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Abstract 

A new approach, based on Stationary Wavelet Transform (SWT), is proposed in this paper for 

crack detection in beam-like structures. SWT is different from Discrete Wavelet Transform 

(DWT); SWT is a redundant transform that doubles the number of input samples at each 

iteration, which can provide a more accurate estimation of the variances and facilitate the 

identification of salient features in a signal, especially for recognizing noise or signal rupture. 

The mode shape of a cracked beam with a small crack depth, while apparently a single smooth 

curve, actually exhibits a local peak or discontinuity in the region of damage. The mode shape 

‘signal’ can be approximately considered as that of the intact beam contaminated by ‘noise’ 

which consists of response noise and the additional response due to the crack. In this way, the 

signal can be decomposed by SWT into a smooth curve, called approximation coefficient, and a 

detail coefficient curve, which includes crack information that is useful for damage detection, 

respectively. In this paper, the modal responses of damaged simply supported beams are 

computed using the finite element method. The effect of noise on the proposed method is also 

studied. The numerical and experimental results demonstrate the efficiency of the proposed 

method for crack detection. It is shown that SWT of the modal data of cracked simply-supported 

beams provides a better crack indication than conventional DWT. The relationship between 

SWT detail coefficient and crack size (depth and width) are also discussed. A new method based 
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on the average difference of the SWT detail coefficient of vibration bending modes of a cracked 

beam and an intact beam is proposed as a damage index and verified. 
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1. Introduction 

A crack is a damage that often occurs in structural members and may cause serious failure of 

structures. It is well known that crack effects are more noticeable in the response of vibrating 

cracked structures when the crack depth is significant in comparison to the depth of the structure. 

But if the crack is relatively small, it is difficult to detect. For structural safety, a crack must be 

detected in the early state. However, in some cases of the structures with external covering and 

insulation, it is difficult to recognize most cracks by using visual inspection techniques; they 

may be detected by non-destructive techniques (NDT). Inspection of the structural components 

for damage is important for making decision on the maintenance program of the structure. 

System identification is an important tool in the dynamic identification for such purpose. It has 

gained increasing attention from the scientific community and there has been a lot of research in 

the last two decades. As a result, a variety of analytical, numerical and experimental 

investigations now exist. Any crack or localized damage in a structure reduces the stiffness and 

increases the damping in the structure. Reduction in stiffness is associated with decreases in the 

natural frequencies and modification of the mode shape of the structure. Many researchers have 

used one or more of the above characteristics to detect and locate a crack.  

Adams et al. [1] described a method of non-destructively evaluating the integrity of structures 

and applied it to structures. It was shown how vibration measurements made at a single station 

in the structure can be used, in conjunction with a suitable theoretical, to indicate both the 

location and the magnitude of a defect. Narkis [2] indicated that the data on the variation of the 

first two natural frequencies is sufficient for identification of the crack location of a cracked 
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simply supported uniform beam. On the basis of changes in the natural frequencies, Messina et 

al. [3,4] calculated the Damage Location Assurance Criterion, which was used to identify single 

defect and later extended to identify multiple damage sites. Salawu [5] carried out a review of 

research work on crack detection based on the change in natural frequencies. Changes in 

measured dynamic flexibility in structures are also used in damage detection. Zhong et al. [6] 

proposed a response-only method for structural damage detection using the corrected natural 

frequency curve of a damaged beam with a traversing auxiliary mass. Pandey et al. [7] 

evaluated the changes in the flexibility matrix of a structure to identify the presence of damage 

and locate the damage. Doebling et al. [8] provided an overview of methods to detect, locate, 

and characterize damage in structural and mechanical systems by examining changes in 

measured vibration response. Yang et al.[9] used the eigenparameter decomposition of structural 

flexibility change in structural damage detection. Barone et al. [10] the phase of structural 

response signal in damage detection in the structure with a low damage which results in a low 

stiffness variation. Frizzarin et al. [11] developed a baseline-free, time-domain damage detection 

method based on analysis of nonlinear damping from measured structural vibration responses. 

Several researchers have used mode shape measurements to detect damage. Pandey et al. [12] 

showed that absolute changes in the curvature mode shapes are localized in the region of 

damage and hence can be used to detect damage in a structure. The change in the curvature 

mode shapes increase with increasing size of damage. This information can be used to obtain 

the amount of damage in the structure. Ratcliffe [13] found that the mode shapes associated with 

higher natural frequencies can be used to verify the location of damage, but they are not as 

sensitive as the lower modes. Modal curvatures seem to be locally much more sensitive to 

damage than modal displacements. Abdel [14] investigated the application of the change in 

modal curvatures to detect damage in a pre-stressed concrete bridge, and also a damage 

indicator called `curvature damage factor' was introduced. 

The accuracy of locating the damage directly depends on the sampling interval. Lower spatial 

sampling interval provides higher accurate crack location. Modern instrumentation, such as 

Laser Doppler Vibrometers (LDV), allows for high density of sampling and high precision of 
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mode shape measurements. Many publications have been focused on mode shape measurements 

based on scanning laser. Stanbridge et al. [15] used a Continuous-Scan Laser Doppler 

Vibrometers (CSLDV) to give the response mode shape of a vibrating surface as a spatial 

polynomial series. Second spatial derivative of the deflection equation were derived and then 

stresses and strains were obtained from the curvature equation. Also, the paper presented a 

method to obtain accurate stress and strain distributions using only five terms in the mode-shape 

polynomial series. Ho and Ewins [16] presented an analysis technique that uses only response 

data from CSLDV to determine both the mode shape modulus and the temporal phase 

relationships of a structure by means of the Time Domain Fourier Filter Output (TDFFO) 

method. The technique does not need any reference force signal. 

Damage detection using wavelet transform is a recent area of research in structural and machine 

health monitoring. The main advantage gained by using wavelets is the ability to perform local 

analysis of a signal, i.e., to zoom in on any interval of time or space. Wavelet analysis is thus 

capable of revealing some hidden aspects of the data that other signal analysis techniques fail to 

detect. This property is particularly important for damage detection applications. Staszewski et 

al. [17-18] presented an application of the continuous wavelet transform (CWT) in machinery 

diagnostics. Surace et al. [19] used the CWT for detecting structural damage in mechanical 

systems. A review is provided by Peng at al. [20] of available wavelet transformation methods 

and their application to machine condition monitoring. Douka et al. [21] analyzed the 

fundamental vibration mode of a cracked cantilever beam using CWT to estimate the location 

and size of the crack. Gentile et al. [22] used the CWT to detect the location of open cracks in 

damaged beams by minimizing measurement data and baseline information of the structure. 

Kim et al. [23] employed the CWT of the measured signal of bending wave in a beam and 

performed the ridge analysis in order to extract the magnitudes of the incident and the reflected 

waves for a range of frequencies of interest from the measured wave signal. Rucka et al. [24] 

applied CWT in estimation of the damage location in beam and plate structures. Spanos et al. 

[25] proposed CWT for damage detection in Euler-Bernoulli beams by using the difference 

between the displacement responses of the damaged and the undamaged beams for various 
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loading conditions. Bayissa et al. [26] presented a new damage identification technique based 

on the statistical moments of the energy density function of the vibration responses in the 

time-scale (or time-frequency) domain. The CWT is conducted to decompose the vibration 

responses into discrete energy distribution as a joint function of time and scale. An analytical 

approach is developed by Li et al. [27] for seismic ground motions by applying the CWT for 

detection and assessment of progressive damage in structural system. 

Lu et al. [28] presented a wavelet transform-based method for the detection of structural damage, 

by comparison of the DWT of the signals before and after damage in the spatial domain. Liew et 

al. [29] found that crack location could be indicated by the variation of some wavelet 

coefficients along the length of a structural component. Furthermore, Deng [30] applied directly 

the DWT to structural response signals to locate a crack along the length of a beam. Al-khalidy 

et al. [31] applied the orthonormal DWT to the detection of fatigue signals from the observed 

signals. Hou et al. [32] provided numerical simulation data from a simple structural model with 

breakage springs and from the DWT of the response curve showed clear spikes, which were 

attributed to the occurrence of structural damage. In conclusions, the authors state that structural 

damage or the change in system stiffness may be detected by spikes in details of the wavelet 

decompositions of the response data. Reda Taha et al. [33] presented a utilitarian view of 

wavelet transforms (CWT and DWT) and their technologies for structural health monitoring. 

Smith et al. [34] applied DWT vibration detection in aircraft health monitoring. Grabowska et al. 

[35] used DWT with propagating Lamb waves for identification of the fatigue crack. 

Beskhyroun et al. [36] applied DWT for structural damage detection and health monitoring. The 

method examined characteristics of representative vibration signals under DWT for damage 

identification. 

Though DWT is widely used in the field of structural and machine health monitoring, it is a 

non-redundant decomposition analysis [37]. The drawback of non-redundant transform is their 

noninvariance in time/space, i.e., the coefficients of a delayed signal are not a time-shifted 

version of those of the original signal. Time invariance is very important for feature detection, 
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while DWT algorithm does not meet that requirement [38]. SWT was introduced to make the 

wavelet decomposition time invariant [38]. This improves the power of wavelet transform in 

signal de-noising, which is widely used in image processing. Wang et al. [39] applied the SWT 

method to preprocess the microarray images for removing the random noises. Seddiki et al. [40] 

have investigated the characteristics of the stationary wavelet transform which provides the 

texture information in images to source coding with BCH codes for channel correction. SWT 

doubles the number of input samples at each iteration, which can provide a more accurate 

estimation of the variances at each level and facilitate the identification of salient features in a 

signal, especially for recognizing noise or signal rupture. In this way, SWT has a great potential 

in crack detection. 

In this paper, the difference between SWT and DWT algorithm and wavelet de-noising are 

introduced firstly in section 2 and 3 respectively. Then SWT and DWT are applied on mode 

shapes of structures in the latter sections 4, 5 and 6. The proposed damage detection algorithm is 

that DWT or SWT is used to decompose the mode shapes of structures into approximate 

coefficients and detailed coefficients. From the detailed coefficients, the damage indications can 

be obtained when crack is relatively large. When the crack is small and the noise is significant, 

the wavelet de-noising is employed to improve the detailed coefficients and to give more clear 

damage indication. The comparison results of DWT and SWT in section 5.4 demonstrate that 

SWT gives better damage indication than DWT in structural damage detection. In the present 

work, both simulated and experimental results show that the proposed method, SWT of modal 

data, has great potential in crack detection of beam-like structures.  

For simulated model, the damaged simply supported are studied using the ABAQUS finite 

element method (FEM). The mode shape of damage beams is decomposed by SWT or DWT into 

a smooth curve, called approximation coefficient, and detail coefficient which includes crack 

information that is useful for damage detection, respectively. Therefore, a crack in the simply 

supported beam can be detected by detail coefficient of SWT or DWT decompositions of the 

modal data obtained from theoretical finite element computations. However, for real cases, 
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mode shape is affected by experimental noise. Therefore, the effect of noise on the proposed 

method is also studied. When the crack is relatively small and noise is significant, the DWT 

decomposition detail coefficients either performs poorly or not all. The results show the 

efficiency of the proposed method for crack detection, and they also show that SWT 

decomposition provides better crack indication than conventional DWT. Thus, the advantages of 

using SWT rather than DWT of modal data are demonstrated.  

To verify the efficiency and practicability of the proposed method, thirty six cases with cracks 

of varying depths and widths using different spatial sampling intervals and in the presence of up 

to 10% random noise are studied in the present work. All the modal displacement data are 

obtained at different sampling distances (which correspond to number and locations of sensors 

in experimental tests). The results, for the first four mode shape, show that all the cases can 

provide evidence of crack existence at the correct location of the beam. Also, the relationships 

between SWT decomposition detail coefficient and crack size (depth and width) are also 

discussed. Then a new damage indicator or index is proposed for real applications. This is based 

on the average difference between the SWT decomposition detail coefficients of cracked and 

intact beams, which give better crack indicator for real crack detection in beams. Finally, the 

advantages and disadvantages of the proposed method are also discussed. 

2. Stationary versus discrete wavelet transforms 

Both stationary and discrete wavelets are derived from analytical functions called scaling 

functions   which have two key properties (KP1 and KP2), namely: 

KP1: The analytical scaling function )(x  and all its integer translations )( ix   form an 

orthonormal set in 2L , so that [41] 





 1)( 2 dxx  and 




 0)()( dxixx                   (1) 
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for integers 0i . 

KP2: The analytical scaling function )(x  satisfies the so called two-scale equation [38]: 
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Similarly, the mother wavelet )(x  satisfies the two-scale equation: 
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where  nh  and  ng  are, respectively, the impulse responses of low-pass and high-pass 

paraunitary quadrature mirror filters (QMF’s) which obey the mutual orthogonality relation 

[41] : 


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for all integers i . At each step j , define  

)2(2)( 2/
, kxx jj
kj                                 (5) 

and 

)2(2)( 2/
, kxx jj
kj                               (6) 

The discrete approximation coefficient at resolution j2  can be obtained as [38] 
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where * stands for complex conjugation. 

The detail coefficients at the resolution j2 are obtained as 

 )2(2),( 2/
, kxxfd jj
kj                             (8) 

According to Eqs. (2) and (7), kjc ,1  can be obtained by direct computation from kjc ,  
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From Eqs. (3) and (8), similarly, kjd ,1 are computed as 

 

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n
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Eqs. (9) and (10) are the multi-resolution algorithm of the traditional DWT. But the classical 

DWT suffers a drawback that it is not a time-invariant transform. This means that, even with 

periodic signal extension, the DWT of a translated version of the original signal is not, in 

general, the translated version of the DWT of the original signal. To circumvent this problem, 

one can resort to a redundant decomposition of the signal as [38], 
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where kjc ,

~

 and kjd ,

~

 are, respectively, the discrete approximation coefficient and detail 

coefficient. 

From Eqs. (2) and (11), one can obtain the approximation coefficient of SWT as 
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Similarly, the detail coefficient of SWT can be obtained as 

 
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The SWT of original data is not decimated which leads to redundant (overcomplete) 

representation of the original signal. So it has great potential for feature extraction and 

facilitates the identification of salient features in a signal. 

3. Wavelet de-noising 

Generally, the wavelet de-noising is achieved via thresholding. The wavelet thresholding procedure 

removes noise by thresholding only the wavelet coefficient of the detail subbands, while keeping the 

low resolution coefficients unaltered. There are two thresholding methods frequently used: 
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soft-thresholding and hard-thresholding functions. The soft-thresholding rule is normally chosen 

over hard-thresholding in de-noising. 

The hard-thresholding function is defined as  








thx
thxx

ht ,0
,                               (15) 

where th  is the threshold. The general soft-thresholding function is defined by [39] 

 )0,max()sgn( thxxst   (16) 

The following threshold function th  was used in the current work: 

 Nth log2                                   (17) 

where N  is the signal length and   is the noise standard deviation. Using the soft 

thresholding, the de-noising procedure in crack detection involves two steps: (i) decompose the 

signal, and (ii) threshold the detail coefficients to obtain a new coefficient for crack 

identification. In the two steps, a signal is first decomposed by the wavelet transform (SWT or 

DWT). Then the decomposition coefficients are thresholded by the soft-thresholding rule. After 

the thresholding, a new coefficient is obtained which enables crack or damage detection. 

Some researchers [21, 22] have investigated the reduction of noise when using CWT. Here, it is 

worthy to compare their procedure on noise reduction with the wavelet de-noising algorithm 

employed in the present work. The strategy of noise reduction in ref. [21] is to set a threshold, 

which is equal to a percentage of the maximum value of the wavelet coefficients and to consider 

only the coefficients whose absolute values are greater than the threshold. However, there was 

no discussion on how to obtain the threshold value used. Douka et al. [21] just simply set the 

threshold value to 0.5.  
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Generally, the applications of CWT on the mode shapes of cracked beams are based on the use 

of wavelet coefficient obtained by using different scales ([21] and [22]). In addition, Gentile and 

Messina [22] investigated the use of different analyzing wavelets (i.e. Gaus2, Daub2, Haar etc.) 

for crack detection. However, the use of DWT or SWT is based on the wavelet decomposition 

and the detail coefficients can be used for crack detection. This is the major difference between 

the applications of CWT and DWT or SWT on modal data. In ref. [22], the authors have 

investigated the relationship between the wavelet scales and the results of noise reduction. They 

suggested that a tradeoff for wavelet scales is needed when dealing with noisy data using CWT. 

Therefore, it needs experience and extra time consumption in real applications. 

4. Numerical verification 

4.1 Evaluation of natural frequencies and mode shapes 

To verify the proposed method, simply supported beams with relatively small cracks are studied 

using the ABAQUS finite element code. The beams have single-sided transverse cracks with a 

fixed depth cH , a crack width cW , and are located at a distance cl from the left support of a 

beam as shown in Fig.1. The width and depth of the beam are b  and H , respectively. 

The beam models are made of bright mild steel of cross-sectional area 100 mm × 25 mm with a 

length of 3000 mm, and the finite element type employed is the 20node 3D brick element which 

is denoted in the ABAQUS FE package as C3D20R. The material properties of the beams are: 

Young’s modulus GPaE 210 , Density 3/7850 mKg , the Poisson ratio 3.0v . The first 

50 natural frequencies and mode shapes of damaged and intact beams are computed using the 

finite element method. Thirty six cracked beams were consisting of four crack widths cW  = 

0.1, 0.5, 1.0 and 5.0 mm, three crack depths cH = 1, 2 and 5 mm, and three spatial intervals 

)(r
Si

x  = 5, 25 and 125 mm. The cracks were located at 500 mm from the left end of each beam. 
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Table 1 shows the natural frequencies and the relative difference of the first four natural 

frequencies of the intact beam and cracked beams with different crack sizes (depths and widths). 

It can be seen that the relative difference of natural frequencies between the intact and cracked 

beams is less than 0.4% (or 4‰) when the crack ratio ( HHc cr / ) is up to 20%. Therefore, it 

will be difficult to use the direct difference of natural frequencies for crack detection in real 

applications which will be affected by measurement noise such that the accuracy of the 

frequency measurement will not be as high as shown in Table 1. Therefore, an alternative 

approach which is based on the mode shapes of the cracked beams is employed in this paper. 

The modal approach presented in this paper uses the modal displacement data to identify and 

locate damage. The approach is sensitive to the spatial sampling intervals used for the modal 

displacement data. Ho and Ewins [42] have investigated the effect of sampling intervals on 

damage index. They studied numerically the effect of spatial resolution of the mode shapes on a 

damage index, which was defined as the ratio of the modal stiffness of the damaged structure to 

that of the undamaged structure, and which is also the square of the ratio of the mode shape 

curvatures of the damaged and undamaged structures. They found that the lower the spatial 

resolution of the mode shapes, the lower was the sensitivity of the damage index to damage. 

They concluded that spatial resolution plays an important role in reliable damage identification. 

Therefore the effect of spatial resolution on the damage identification method proposed in this 

paper is also investigated.  

The modal data required to test the sampling interval sensitivity can be acquired by two 

methods. In the first method, the modal data can be generated using very small finite elements 

of element size el = 5 mm. This will enable spatial sampling intervals (
iSx ) of 

iSx =5, 25 and 

125 mm to be investigated. The use of larger spatial intervals of 25 mm and 125 mm than 

element size 5 mm will be equivalent to spatial filtering. In the second method, the desired 

spatial sampling intervals can be used as the element size, i.e. 
iSx = el =5, 25 and 125 mm. In 

this method, the errors that will be incurred will be due mainly to the numerical errors 
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associated with the finite elements due to differing aspect ratios. Therefore, the first 

investigation was on the effects of element sizes on the predicted modal properties. The modal 

properties of simply-supported intact beams of length 3 m were predicted using elements of 

lengths el =5mm, 25 mm and 125 mm which correspond to 600, 120 and 24 elements along the 

length of the beam, respectively. The first four natural frequencies of bending vibration 

predicted were identical. Similarly, the errors between the mode shapes are negligibly small as 

can be seen from Fig.2 (a) which shows the difference between the mode shapes predicted using 

25 mm and 5 mm length elements, and Fig.2 (b) which shows the difference between the mode 

shapes predicted using 125 mm and 5 mm length elements. It is clearly seen from these figures 

that the maximum difference between the mode shapes predicted using these element size is less 

than 0.001%. Therefore, elements of lengths 5, 25 and 125 mm can be used with confidence to 

predict the first four mode shape data of the intact and cracked beams. This will enable the 

subsequent use of spatial sampling intervals of 5, 25 and 125 mm for crack identification and 

location. 

Generally, there is no noticeable difference between these first four mode shapes of the intact 

and damaged beams with small cracks. Hence, it is difficult to detect small cracks in 

simply-supported beams by the direct comparisons of the mode shape data of the intact and 

damaged beams. Some other approaches need to be used. The objective of this work is to 

propose a new approach based on SWT of mode shapes to provide a method for crack detection 

in beam-like structures with a small crack, whose crack ratio is less than 20%. In this paper, 

only the wavelet analysis of the first four mode shapes is studied for crack detection of the 

simply supported beams. 

4.2 Selection of analyzing wavelet 

The mode shapes of a cracked beam with a small crack depth, are apparently single smooth 

curves. Actually the mode shapes exhibit local peaks or discontinuities in the region of damage 

which are not visible. The mode shape ‘signal’ can be approximately considered as that of the 
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intact beam contaminated by ‘noise’ which consists of response noise and the additional 

response due to the crack. In this way, the signal can be decomposed by wavelet transform 

(SWT or DWT) into a smooth curve, called approximation coefficient, and detail coefficient 

which includes crack information that is useful for damage detection as a crack indicator, 

respectively. 

Now, the selection of the analyzing wavelet is left to be discussed, It is well known that the 

number of vanishing moments is one of the most important factors for the success of wavelets 

in magnifying local singularities in various applications. Generally, wavelets with higher 

number of vanishing moments give higher coefficients and more stable performance. However, 

the effective support of a wavelet will be increased with the number of vanishing moments. 

Therefore, a tradeoff between number of vanishing moments and adequate localization should 

be accomplished. After some experimentation a symlet wavelet ‘symmetrical 4’ having four 

vanishing moments has been selected and used as analyzing wavelet in the present work. 

 

4.3 SWT decomposition and wavelet de-noising 

SWT decomposition of the first four mode shapes is firstly studied. Fig.3 (a-1), (b-1), (c-1) and 

(d-1) show that SWT approximation coefficient of the first, second, third and fourth mode shape 

‘signal ’ of damaged beam with 1mm depth, 1mm width crack located at 500 mm from the left 

end side of the beam. The modal response data was obtained at spatial intervals )(r
Si

x of 5 mm, 

where r  is mode number. 

As can seen from those figures, all the SWT approximation coefficients are smooth curves, 

which can not provide any crack information for detection. In Fig.3 (a-2) , (b-2), (c-2) and (d-2), 

the SWT detail coefficient of the first, second, third and fourth mode shape ‘signal’, respectively, 

provide evidence of crack existence at 500 mm from the left end side of the beam because the 

detail coefficients exhibit high values at this position. It can be seen that all the detail 
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coefficients contain the noise which is due to numerical computational errors associated with 

the finite element analysis. In this paper, the wavelet soft-thresholding de-noising method is 

used to remove noise from the SWT decomposition detail coefficients of the first, second, third 

and fourth mode shape ‘signal’; the de-noised detail coefficients are shown in Fig.3 (a-3), (b-3), 

(c-3) and (d-3). The de-noised results give better crack indicator than those shown in Fig.3 (a-2), 

(b-2), (c-2) and (d-2). 

An important point to be clarified is the difference between the SWT application in the field of 

image processing and the field of signal processing of modal data discussed in this paper. In the 

field of image processing, an image signal is first decomposed by wavelet transform, and then 

the decomposition detail coefficients are thresholded by the thresholding rule to obtain a new 

detail coefficient. This new de-noised detail coefficient is then reconstructed with approximation 

coefficient to produce a new image signal, which is a filtered signal by wavelet transform to 

enhance the image quality [39]. Similar to the steps of image processing, the method proposed 

in this paper also first decomposes the modal data using wavelet transform, and then the detail 

coefficients are thresholded by the thresholding rule. After the thresholding, a new coefficient is 

obtained. This new coefficient contains some information about crack location. It should be 

noted here that multi-level SWT decomposition is usually needed for image processing, 

however, in the present work, single-level SWT decomposition is needed in the field of crack 

detection in beam-like structure. That is, j  equals to 1 in the Eqs. (13) and (14). The proposed 

method using SWT decomposition of modal data has great potential in crack detection in 

beam-like structures. Further verification of the proposed method will be discussed in the 

subsequent section. 

5. Further numerical verification of SWT in crack detection 

To verify the efficiency and practicability of the proposed method, the thirty six cases with 

cracks of varying depths ( cW  = 0.1, 0.5, 1.0 and 5.0 mm) and widths ( cH  = 1, 2, and 5 mm) 

using different spatial intervals ( )(r
Si

x  = 5, 25, and 125 mm) are studied. In this section the 
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effects of crack depth, crack width and spatial interval of the mode shape data on the SWT 

decomposition detail coefficient are investigated. 

5.1 Effects of crack depth 

Fig.4 (a-1), (b-1), (c-1) and (d-1) are, respectively, the SWT decomposition detail coefficients of 

the first, second, third and fourth mode shapes of cracked beams with 1 mm width cracks, 

whose depths are 1 mm, 2 mm and 5 mm. Fig.4 (a-2), (b-2), (c-2) and (d-2) are the zoom of 

Fig.4 (a-1), (b-1), (c-1) and (d-1) at 500 mm location, respectively. Both the original and 

zoomed curves provide evidence of crack existence at 500 mm from the left end side of the 

beam because the detail coefficients exhibit high peak values at this position. 

In all these three cases, the element length is 5 mm, and the modal displacement data is sampled 

at 5 mm spatial intervals )(r
Si

x  along the lengths of the beams resulting in a total of 601 data 

points. All the modal data are normalized such that the maximum relative amplitude for any 

mode shape is 1.0. Thus a direct comparison between different cases is possible. As can be seen 

from Fig.4 (a-2) to (d-2), the SWT decomposition detail coefficients change due to the depth 

varying from 1 mm to 5 mm. Comparing the peak values of SWT decomposition detail 

coefficients in the region of damage, it is seen that the peak value for the case of 1cH  is 

less than for the case of 2cH , whereas the peak value for the case of 5cH  is the 

maximum. 

It should be noted that all the peak values for these three cases are positive. As the crack depth 

changes from 1 mm to 2 mm and to 5 mm, the peak value of SWT decomposition detail 

coefficient increases. Also, the peak value of detail coefficient of a higher mode shape is greater 

than that of a lower mode shape, which can be seen from the original and zoomed curves in 

Fig.4. 

5.2 Effects of spatial intervals of mode shape data 
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When the modal displacement data are sampled at distance interval of 25 mm along the length 

of the beams, it results in a total of 121 data points. Fig.5 (a-1), (b-1), (c-1) and (d-1) are, 

respectively, the detail coefficient of the first, second, third and fourth mode shapes of cracked 

beams with 1 mm wide cracks, whose depths are 1 mm, 2 mm and 5 mm. Fig.5 (a-2), (b-2), (c-2) 

and (d-2) are the zoom curves of Fig.5 (a-1), (b-1), (c-1) and (d-1) at 500 mm location, 

respectively. The original and zoomed curves provide evidence of crack existence at 500 mm 

from the left end of the beam because the detail coefficients exhibit high peak values at this 

position.  

Fig.6 (a-2), (b-2), (c-2) and (d-2), the zoomed curves of Fig.6 (a-1), (b-1), (c-1) and (d-1) show, 

respectively, the detail coefficients of the first, second, third and fourth mode shape of cracked 

beams with 1 mm width crack, whose depths are 1 mm, 2 mm and 5 mm. It can be seen from 

Fig.6, when sampling distance increases from 5 mm to 25 mm, the peaks values of SWT 

decomposition detail coefficients of the first four mode shapes decrease. It decreases at a faster 

speed when the sampling distance changes from 25 mm to 125 mm. As a result, all the ‘peak’ 

values are negative now; also, the ‘peak’ value for the case of mmH c 5  is less than the peak 

value for the case of mmH c 2 , whereas the ‘peak’ value for the case of mmH c 1  is the 

maximum. For the other cases, similar results can be obtained, namely that the decrease in 

magnitude of the peak value of SWT decomposition detail coefficient is greater when the spatial 

interval (sampling distance) between the mode shape data points is a larger value. Also, Fig.5 

show that the absolute peak value of the SWT detail coefficient increases as the crack depth 

increases, and as the mode number increases. 

5.3 Effects of crack width 

Fig.7 (a-1), (b-1) and (c-1) are, respectively, the SWT decomposition detail coefficient of the second 

mode shape of three cracked beams with cracks of 1 mm depth, whose widths are 0.1 mm, 0.5 mm , 

1 mm and 5 mm. The mode shape data are sampled at 5 mm, 25 mm and 125 mm interval along the 

lengths of the beams. Fig.7 (a-2), (b-2) and (c-2) are the zoom curves of Fig.7 (a-1), (b-1) and (c-1) 
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at 500 mm location, respectively. Fig.7 gives an example to show how the peak values of detail 

coefficient change when crack width and sampling distance have been varied.  

Similar to the previous results given, the relation between crack width and the SWT 

decomposition detail coefficient can be obtained, namely that the decrease in magnitude of the 

peak value of SWT decomposition detail coefficient is greater when the spatial interval between 

the mode shape data points is a larger value. Also, Fig.7 show that the absolute peak value of the 

SWT detail coefficient increases as the crack width decreases, and as the mode number 

increases. However, it should be noted that the absolute peak values of SWT decomposition 

detail coefficients do not give a very clear crack indicator for detecting the crack location when 

the spatial interval is large (i.e. )(r
Si

x 125 mm). In the section 5.5, a modified approach for real 

applications using large spatial sampling intervals, is investigated. 

 

5.4 Comparison of SWT and DWT methods 

In order to compare the efficiency of crack detection based on SWT and DWT of mode shapes 

‘signal’ of damaged beam, SWT and DWT decompositions of the first two mode shapes of a 

cracked beam with a 0.1 mm wide crack whose depth is 1 mm, are investigated. Fig.8 (a-1) and 

(a-2) are the SWT decomposition detail coefficients of the first two mode shapes. As seen from 

Fig.8 (a-1) and (a-2), the curves provide evidence of crack existence at 500 mm from the left 

end of the beam because the detail coefficients exhibit obvious discontinuity at this position. 

Similarly, Fig.8 (b-1) and (b-2) show the DWT decomposition detail coefficients of the first two 

mode shapes. But the indication of crack existence at location cl =500 mm is not as clear from 

the DWT curves as is the case with the SWT curves. 

In DWT, actually, a down-sampling algorithm is used to perform the transform. That is, one 

point out of two is kept during transformation. Therefore, the resulting sequences are decimated 



20 

(i.e. only every even member of a sequence is kept), the whole length of sequences will reduce 

by half after the transformation. This procedure is repeated until the desired level of 

decomposition is reached. For SWT, the redundant transform, instead of down-sampling, an 

up-sampling procedure is carried out before performing filter convolution at each level. At first 

sight, the computational complexity appears to be a drawback of the proposed methods using 

SWT. However, the computation time of SWT which is less than 40 ms for spatial measurement 

points of up to 3001 on a beam of length 3 m, is insignificant when compared to the time of 

several minutes it will tack to perform the measurements and to carry out the modal analysis. 

Due to the different procedures between DWT and SWT, the detail coefficient of DWT 

decomposition has less crack information than that of SWT. Taking an example, the detail 

coefficients of SWT decomposition of the first two mode shapes shown in Fig.8 (a-1) and (a-2) 

give a clearer identification and location of the crack, which was located at cl =500 mm, than 

the identification provided by DWT decomposition in Fig.8 (b-1) and (b-2). The DWT 

decomposition does not provide an unambiguous crack identification and location. Therefore, 

SWT decomposition detail coefficient of mode shape of the cracked beam can provide a better 

crack indication than conventional DWT. 

5.5 Modified Approach for Real Applications Using Large Spatial Sampling Intervals  

In real applications, except for the use of scanning laser vibrometers ([15] and [16]), it will be 

difficult to make many measurements along a beam of 3000 mm length, using a small spatial 

sampling distance of 5 mm or 25 mm. The case of sampling distance of 125mm will be more 

reasonable because measurements need to be made only at twenty five points. However, 

comparing Fig.6 (for which )(r
Si

x 125 mm) with Figs. 4 and 5 (for which 5)( r
Si

x mm and 

25 mm respectively), the peak values of SWT decomposition detail coefficients do not give a 

very clear crack indicator for detecting the crack location when the spatial interval is large and 

especially if the crack is small. Therefore, it is proposed that the following equation be used as a 

damage index for small crack detection in real applications where the number of measurement 
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sensors, signal amplifiers or data acquisition channels are limited, 
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where rCrackd ,  and rIntactd ,  are the SWT detail coefficient of mode shapes of a cracked beam 

and an intact beam for mode r , N  is the number of mode shapes considered, and SWTd  is 

the average difference of the SWT detail coefficient of vibration bending modes between 

cracked and intact beam. It should be noted that when there is no noise present, there is no need 

for averaging. The damage index is simply given by 

                       rIntactrCrack ddd ,,                                 (19) 

To test the proposed damage indices, two cases were investigated, namely, (ⅰ) when there is no 

measurement noise (for which Eq. (19) should be used), (ⅱ) when 10% measurement noise is 

present (for which Eq. (19) should be used). 

Fig.9 (a), (b), (c) and (d), respectively, show the difference of SWT decomposition detail 

coefficients of the first four mode shapes of four beams with small cracks of 1 mm depth and 

widths 0.1 mm, 0.5 mm, 1 mm and 5 mm and for sampling distance of 125 mm but without 

measurement noise. The differences were obtained using Eq. (19). In comparison to Fig.6, the 

graphs in Fig.9 provide better evidences of crack existence at 500 mm from the left end of the 

beam because the global detail coefficient of the intact beam has been subtracted from the 

global detail coefficient of the cracked beam. The residual response, which is due to the 

presence of the crack, becomes magnified and, therefore, facilitates the correct identification 

and location of the crack. 

Furthermore, the effect of noise on this approach for applications involving relatively large 

spatial sampling intervals needs to be verified. This was achieved by adding a random noise of 
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magnitude of 10% of the amplitude of the mode shape data to the mode shape. Fig.10 (a-1) to 

(d-1) are the SWT detail coefficient of the first four mode shape of a cracked beam ( mmH c 1 , 

mmWc 1 ). Fig.10 (a-2) to (d-2) are the corresponding denoised SWT detail coefficient. 

The severity of 10% added noise on the SWT detail coefficient can be appreciated by comparing 

the case mmWc 1 , mmH c 1 , mmx r
Si

125)(   but without added noise in Fig.6, which is 

shown as dashed lines, with the identical case but with 10% added noise shown in Fig.10. It is 

seen that the fairly smooth and regular identifiable shapes observed for four modes in Fig.6 

become distorted, irregular and unidentifiable shapes in Fig.10. Consequently, it is not possible 

to use the noisy SWT detail coefficients shown in Fig.11 for crack identification and location. 

However, the effect of noise can be minimised by averaging and differencing using Eq. (18) to 

enhance the crack information. 

Fig.11 (a-1) shows the average of the SWT detail coefficient of the first four mode shape of the 

cracked beam. Fig.11 (a-2) is the denoised average of the SWT detail coefficient. Though the 

crack information is magnified by averaging the SWT detail coefficient of vibration bending 

modes, it is still hard to carry out crack detection. Similarly, Fig.11 (b-1) and (b-2) show the 

averaged SWT detail coefficient, and the denoised average of the SWT detail coefficient of the 

first four modes of the intact beam whose mode shape data was also subjected to 10% random 

noise. It should be noted that it has been assumed that both the intact and cracked beams are 

assumed to be tested under the same conditions so that their response is subject to the same 

measurement noise. Fig.11 (c-1), (c-2) are, respectively, the average difference of SWT detail 

coefficients between cracked and intact beams, and the denoised result. These two figures show 

that the effects of the 10% added noise are further reduced. Consequently, the effects of the 

crack on the response are further enhanced. Therefore, it is now possible to clearly identify and 

locate the crack as the figures now provide clear and unambiguous evidence of crack existence 

at 500 mm from the left end of the beam. 
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6. Experimental verification of SWT in crack detection 

Experimental tests using a simply-supported aluminum beam were conducted. The 

dimensions of the damaged beam are 3100252400 mmBHL  . A crack, whose 

depth is 2.5mm, was located at mlc 4.0 . Fig.12 shows the experimental set-up used 

for testing. A random signal was generated and then amplified by a power amplifier, and 

exerted on the beam structure through a shaker. The response signal and input signal 

were respectively sensed by a PCB accelerometer and a PCB force sensor. The 

displacement data is sampled at 100 mm ( mmxs 100 ) interval along the lengths of 

the beam resulting in a total of 25 data points.  

In order to compare the efficiency of crack detection based on SWT and DWT of mode shape of 

this damaged beam, SWT and DWT decompositions of the first mode shape are investigated. 

Fig.13 (a-1) and (a-2) are the DWT decomposition detail coefficients of the first mode shape. As 

seen from Fig.13 (a-1) and (a-2), the curves can not provide evidence of crack existence at 400 

mm from the left end of the beam. Similarly, Fig.13 (b-1) and (b-2) show the SWT 

decomposition detail coefficients of the first mode shape. The curves provide obvious evidence 

of crack existence at 400 mm from the left end of the beam because the detail coefficients 

exhibit obvious discontinuity at this position. The results show that SWT of the modal data of 

cracked simply-supported beams provides a better crack indication than conventional DWT. 

This reason is that the detail coefficient of DWT decomposition has less crack information than 

that of SWT. 

7. Concluding remarks 

This paper proposes a new approach based on SWT to provide a method for small crack 

detection in beam-like structures. The modal responses of the damaged simply supported beams 

used are computed using the finite element method. Crack identification using the SWT and the 

DWT of the first four mode shapes has been compared. In real applications, the mode shape 



24 

data is affected by experimental noise. Therefore, the effects of a normally distributed random 

noise have also been studied. The numerical and experimental results demonstrate the efficiency 

of the proposed method for crack detection. Though crack information can be obtained from the 

detail coefficient of the SWT or the DWT of mode shapes, DWT is a down-sampling algorithm 

whereas SWT is an up-sampling one. This is the main difference between SWT and DWT, and 

the fundamental reason why SWT of mode shape provides better crack identification than 

conventional DWT, especially, when the crack is relatively small and noise is significant. Also, 

SWT decomposition has better anti-noise ability than DWT decomposition. Therefore, SWT of 

modal data has great potential in crack detection of beam-like structures.  

Nomenclature 

  scaling function 

  mother wavelet 

nh  the impulse responses of low-pass paraunitary quadrature mirror filter 

ng  the impulse responses of high-pass paraunitary quadrature mirror filter 

kjc ,  approximation coefficient of DWT decomposition 

kjd ,  detail coefficient of DWT decomposition 

kjc ,

~

 
approximation coefficient of SWT decomposition 

kjd ,

~

 
detail coefficient of SWT decomposition 
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ht  hard-thresholding function 

st  soft-thresholding function 

th  threshold 

N  signal length 

  noise standard deviation 

cl  crack location of cracked beam from the left support 

l  length of beam 

el  element size  

b  width of beam 

H  depth of beam 

cH  crack depth 

cW  crack width 

E  Young’s modulus of material 

  density of material 

  Poisson ratio of material 
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)(r
Si

x  spatial interval (sampling distance) of mode shape data for mode r   

r  mode number 

rc  crack ratio ( cH / H ) 

rCrackd ,  SWT detail coefficient of a cracked beam for mode r  

rIntactd ,  SWT detail coefficient of an intact beam for mode r  

SWTd  the average difference of the SWT detail coefficient of vibration bending modes 

between cracked and intact beam 

d  The difference of rCrackd ,  and rIntactd ,  

rcf ,  natural frequency of cracked beam for mode r  

rif ,  natural frequency of intact beam for mode r  
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Table 1: Comparison of first four natural frequencies of intact beam and cracked beams with 

different crack depths and widths (25mm long elements used). 

Cases 
Natural Frequencies (Hz) Relative Difference * (‰) 

Modes Modes 

cH  

(mm) 
cW  

(mm) 
1 2 3 4 1 2 3 4 

  0   0 (intact) 6.5144 26.052 58.597 104.12 0 0 0 0 

1 0.1 6.5141 26.049 58.587 104.11 -0.05 -0.12 -0.17 -0.10

0.5 6.5141 26.048 58.586 104.11 -0.05 -0.15 -0.19 -0.10

1 6.5140 26.048 58.586 104.11 -0.06 -0.15 -0.19 -0.10

5 6.5139 26.046 58.580 104.10 -0.08 -0.23 -0.29 -0.20

2 0.1 6.5133 26.039 58.557 104.07 -0.17 -0.50 -0.68 -0.48

0.5 6.5132 26.039 58.556 104.07 -0.18 -0.50 -0.70 -0.48

1 6.5132 26.038 58.555 104.07 -0.18 -0.54 -0.72 -0.48

5 6.5129 26.035 58.546 104.05 -0.23 -0.65 -0.87 -0.67

5 0.1 6.5086 25.983 58.391 103.84 -0.89 -2.65 -3.52 -2.69

0.5 6.5086 25.983 58.389 103.84 -0.89 -2.65 -3.55 -2.69

1 6.5085 25.982 58.387 103.84 -0.91 -2.69 -3.58 -2.69

5 6.5077 25.972 58.358 103.80 -1.03 -3.07 -4.09 -3.07

* Relative Difference = 1000
,

,, 


ri

rirc

f

ff
 ‰ 

rcf ,  natural frequency of cracked beam for mode r  

rif ,  natural frequency of intact beam for mode r  

‰ = per thousand 
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Fig.1. Model of cracked simply supported beam. 
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Fig.2. Mode shape difference of an intact beam (3 m length) for different meshes: (a) mode shape

difference using 25 mm and 5 mm long elements; (b) mode shape difference using 125 mm and 5

mm long elements.  1st mode,  2nd mode,  3rd mode,  4th

mode. 

(a) (b)
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Fig.3. SWT decomposition approximation coefficients (left) and detail coefficients

(centre) of the first four mode shapes of a cracked beam mmH c 1 , mmWc 1 ,

mmx r
Si

5)(  and wavelet de-noising results (right); (a-1) to (d-1): SWT approximation

coefficients for 1st, 2nd, 3rd and 4th mode shapes; (a-2) to (d-2): SWT detail coefficients

for 1st, 2nd, 3rd and 4th mode shapes; (a-3) to (d-3): De-noised SWT detail coefficients

for 1st, 2nd, 3rd and 4th mode shapes.  

(a-1) (a-2) (a-3)

(b-1) (b-2) (b-3)

(c-1) (c-2) (c-3)

(d-3)(d-2)(d-1) 
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Fig.4. SWT decomposition detail coefficients of cracked beams mmWc 1 , mmx r
Si

5)( 
(left) and the zoom curves (right):  Intact, mmH c 1 , mmH c 2 ,

mmH c 5 ; (a-1) to (d-1): SWT detail coefficients of 1st, 2nd, 3rd and 4th mode shapes;

(a-2) to (d-2): Zoom of SWT detail coefficient of 1st, 2nd, 3rd and 4th mode shapes. 

(a-1) (a-2) 

(b-1) (b-2) 

(c-1) (c-2) 

(d-2) (d-1)
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Fig.5. SWT decomposition detail coefficients of cracked beams mmWc 1 , mmx r
Si

25)(  (left) and 

the zoom curves (right):  Intact, mmH c 1 , mmH c 2 , mmH c 5 ;

(a-1) to (d-1): SWT detail coefficients of 1st, 2nd, 3rd and 4th mode shapes; (a-2) to (d-2): Zoom of SWT 

detail coefficient of 1st, 2nd, 3rd and 4th mode shapes. 

(a-1) (a-2)

(b-1) (b-2)

(c-1) (c-2)

(d-2)(d-1)
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Fig.6. SWT decomposition detail coefficients of cracked beams mmWc 1 , mmx r
Si

125)( 
(left) and the zoom curves (right):  Intact, mmH c 1 , mmH c 2 ,

mmH c 5 ; (a-1) to (d-1): SWT detail coefficients of 1st, 2nd, 3rd and 4th mode shapes;

(a-2) to (d-2): Zoom of SWT detail coefficient of 1st, 2nd, 3rd and 4th mode shapes. 

(a-1) (a-2)

(b-1) (b-2)

(c-1) (c-2)

(d-2)(d-1)
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Fig.7. SWT decomposition detail coefficients of the second mode shape of cracked beams

mmH c 1  (left) and the zoom curves (right) for different spatial intervals:  Intact,

 mmWc 1.0 ,  mmWc 5.0 ,  mmWc 1 ,  mmWc 5 . (a-1)

SWT detail, mmx r
Si

5)(  ; (a-2) Zoom of SWT detail, mmx r
Si

5)(  ; (b-1) SWT detail,

mmx r
Si

25)(  ; (b-2) Zoom of SWT detail, mmx r
Si

25)(  ; (c-1) SWT detail, mmx r
Si

125)(  ;

(c-2) Zoom of SWT detail , mmx r
Si

125)(  . 

(a-1) (a-2)

(b-1) (b-2)

(c-1) (c-2)
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(a-1) (a-2)

(b-1) (b-2)

Fig.8 Comparison of SWT and DWT decomposition detail coefficients of the first two mode shapes of

cracked beams mmWc 1.0 , mmH c 1 :  SWT or DWT decomposition detail coefficient of

intact beam,  SWT or DWT decomposition detail coefficient of cracked beams: (a-1) SWT

detail of 1st mode; (a-2) SWT detail of 2nd mode; (b-1)DWT detail of 1st mode; (b-2) DWT detail of 2nd

mode. 
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Fig.9 SWT decomposition detail coefficient difference between intact and cracked

beams mmH c 1 , mmx r
Si

125)(  : Intact,  mmWc 1.0 , 

mmWc 5.0 ,  mmWc 1 ,  mmWc 5 ; SWT detail difference of (a)

1st mode shape; (b) 2nd mode shape; (c)3rd mode shape; (d)4th mode shape. 

(a) (b)

(c) (d)
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(b-1) (b-2)

(c-2)(c-1)

(d-1) (d-2)

Fig.10. SWT detail coefficients (left) of the first four noisy mode shape of a cracked beam

mmWc 1 , mmH c 1 , mmx r
Si

125)(   and de-noised results (right) when 10% noise is

added; (a-1) to (d-1): SWT detail coefficients of 1st, 2nd, 3rd and 4th mode shapes; (a-2) to (d-2):

De-noised SWT detail coefficient of 1st, 2nd, 3rd and 4th mode shapes. 

(a-1) (a-2)
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(b-1) (b-2)

(c-1) (c-2)

Fig.11 The average difference of the SWT detail between an intact beam and a cracked beam

mmWc 1 , mmH c 1 , mmx r
Si

125)(  : (a-1) SWT detail average of first four mode shapes

of cracked beam; (a-2) De-noised SWT detail average of cracked beam; (b-1) SWT detail

average of first four mode shapes of intact beam; (b-2) De-noised SWT detail average of the

intact beam; (c-1) Average difference of SWT detail of first four mode shapes of cracked and

intact beams; (c-2) De-noised average difference of SWT detail of cracked and intact beams.

(a-1) (a-2)
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Fig.12 Experimental Setup 
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(a-1) (a-2)

(b-1) (b-2)

Fig.13 Comparison of SWT and DWT decomposition detail coefficients of the first mode shape of

cracked aluminum beam( 5.2cH mm, 4.0cl m) : (a-1) DWT decomposition detail coefficient,

(a-2) Denoised DWT decomposition detail coefficient, (b-1) SWT decomposition detail coefficient,

(B-2) Denoised SWT decomposition detail coefficient 


