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V. SURROGATE BASED MULTI-OBJECTIVE OPTIMIZATION 

During the optimization process,    and     are iteratively 

calculated in terms of the possible combination of the six 

design variables. The calculation of     is easy and fast 

because the analytical solution in (11) and (12) is 

straightforward. However, the calculation of each    and    

is more difficult and costly, penalizing optimization searches as 

it requires a costly and lengthy non-linear FEA. Hence, an 

efficient optimization method is essential for the optimization 

using finite element model. In this work, the surrogate based 

multi-objective optimization (SBMOO) is adopted, whose goal 

is to reduce computational iterations while obtaining desirable 

results. The SBMOO consists of an interpolation function 

developed based on a design of experiments (DoE) and 

multi-objective optimization (MOO) algorithm for a 

Pareto-optimal search. The entire workflow is illustrated in Fig. 

11 and consists of the following steps. 

1. Define objectives, constraints, design variables and 

design space for the optimization; 

2. Produce the DoE using Latin Hypercube sampling 

method; 

3. Calculate    and    at each design points with the FE 

model; 

4. Build surrogate model for the objective and constrains 

(Kriging model); 

5. Minimize errors of the surrogate models; 

6. Output the surrogate models for the thermal cycling 

along with the analytical model for the power cycling; 

7. Perform multi-objective optimization using MOO 

algorithm (NSGA-II); 

8. Select optimal candidates and plot results. 

A. Kriging Surrogate Model [47][48] 

This work uses a widely used surrogate models, namely a 

Kriging (KRG) model to evaluate the approximation models of 

the objective and constraint functions for the thermal cycling. 

Kriging model was originally developed for mining and 

geostatistical application involving spatially and temporally 

correlated data. 

 
Fig. 11 Structure of SBMOO algorithm for IGBT module optimization 

In general, the Kriging model combines a global model plus 

a localized departure, and can be formulated as: 

f(x)=+z(x)          (22) 

where f(x) is the unknown function of interest,  denotes a 

known approximation function (usually polynomial), and z(x) 

stands for a stochastic component in terms of zero mean and 

variance s
2
 with the Gaussian distribution. Letting  xf̂  be an 

approximation function to the true function f(x), by minimizing 

the mean squared error between f(x) and  xf̂ ,  xf̂  can be 

calculated as 
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T   f       (23) 

where     is the inverse of correlation matrix R, r is the 

correlation vector, f is the observed data at    sample points, 

and q is the unity vector with ns components. The random 

variables are correlated to each other using the basis function of 
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where    is the     parameter corresponding to the i-th variable. 

The Kriging model is built with an assumption that there is no 

error in f; the likelihood can therefore be expressed in terms of 

the sampling data as 
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To simplify the maximization of likelihood, (25) can be 

replaced by (26) by taking a natural logarithmic transformation 

as 
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By conducting the derivatives of the ln-likelihood function in 

(26) with respect to  and s, respectively, and setting them to 

zero, the maximum likelihood estimators (MLEs) of  and s
2
 

are determined in (27) and (28), respectively, 
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These MLEs can now be substituted back into (26) by 

removing the constant terms to give what is known as the 

concentrated ln-likelihood function, and the unknown 

parameters of θi (θi> 0) can be calculated by maximizing the 

formula as follows 
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In this study, the method of modified feasible direction is 

utilized to determine the optimum values of parameter   . And 

the estimated mean squared error (MSE) of the predictor is 

derived as (30). 
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B. Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

Genetic algorithms are a form of search heuristic which takes 
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inspiration from natural evolutionary processes to identify 

optimal solutions to the problem being addressed. A solution 

exists in two domains, namely the solution space as well as 

objective space. In the former domain, a solution is described 

by its characteristics in terms of the variables, i.e. the various 

layer thicknesses. This takes this form of a string of code where 

each element defines the thickness of one layer. In keeping with 

the biological analogy, this string is termed a chromosome.  

Each solution is also associated with its value in objective 

space, i.e. the resultant    and     for each chromosome. The 

set of chromosomes is termed a population, and by considering 

the correlation between a chromosome’s location in population 

space and its location in objective space (fitness), a search can 

be steered towards locating better solutions. 

The optimization process is an iterative one, whereby new 

chromosomes are created, evaluated in objective space, and in 

turn used to help identify better solutions to create a new 

generation. This is done by randomly selecting solutions, 

ranking according to fitness and mixing elements between 

chromosomes in order to generate offspring solutions. This 

process is repeated for a preset number of generations (or until a 

predetermined accuracy is reached) [49]. The definition of a 

‘better’ solution is slightly different in the case of multiple 

objectives, and is handled by the concept of Pareto-dominance. 

A solution is said to Pareto-dominate another, if and only if it 

is strictly better in all objectives. If a solution is only worse off 

in one objective, but better in another, then the two solutions 

form a Pareto-front, giving a set of equally optimum, 

compromise solutions. The final solution is then chosen from 

this Pareto-set [50]. 

A popular genetic algorithm which handles multiple 

objectives using the concept of Pareto dominance is the 

Non-dominated Sorting Genetic Algorithm II (NSGA-II) which 

is able to handle constraints as well as requiring a minimum 

amount of external parameters [51]. This makes it suited for 

robustly handling a range of different problems. The pseudo 

code for the NSGA-II is given below: 

1. Create initial random population of size N; 

2. Evaluate    and     for each solution; 

3. Use binary tournament selection, recombination and 

mutation operators to create offspring population of N; 

4. Sort combined parent and offspring population (of size 

2N) into Pareto ranks using fast non-dominated sorting; 

5. Create new generation population by selecting the first N 

population members; 

6. Repeat from step 3. 

Constraints are handled in the selection operation, where 

chromosomes are selected for reproduction based on their 

Pareto-fitness. If both are in the same rank, a solution which 

does not violate the constraints is selected, and if both solutions 

are infeasible then the one with the least degree of constrain 

violation is selected. Finally if both are feasible and do not 

dominate each other, then the solution in the least crowded 

region of objective space is selected in order to focus the search 

towards sparser regions [51]. 

The above process is repeated for a set number of iterations 

and finally gives a set of Pareto-optimal solutions. The 

diversity operator ensures that the solutions are spread out in 

order to explore all areas of the search space to ensure better 

location of a global (as opposed to local) optimum.  

VI. TEST RESULTS 

To ensure that the surrogate models reach the accuracies 

required, a total of 124 sampling points, (i.e., 124 FEA runs) 

were generated, where 60 are the initial LHS (Latin hypercube 

sampling) points and the other 64 are the sequential infill points 

near the regions or interest. NSGA-II was then used with the 

parameters as defined in Table V to identify the Pareto 

solutions. 

Fig. 12 indicates the sampling points and the Pareto-optimal 

solutions for the two objective functions after 100 generations 

of the search algorithm. It is observed that many sampling 

designs are infeasible designs in terms of the constrained 

condition, though they seem to be better than the Pareto 

optimal. For the Pareto optimal,    can be decreased from 

2MPa to 0.4MPa, while the total thermal resistance     can be 

reduced from 0.11 to 0.09.    and     are strongly competing 

with each other and cannot reach an optimum simultaneously. 

In other words, any further improvement of the lifetime during 

power cycling must worsen that during the thermal cycling and 

vice versa. Therefore, it can be suggested from this result that it 

is better for the designer or engineer of IGBT module to 

comprehend the practical operational conditions (i.e. cooling 

ambient conditions and mission profiles). 
 

TABLE V. DETAILS OF THE NSGA-II PARAMETERS USED IN THIS STUDY 

NSGA-II Parameter name value 

Population size 100 

Number of Generations 100 

Probability of Crossover 0.5 

Mutation Probability 0.5 

 

Optimums 1-3 in Fig. 12 are all feasible solutions and it is 

difficult to choose the best one without knowing the 

power/thermal cycling information of an specific application. 

Since the results in Fig. 12 are all equally-optimal solutions, it 

is difficult to choose the best one. Therefore, a process of 

decision-making for selection of the final optimal solution from 

the available solutions is needed. One of the classical 

decision-making processes is performed with the aid of a 

hypothetical point, named as Equilibrium Point (EP), i.e., the 

optimum 2 as shown in Fig. 12, for which both objectives have 

their optimal values independent of the other objective. The 

other widely used process is to select a better value for each 

objective than its initial value from the base design. In terms of 

these two methods, three optimum solutions are selected among 

all the possible solutions as shown in Fig. 12 and Table VI. 

Optimum 1 has the minimum    and the longest lifetime 

during thermal cycling, solution 3 has the minimum     and 

the longest lifetime during power cycling. Solution 2 seems to 

be a good compromise with respect to the two objectives, i.e., 

higher reliability during both thermal and power cycling. With 
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regard to the lifetime, the assumption is that they are put in the 

same environments and operation conditions with power loss of 

300W in the power cycling (see section 3.1),temperature 

variation of      in the thermal cycling (see section 3.2.4), 

and with the failure criteria defined as failure length reaching 

10% total length. In terms of the equations derived above, 

optimum 1 will have 3.5 times lifetime during thermal cycling 

than the based design, however its lifetime during power 

cycling will decrease to half of the base design’s. These are 

summarized in Table VI, which compares the three optimized 

solutions with the base design (typical solution), clearly 

showing the conflicting nature of the optimization objectives. 

It is easily understood that the thickness reduction of any 

layer will decrease the thermal resistance and thus the lifetime 

during power cycling. For the thermal cycling, it can be 

concluded that the second solder layer should be designed a 

little thicker than the first solder layer to prevent the thermal 

cycling failure, as it is the most significant layer to prevent the 

solder fatigue. The same phenomenon can also be observed in 

the two copper layers of DCB substrate. Conventional designs 

make them equal, however, it is shown in this work that 

different thicknesses will not only help decrease the thermal 

resistance but also decrease the stress and strain in the layers. 

Concern of ceramic layer should be addressed more closely, 

because decreasing this layer will significantly decrease the 

thermal resistance and help decrease the energy accumulated in 

the second solder layer, however, the elastic stress will be likely 

to reach the allowed value as well. 

 
Fig. 12 Pareto solutions of multiple-objective optimization 

 

TABLE VI. OPTIMAL SOLUTIONS AND BASE DESIGN COMPARISONS.  

 
Base 

design 
Optimum 1 Optimum 2 Optimum 3 

        0.090 0.0095 0.0093 0.0080 

         0.300 0.0315 0.0335 0.040 

        0.400 0.0453 0.0390 0.036 

        0.300 0.0373 0.0339 0.0266 

   (mm) 0.090 0.0152 0.0101 0.0080 

   (mm) 3.000 0.2200 0.2205 0.3161 

          1530539 
470258 665488 1793800 

-69.28% -56.52% +17.20% 

    0.087 0.0975 0.09 0.0807 

+12.07% 3.45% -7.24% 

  
  

1.29×103 
4.48×103 4.43×103 1.09×103 

+247.29% +243.41% -15.50% 

  
 
 

5.47×108 
2.67×108 4.43×108 8.73×108 

-51.19% -19.01% +59.60% 

VII. CONCLUSIONS 

This paper has presented a multi-objective optimization for 

multi-layered IGBT power modules considering both thermal 

cycling and power cycling with the thickness of the constituent 

layers as the optimization targets. Two objectives of 

maximizing the lifetime under power cycling and thermal 

cycling are simultaneously considered by minimizing the total 

thermal resistance and the plastic work accumulated in the 

solder layer through equation transformation. 

Thermal resistance is calculated analytically and the plastic 

work is obtained with a high-fidelity FE model, which has been 

experimentally validated. The objective of minimizing the 

plastic work and constrain functions is formulated by the 

surrogate model, which reduces computational time and cost. 

The NSGA-II is used to search for the Pareto optima in the last 

step. The results indicate that: (1) The optimization objectives 

determined by power cycling and thermal cycling are 

conflicting. This is due to the different failure mechanisms 

induced by power cycling and thermal cycling, so a 

multi-objective optimization considering both effects 

simultaneously is necessary. (2) During multi-objective 

optimization, Pareto optimal solutions could be identified and 

selected effectively in accordance to various environmental and 

operational conditions. 

In summary, this work presents a novel and efficient way 

different from existing ones to optimize the structure of power 

electronic modules, especially for the power modules under 

special environmental and operational conditions. 
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