannot displace BH4 from NOS but may substitute for BH4 when the pterin site is unoccupied. It is likely that the two analogues of BH4 in higher states undergo an intracellular reduction reaction to form the active molecule that makes functionally competent NOS (Suckling et al., 2008).

Carbachol was still able to induce a full relaxation of pulmonary artery rings after depletion of BH4 with DAHP, and treatment with ADDP did not significantly change the carbachol concentration–response curve. The explanation is probably that stimulation of muscarinic receptors gives a powerful activation of eNOS that is supra-maximal. Certainly NO formation exceeds the amount required for maximal relaxation in rat mesenteric artery (Simonsen et al., 1999). Thus even though eNOS is impaired a significant NO generating capacity remains. This implies that the DAHP treatment has not fully eliminated BH4 from the vascular wall.

BH4 produced no relaxation in pulmonary arteries even when their endogenous BH4 content had been depleted, and in fact produced significant contraction in pulmonary arteries at the higher concentrations studied. The effects of BH4 were demonstrated for the first time in the current work in isolated pulmonary arteries. In addition to the direct contractile effect of BH4, incubation with BH4 resulted in reduction in the potency of endothelium-dependent vasorelaxation with carbachol in pulmonary arteries. The contraction seen with direct administration of BH4 was consistent with what has been observed in the dog basilar artery (Kinoshita and Katusic, 1996) and in aortic rings (Yang et al., 2003). In oxygenated buffer at physiological pH, BH4 undergoes autoxidation, which can generate superoxide (Blair and Pearson 1974; Kirsch et al., 2003; Nishikimi 1975). However, incubation with the cell-permeable SOD mimetic, MnTMPyP, had no effect on the contraction seen with BH4 in pulmonary arteries in our study. This indicates that the BH4-induced contraction is unlikely to involve superoxide formation.

In ADDP-treated rats there was significant potentiation of calcium ionophore A23187-induced relaxation in both normoxic and hypoxic rat lungs when compared to the respective normoxic and hypoxic rat untreated group. This indicates that chronic treatment with ADDP resulted in improvement of NO-mediated pulmonary artery dilation. On chronic administration this improvement in pulmonary endothelial function was found not only in the pulmonary hypertensive rats but also in normotensive rats. In normotensive rats, pulmonary endothelial function was found not only in the pulmonary artery dilation. On chronic administration this improvement in NO synthase in pulmonary resistance arteries during hypoxia in the rat. Pulmon. Pharmacol. Ther. 13, 157–165.

References

References

related impairment of endothelium-dependent vasodilation through increase in nitric oxide production. Atherosclerosis 186, 390–395.

