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Abstract

Variable angle tow (VAT) placement techniques provide the designer with

the ability to tailor the point-wise stiffness properties of composite laminates

according to structural design requirements. Whilst VAT laminates exhibit-

ing substantial gains in buckling performance have been shown previously,

beneficial ways of using VAT techniques to improve structural performance

of composite laminates in the postbuckling regime remain unclear. In the

present study, a semi-analytical formulation based on a variational approach

is developed and the Rayleigh-Ritz method is subsequently applied to solve

the postbuckling problem of VAT plates. The generality of the proposed

formulation allows effective modelling of the pure or mixed stress boundary

conditions and also provides a computationally efficient means to determine

the postbuckling strength of VAT plates. The proposed methodology is ap-

plied to the postbuckling problem of simply supported VAT plates under uni-
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form edge displacement compression. To show the accuracy and robustness

of the proposed approach, results are validated using finite element analysis.

The postbuckling characteristics of VAT plates subject to different in-plane

boundary conditions are analysed by studying their nonlinear load-end short-

ening and transverse deflection responses. Furthermore, a parametric study

on the postbuckling response of VAT plates with linear variation of fibre

angle is performed and the stiffness values of VAT plates in both pre- and

postbuckling ranges are compared with the results of straight-fibre laminates.

Keywords: Postbuckling, Variable Angle Tow, Rectangular Plates,

Composite, Laminates

1. Introduction

Advanced tow placement techniques enable manufacture of steered fibre

paths and so facilitate the synthesis of variable stiffness composite plates. In

doing so, they provide additional freedom for structural tailoring opportuni-

ties. Previous works on variable stiffness laminates focused mainly on initial

buckling and report an increase in critical buckling load by re-distribution

of the prebuckling stresses (Gürdal et al., 2008; Wu et al., 2012c). However,

very few works (Rahman et al., 2011) have been reported on the study of

postbuckling behaviour of VAT laminates, and where they exist, rely sub-

stantially on finite element modelling, which requires significant computa-

tional efforts in solving the nonlinear postbuckling problem. There remains

an ongoing need for rapid design tools which allow optimisation studies and

provide physical insight into the fundamental behaviour which is not always

readily achievable using commercial finite element analysis (FEA).
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In aerospace applications, thin plate-like composite structures are widely

used and often undergo large transverse deflections and have to carry con-

siderable load beyond the buckling limit (Stein, 1959). Therefore, the load-

carrying capacity, or, on the other hand, the weight-savings in the design

of laminated composite plates can be further developed by studying their

postbuckling behaviour. In this paper, an efficient approach based on a

variational principle is proposed to solve the postbuckling problem of VAT

laminates with linear fibre angle variation and the results are then analysed

for a better understanding of their postbuckling behaviour.

In the study of postbuckling behaviour of a plate undergoing large deflec-

tions, the stretching of the middle surface of the plate due to out of plane

displacement should be considered (Levy, 1945). The fundamental nonlin-

ear strain-displacement relations and the partial differential equations for

the large deflection of thin plates were derived by von Kármán. Based on

von Kármán formulae, numerous works on the development of analytical

methods have been proposed to study the postbuckling behaviour of plates.

These methods were investigated in this work to ascertain their suitability

for the postbuckling analysis of variable stiffness plates. The approximate

postbuckling solution for an isotropic plate under longitudinal compression

was obtained first by Marguerre (1937). He derived an expression for Airy’s

stress function written in terms of the unknown coefficients of out-of-plane

deflection function from the compatibility equation. Then, the energy for-

mula can be represented solely in terms of the assumed deflection function

and a closed-form solution was achieved through minimising the total po-

tential energy. Later, Levy (1945) obtained more accurate solutions by ex-
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panding the stress function and the out-of-plane deflection function in terms

of independent Fourier series. In his work, the general expressions for the

stress coefficients in terms of deflection coefficients were derived from the

compatibility equation. These expressions were then substituted into the

nonlinear equilibrium equation to solve the postbuckling problem and also

have been widely used in later published works (Coan, 1950; Yamaki, 1959;

Chia, 1980; Shin et al., 1993). Coan (1950) extended Levy’s work to plates

with stress-free edges (mixed boundary conditions). Yamaki (1959) presented

the analytical results of the isotropic plates with different boundary condi-

tions. Prabhakara and Chia (1973) proposed a postbuckling analysis for

orthotropic laminated composite plates under biaxial loading by using the

Galerkin method and beam eigenfunctions. Shin et al. (1993) developed

a model based on Marguerre’s method for the postbuckling analysis of or-

thotropic laminates under uniform displacement compression. Harris (1975)

proposed closed-form expressions for the evaluation of initial postbuckling

stiffness using the principle of virtual work. Diaconu and Weaver (2005,

2006) derived approximate closed-form solution for postbuckling analysis of

infinitely long composite plates under axial compression. The postbuckling

problem was also solved by minimising the potential energy expressed in

terms of three unknown displacement variables and considering the nonlin-

ear von Kármán strain-displacement relationship (Feng, 1983; Sherbourne

and Bedair, 1993; Seresta et al., 2005). Other works considering the effect

of anisotropic coupling terms on the postbuckling analysis of composite lam-

inates can be found in (Chia and Prabhakara, 1974; Harris, 1975; Zhang,

1982).
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In previous works, the Rayleigh-Ritz energy method was shown to offer a

concise and efficient way to analyse the behaviour of VAT composite plates.

Alhajahmad et al. (2008, 2010) considered variable stiffness design tailoring

for the nonlinear pressure-pillowing problem of fuselage skin panels based on

the Rayleigh-Ritz energy method. Wu et al. (2012c) proposed an energy mod-

elling combined using Airy’s stress function for the prebuckling and buckling

analysis of VAT plates. Airy’s stress function is much more convenient for

dealing with various in-plane boundary conditions than using the displace-

ment functions, especially for the mixed (stress and displacement) boundary

conditions. For the postbuckling analysis of VAT plates using the potential

energy method, the closed-form solution (Levy, 1945; Coan, 1950; Yamaki,

1959; Shin et al., 1993) for Airy’s stress function is obtained first. This, is

found in terms of out of plane displacement, from the compatibility equation

prior to the application of minimisation of the potential energy to find out of

plane displacement. Due to the additional terms involving the derivatives of

stiffness in the compatibility equation of variable stiffness plates, obtaining

the Levy-type analytical closed-form solutions is generally difficult to find.

Instead of solving the compatibility equation separately, this paper presents

a semi-analytical approach using a single variational equation to derive the

postbuckling solutions for VAT plates. Previously, Bisagni and Vescovini

(2009a) applied this single variational formula to perform the postbuckling

analysis of constant stiffness composite laminates with stiffeners. The ad-

vantages of using this variational formula to model the postbuckled VAT

laminates are not only that the derivative terms of stiffness can be avoided,

but that the compatibility equation, equilibrium equation and boundary con-
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ditions (both for the prescribed displacements and stresses) can be treated

simultaneously. The Rayleigh-Ritz (RR) method is then applied to min-

imise the variational formulae resulting in a system of nonlinear algebraic

equations. The postbuckling equilibrium paths are traced from the derived

nonlinear algebraic equations using an improved Newton-Raphson procedure.

Legendre polynomials were used to achieve fast convergence and robustness in

modelling the effects of flexural-twist anisotropy on postbuckling behaviour.

The content of this paper is arranged as follows. In the next section,

the concept of VAT laminates and the definition for the variation of fibre-

angle orientation are introduced. Section 3 presents the basic formulae for

the postbuckling analysis of VAT plates, including the nonlinear governing

equations, the potential energy and the variational principle. In section 4,

the postbuckling model for VAT laminates under uniform displacement edge

compression is implemented using the single variational form and the effects

of in-plane boundary conditions on postbuckling responses of VAT plates

are discussed. In section 5, the nonlinear load-end shortening curves and

load-transverse deflection curves for square simply-supported VAT plates are

determined and validated with FEA. In this study, the potential for exploit-

ing the variable stiffness concept for enhanced postbuckling performance of

composite laminates is investigated.

2. VAT Laminates

The terminology - Variable Angle Tow (VAT) refers to composite lami-

nates that consist of plies with continuously variable in-plane fibre orienta-

tions, and as a result, their stiffness properties are also continuously changing
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as functions of x − y coordinates. The variable fibre orientation or the fibre

trajectories of a VAT lamina are usually represented in a mathematical form

using few fibre angle parameters. In previous work (Wu et al., 2012c), a gen-

eral mathematical description for the variation of fibre angles was proposed.

In this definition, a smooth distribution of fibre angles is defined using La-

grangian polynomials to interpolate the fibre angles at a set of pre-selected

control points. In this paper, for the sake of simplicity, only the linear vari-

ation of fibre angle orientation is considered for the postbuckling analysis of

VAT plates. The linear fibre angle variation, originally proposed by Gürdal

and Olmedo (1993), is expressed as,

θ(x) = φ+
2(T1 − T0)

a
|x|+ T0 (1)

where T0 is the fibre orientation angle at the panel centre x = 0, T1 is the

fibre orientation angle at the panel ends x = ±a/2 (as shown in Fig. 1) and

φ is the angle of rotation of the fibre path.

Assuming the VAT plate is thin and applying classical lamination plate

theory (CLPT), the constitutive equations for VAT plates in a partially in-

verted form is given by (Mansfield, 1989) ε0

M

 =

 a(x,y) b(x,y)

−bT(x,y) D∗(x,y)

 N

κ

 (2)

where a = A−1, b = −A−1B, D∗ = D − BA−1B and A, B and D are in-

plane, coupling and bending stiffness matrices, respectively. For VAT plates,

their values vary with the coordinates x and y. The term ε0 is the mid-

plane strains, κ is the curvature and N, M are in-plane stress and bending

moment resultants, respectively. As the VAT plates studied in this paper are
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symmetrically laminated, there is no bending-stretching coupling and the

coupling matrix B = 0, b = 0 and D∗ = D.

3. Fundamental Theory

3.1. Governing equations

The von Kármán large deflection equations that define the nonlinear rela-

tion between the mid-plane strains and mid-plane displacements are (Bulson,

1970),

ε0x =
∂u0

∂x
+

1

2

(
∂w

∂x

)2

ε0y =
∂v0

∂y
+

1

2

(
∂w

∂y

)2

γ0
xy =

∂u0

∂x
+
∂v0

∂y
+

(
∂w

∂x

)(
∂w

∂y

) (3)

Applying Eq. (3) on the condition of compatibility leads to the relation,

∂2ε0x
∂y2

+
∂2ε0y
∂x2
−
∂2γ0

xy

∂x∂y
=

(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2
(4)

From the constitutive equation of VAT laminates (Eq. (2)), the relation

between mid-plane strains and the stress resultants N are given by,

ε0x = a11(x, y)Nx + a12(x, y)Ny + a16(x, y)Nxy

ε0y = a12(x, y)Nx + a22(x, y)Ny + a26(x, y)Nxy

γ0
xy = a16(x, y)Nx + a26(x, y)Ny + a66(x, y)Nxy

(5)

The stretching behaviour of a plate can be modelled by introducing the Airy’s

stress function(Φ) and the stress resultants N (Nx, Ny, Nxy) are defined as,

Nx = Φ,yy, Ny = Φ,xx, Nxy = −Φ,xy (6)
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Substituting Eq. (5) and (6) into Eq. (4), the nonlinear compatibility equa-

tion expressed in terms of Airy’s stress function for a VAT plate is given

by,

∂2

∂y2
[a11(x, y)Φ,yy + a12(x, y)Φ,xx − a16(x, y)Φ,xy]+

∂2

∂x2
[a12(x, y)Φ,yy + a22(x, y)Φ,xx − a26(x, y)Φ,xy]−

∂2

∂x∂y
[a16(x, y)Φ,yy + a26(x, y)Φ,xx − a66(x, y)Φ,xy] =

(w,xy)
2 − (w,xx)(w,yy)

(7)

Similarly, the nonlinear equilibrium equation for the large deflection of VAT

plates is expressed by,

∂2

∂x2
[D11(x, y)w,xx +D12(x, y)w,yy + 2D16(x, y)w,xy]+

∂2

∂y2
[D12(x, y)w,xx +D22(x, y)w,yy + 2D26(x, y)w,xy]+

2
∂2

∂x∂y
[D16(x, y)w,xx +D26(x, y)w,yy + 2D66(x, y)w,xy]+

Φ,yyw,xx + Φ,xxw,yy − 2Φ,xyw,xy = 0

(8)

Expanding the derivatives in Eqs. (7) and (8), it was found that both

the compatibility function and equilibrium equation for VAT laminates in-

volve additional higher order derivative terms with respect to the in-plane

flexibility and bending stiffness coefficients (aij, Dij) (Gürdal and Olmedo,

1993; Gürdal et al., 2008; Raju et al., 2012), respectively. One may directly

solve these two coupled governing equations by applying the Galerkin method

(Prabhakara and Chia, 1973) or the principle of virtual work (displacement)

(Harris, 1975; Pandey and Sherbourne, 1993) to determine the postbuckling

behaviour of VAT plates, but is a tedious procedure. Other methods such as
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DQM (Differential Quadrature Method) (Raju et al., 2012) or FDM (Finite

Difference Method) may be applied to Eqs. (7) and (8) to obtain numerical

solutions.

3.2. Variational principle

The distinct advantages of applying the energy method or a variational

formulation to model the behaviour of VAT laminate are that the deriva-

tive terms of stiffness coefficients are avoided, and this leads to the analysis

procedure for a VAT laminate analogous to a constant stiffness laminate.

For example, the nonlinear von Kármán plate deflection problem is solved

through minimising the strain energy or potential energy, which are expressed

in terms of three unknown displacement fields (u, v, w) (Feng, 1983). This

approach was used to solve the nonlinear problem of the pressure-loaded vari-

able stiffness plates (Alhajahmad et al., 2008), as well as the postbuckling

problem of the constant-stiffness plates (Feng, 1983; Sherbourne and Bedair,

1993; Seresta et al., 2005). The limitation of applying this method for the

postbuckling analysis of VAT laminates is in the treatment of mixed bound-

ary conditions. For instance, the displacement along a stress-free boundary

is generally unknown and difficult to determine (Wu et al., 2012c).

In this work, a single variational formula expressed in terms of Airy’s

stress function and transverse deflection function is proposed to model the

postbuckling behaviour of a VAT plate, which is defined by (Washizu, 1975;

Bisagni and Vescovini, 2009a,b),
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Π∗ =− 1

2

∫
NTaN +

1

2

∫
kTDk

+

∫
c2

[u0Nxν + v0Nyν ] ds
(9)

Π∗ = −1

2

∫∫
S

[
a11(x, y)

(
∂2Φ

∂y2

)2

+ 2a12(x, y)
∂2Φ

∂x2

∂2Φ

∂y2
+ a22(x, y)

(
∂2Φ

∂x2

)2

+ a66(x, y)

(
∂2Φ

∂x∂y

)2

− 2a16(x, y)
∂2Φ

∂y2

∂2Φ

∂x∂y
− 2a26(x, y)

∂2Φ

∂x2

∂2Φ

∂x∂y

]
dxdy

+
1

2

∫∫
S

[
D11(x, y)

(
∂2w

∂x2

)2

+ 2D12(x, y)
∂2w

∂x2

∂2w

∂y2
+D22(x, y)

(
∂2w

∂y2

)2

+ 4D66(x, y)

(
∂2w

∂x∂y

)2

+ 4D16(x, y)
∂2w

∂x2

∂2w

∂x∂y
+ 4D26(x, y)

∂2w

∂y2

∂2w

∂x∂y

]
dxdy

+
1

2

∫∫
S

[
∂2Φ

∂y2

(
∂w

∂x

)2

+
∂2Φ

∂x2

(
∂w

∂y

)2

− 2
∂2Φ

∂x∂y

∂w

∂x

∂w

∂y

]
dxdy

+

∫
c1

[
Mν0

∂w

∂ν
−
(
Vz0 +

∂Mνs0

∂s

)
w

]
ds+

∫
c2

[u0Nxν + v0Nyν ] ds

(10)

where c1 and c2 denote the portion of boundaries over which stresses and

displacements are prescribed, respectively. The descriptors s and ν indicate

the tangential and normal direction respectively, along a specified boundary.

Note, the boundary integrals (
∫
c1
,
∫
c2

) are important considerations to model

various mixed boundary conditions, accurately. The geometric imperfection

function of the VAT plate is included by adding the following integral term

into the functional Π∗ (Bisagni and Vescovini, 2009a),

Π̃∗ = Π∗ −
∫∫
S

[
∂2Φ

∂y2

(
w0
∂2w

∂x2

)
+
∂2Φ

∂x2

(
w0
∂2w

∂y2

)
− ∂2Φ

∂xy

(
w0

∂2w

∂x∂y

)]
dxdy

(11)
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where w0(x, y) is the function that represents initial imperfection shape.

Instead of solving the compatibility equation separately, the nonlinear

strain-displacement relation can be included in the potential energy formula

(Shin et al., 1993) by using the method of Lagrangian multipliers (Budian-

sky and Hu, 1946; Washizu, 1975; Wu et al., 2012a). After determining the

Lagrangian multipliers explicitly and eliminating the unwanted variables, a

single variational formula in terms of Airy’s stress function and transverse

deflection function, namely Eq. (10) is achieved. More details of the deriva-

tion can be found in a theoretical work regarding the complementary energy

of thin plates with large deflection (Wang, 1952) and Washizu’s variational

principle (Washizu, 1975). From the stationary condition of the functional

Π∗, the nonlinear equilibrium equation, the compatibility equations and the

prescribed moment and transverse shear stress resultants (out-of-plane) and

displacement (in-plane) boundary conditions are satisfied. In addition, the

in-plane stress and the out-of-plane displacement boundary conditions are

satisfied either through the choice of the stress and deflection functions (Φ, w)

(Wu et al., 2012c) or by applying additional Lagrangian multipliers (Wu

et al., 2012b).

4. Postbuckling Model

4.1. Model implementation

The coordinate system (x, y) used in the functional Π∗, for the sake of

convenience, is normalised (ξ = 2x/a, η = 2y/b, ξ, η ∈ [−1, 1]) in the anal-

ysis. To apply the Rayleigh-Ritz method, the transverse deflection function
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w and Airy’s stress function Φ are assumed to have the series forms,

w(ξ, η) =
R∑
r=0

S∑
s=0

WrsXr(ξ)Ys(η) (12)

Φ(ξ, η) = Φ0(ξ, η) +
P∑
p=0

Q∑
q=0

φpqXp(ξ)Yq(η) (13)

where Xr, Ys, Xp, Yq are admissible functions that satisfy the given boundary

conditions. For the simply-supported plate, Xr(x), Ys(y) are assumed to be

either,

Xr(ξ) = cos(
rπξ

2
), Ys(η) = cos(

sπη

2
), m, n = 1, 3, 5, · · · (14)

using trigonometric functions, or

Xr(ξ) = (1− ξ2)Lr(ξ), Ys(η) = (1− η2)Ls(η) (15)

using Legendre polynomials. Note, in previous work (Wu et al., 2012a),

Legendre polynomials had demonstrated superior convergence rates for the

buckling analysis of laminated plates with high flexural-twisting anisotropy.

The options for the admissible functions Xp(ξ), Yq(η) and Φ0(ξ, η) in Eq.

(13) need to consider in-plane boundary conditions and the corresponding

in-plane stress states. Three different in-plane boundary conditions for VAT

plates under uniaxial compression are studied (Gürdal and Olmedo, 1993),

which are illustrated in Figure 1. The VAT plate is subjected to uniform

displacement compression (x = ±a
2
:u = ∓∆x

2
), and in case A, the transverse

edges are free to deform; and in case B, the transverse edges are constrained,

and in case C, the transverse edges are free to move but remain straight.

It has been shown previously that, under uniform displacement compres-

sion, the resultant boundary stress and the in-plane domain stresses of a VAT
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plate are highly non-uniform in the prebuckling state (Gürdal et al., 2008; Wu

et al., 2012c). On the other hand, in the postbuckling range, the stress distri-

butions of plates (even an isotropic plate) are generally non-uniform (Coan,

1950) due to the nonlinear strain-displacement relation. For a VAT plate

undergoing large deflection, both the variable stiffness and the nonlinear de-

flection are responsible for the non-uniform stress distribution. Airy’s stress

function Φ(ξ, η), in Eq. (13), is split into two parts for representing the non-

uniform stresses distribution in the postbuckling regime, and also to satisfy

the in-plane stress boundary conditions. Assuming that no boundary shear

stresses exist and extension-shear coupling is not present (A16 = 0, A26 = 0),

the series expansion in Eq. (13) satisfies the stress-free condition on all four

edges and the function Φ0(ξ, η) denotes the stress distribution along each

loaded edges.

The admissible functions Xp(x), Yq(y) may take the forms (Wu et al.,

2012b),

Xp(ξ) = (1− ξ2)2Lp(ξ), Yq(η) = (1− η2)2Lq(η) (16)

or alternatively the clamped beam functions,

Xp(ξ
′) = cosh(αpξ

′)− cos(αpξ
′)− βp (sinh(αpξ

′)− sin(αpξ
′)) ,

Yq(η
′) = cosh(αqη

′)− cos(αqη
′)− βq (sinh(αqη

′)− sin(αqη
′))

(17)

where ξ′ = (ξ + 1)/2, η′ = (η + 1)/2. αp(αq), βp(βq) are constants given by,

cos(αp) cosh(αp) = 1, βp =
cosh(αp − cos(αp))

sinh(αp − sin(αp))
(18)

and Φ0 represents the unknown normal stress distributions (Nx0, Ny0) along
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the boundary edges and are expanded into a series form,

Φ0(ξ, η) = f1(ξ) + f2(η)

x = ±a
2

(ξ = ±1) : Nx0 =
4

b4

∂2Φ0

∂η2
=

4

b4
f

′′

2 (η) =
4

b4

L∑
l=0,1,2,···

clψ
c
l (η)

y = ± b
2

(η = ±1) : Ny0 =
4

a4

∂2Φ0

∂ξ2
=

4

a4
f

′′

1 (ξ) =
4

a4

L∑
l=0,1,2,···

dlψ
d
l (ξ).

(19)

where cl and dl are undetermined coefficients for the boundary stress dis-

tribution. ψcl (η) and ψdl (ξ) are admissible functions. A given amount of

displacement loading (u0|ξ=±1 = ∓∆x

2
) is applied by combining the assumed

boundary stress resultants and substituting into the boundary integral part of

Eq. (10). In case A, the transverse edges are stress-free, therefore Ny0, dl ≡ 0

and only the first series expansion in Eq. (19) is needed for Φ0 = Φ0(ξ). In

case B, the zero displacement condition for the constraint transverse edges

u0, v0|η=±1 = 0 should be used in Eq. (10). In case C, the transverse edges

are allowed to move but constrained to be straight, which models the practi-

cal case of transverse edges of a VAT plate attached to stiffeners (Gürdal and

Olmedo, 1993). As the movement of transverse edges is passive and driven

by in-plane stretching, the work done by the edge stresses must equal zero

(Gürdal and Olmedo, 1993), ∫ 1

−1

Ny0(η)dη = 0 (20)

If Legendre polynomials are used for the admissible function of ψdl (ξ), then

d0 ≡ 0 by substituting Eq. (19) into Eq. (20). It implies that case C can be

simulated in a similar way to case B but the first term of the series expansion

of Ny0 needs to be eliminated. However, a simple trigonometric series has
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often been employed for the stress function expansion to model the case C,

expressed as (Levy, 1945; Yamaki, 1959; Bisagni and Vescovini, 2009a),

Φ(ξ, η) = −N̂x0η
2

2
+

P∑
p=0

Q∑
q=0

φpq cos(pπξ) cos(qπη) (21)

where N̂x0 is average boundary load. Based on our experience, Legendre

polynomials require less terms to capture the high non-uniform stress fields

for a postbuckled VAT laminate than the trigonometric series and, provide

efficiency and robustness in the numerical simulation.

Substituting Eqs. (13-19) into Eq. (10) and applying the Rayleigh-Ritz

method, a set of nonlinear algebraic equations are obtained and expressed in

the following tensor form,

Kmm
pi φp +Kmc

li cl +Kmd
li dl +Kmb

rsiWrWs = 0

Kcm
pi φp +Kcc

li cl +Kcd
li dl +Kcb

rsiWrWs = Fi

Kdm
pi φp +Kdc

li cl +Kdd
li dl +Kdb

rsiWrWs = 0

Kbb
riWr −Kbm

rpiWrφp −Kbc
rliWrcl −Kbd

rliWrdl = 0

(22)

where Kmm
pi , Kmc

li , · · · represent various stiffness matrices for a plate in the

postbuckled state. The letters (b,m, c, d) in the superscript of each stiff-

ness matrix (K) denote bending, membrane, the boundaries of loaded edges

and transverse edges, respectively. A combination of two letters represents

coupling effects, for example, Kmb
rsi denotes the nonlinear coupling between

stretching and bending. The explicit expressions of the elements in each ma-

trix are listed in the Appendix. Note, Wr and Ws are the vectorized form of

the coefficient matrix Wrs in Eq. (12), and φp is the vectorized form of the

coefficient matrix φpq in Eqs. (13) and (19). By eliminating the nonlinear
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terms of the first three groups of equations in (22), it reduces to a prebuckling

model for the VAT plate(Wu et al., 2012b),
Kmm
pi Kmc

li Kmd
li

Kcm
pi Kcc

li Kcd
li

Kdm
pi Kdc

li Kdd
li



φp

cl

dl

 =


0

Fi

0

 (23)

Besides, the last set of equations in (22) represent the corresponding buckling

problem if the stress resultants (φp, cl, dl) are given, as

{
[Kbb]− λ[Kbm +Kbc +Kbc]

}
{W} = 0 (24)

A numerical routine based on Eqs. (22)-(24) was implemented in MAT-

LAB for the prebuckling, buckling and postbuckling analysis of VAT plates.

Firstly, the values of each stiffness matrix in Eq. (22) are computed. The

integrations in the stiffness matrices, such as Kbb
ri ,K

mm
pi ,Kmc

ki ,· · · , contain the

variable stiffness terms are evaluated numerically. Closed-form solutions are

available for the other matrices (Kmb
rsi ,K

cb
rsi,· · · ) that are independent of ma-

terial properties. Next, the non-uniform prebuckling stress resultants are

determined using Eq. (23) and substituting into the Eq. (24) to obtain the

critical buckling load (displacement). Finally, a Newton-Raphson method is

applied to solve the nonlinear algebraic equations and determine the post-

buckling equilibrium paths for the VAT plates. In the Newton-Raphson

method, the applied load (displacement) is subdivided into a series of small

incremental load steps, and in each step, the unknown coefficients of the de-

flection function (W ) and stress function (φ, c, d) are obtained by an iterative

root-finding procedure. Note, the initial step sizes are usually required to be

sufficienty small to ensure convergence. The Jacobian matrix of Eq. (22) is
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derived analytically to improve the computational efficiency. If no geometric

imperfection is considered, the postbuckling analysis starts directly from the

critical buckling point, otherwise it needs to start from a unloaded state.

In order to improve the numerical stability, the Newton-Raphson method

is modified by a line search algorithm, in which a scalar factor ρ (0.05 <

ρ < 1) is introduced to scale the solution in each iterative step, that is

xk+1 = xk + ρ∆x. Other numerical tracing techniques will be investigated

and applied to improve or replace the Newton-Raphson method in future

work. Note, the analysis takes around 10 seconds using our MATLAB nu-

merical routine to trace the postbuckling equilibrium path of VAT plate on

a computer with 3GHz processor and 2G memory. This contrasts with com-

mercial FEA code which typically takes more than 200 seconds to produce

similar fidelity results. This enables us to perform the optimum postbuckling

design of VAT plates using stochastic optimisation techniques such as genetic

algorithms in hours, whilst similar analysis in commercial FEA would take

the order of weeks.

4.2. Stiffness indices

To normalise the postbuckling solutions, we compare results against a

homogeneous quasi-isotropic laminate. The equivalent Young’s modulus Eiso,

Poisson’s ratio νiso and bending stiffness Diso of the quasi-isotropic laminate

are given by (Pandey and Sherbourne, 1993; Diaconu and Weaver, 2005),

Diso =
Eisoh

3

12(1− ν2
iso)

, νiso =
U4

U1

, Eiso = U1(1− ν2
iso) (25)

where U1, U2, U4 are material invariants (Jones, 1998). The applied loads

and end-shortening strains in the postbuckling curves are normalised with
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respect to that of this quasi-isotropic laminate at its critical buckling state.

The postbuckling strength of a plate is often quantified, in a conventional

way, by calculating the slope of the load-end shortening curve immediately

after the buckling takes place (Bulson, 1970; Pandey and Sherbourne, 1993;

Diaconu and Weaver, 2005). This quantity, namely the relative stiffness

(denoted by Kr), reflects the proportion of stiffness that remains in the post-

buckling regime against its initial prebuckling stiffness (Kpre)(Diaconu and

Weaver, 2005). The relative stiffness, however, does not convey any informa-

tion regarding the configurations of laminates. In order to perform the layup

comparison and consider the stiffness in both pre- and postbuckling regimes

simultaneously, two other quantities are defined in this work to characterise

the postbuckling behaviours of VAT laminates. One is the normalised post-

buckling stiffness (Kpost) (Pandey and Sherbourne, 1993), which is defined

as the slope of the initial postbuckling range divided by the prebuckling

stiffness (Kiso) of the quasi-isotropic laminate. The other is the normalised

overall stiffness (Ko) that is directly quantised by the end-shortening strain

(εox) under a certain load condition (N o
x), which is often chosen to be in the

range of one to three times the critical buckling load of the quasi-isotropic

laminate (N iso
x ). In this work, possible mode jumping in the procedure of

the postbuckling equilibrium paths is prevented. For the cases that the ap-

plied load is less than the prescribed value but mode jumping has occured,

the resultant end-shortening strain is estimated by the initial postbuckling
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slope. The formulae for calculating these stiffness indices are,

Kpre =
N cr
x

εcrx
= a

N cr
x

∆cr
x

, Kr =
1

Kpre

(
dN

dε

)
av

Kpost =
1

Kiso

(
dN

dε

)
av

, Ko =
1

Kiso

N o
x

εox

(26)

The closed-form solutions (Bulson, 1970; Pandey and Sherbourne, 1993)

for the prebuckling stiffness (Kiso), critical buckling load (N iso
x ), the end-

shortening strain (εisox ) and the postbuckling relative stiffness (Kr) of a square

isotropic plate subjected to an uniaxial compression and different in-plane

boundary conditions that defined as case A,B,C in section 4 are provided in

the following text.

For case A, that the unloaded edges are free to deform,

Kiso = Eisoh, N iso
x =

4π2Diso

b2
, εisox =

N cr
x

Kiso

,

Kr =
1

Kiso

dN

dε
= 0.408

(27)

For case B, that the unloaded edges are in-plane constrained,

Kiso =
Eisoh

1− ν2
iso

, N iso
x =

4π2Diso

b2(1 + νiso)
, εisox =

N cr
x

Kiso

Kr =
1

Kiso

dN

dε
= 0.56

(28)

For case C, that the unloaded edges are free to move but remain straight,

the prebuckling stiffness and the critical buckling load (strain) are identical

with case A. The relative postbuckling stiffness is well-known as Kr = 0.5,

which is slightly higher than case A due to the presence of edge stiffeners.
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5. Results and Discussion

5.1. Model validation and boundary effects

The postbuckling modelling results of VAT plates subjected to an uniform

axial compression are presented in this section. Square VAT plates (a =

b = 0.5 m) with 16 balanced, symmetric layup, linear variation of fibre-

orientation angles ([φ± 〈T0|T1〉]4s) and all the plate edges simply-supported

are investigated for the postbuckling model validation. Three different in-

plane boundary conditions (case A,B,C ) that are defined in section 4 are

investigated. The lamina properties are given by E1 = 163GPa, E2 = 6.8GPa,

G12 = 3.4GPa, ν12= 0.28. Ply thickness is 0.13mm (the plate thickness is 2.1

mm).

Finite element modelling for the postbuckling analysis of VAT plates was

carried out using ABAQUS and a subroutine was developed to generate

ABAQUS composite elements with independent fibre orientations. The S4

shell element was chosen for discretization of the VAT plate structure and a

mesh density of 40× 40 was selected to achieve the required accuracy. Each

finite element was assumed to have a constant fibre orientation in order to

model the linear fibre angle distribution within each of the lamina. The

thickness variation of the VAT plate due to tow overlap or gaps were not

considered and the ply-thickness is assumed to be constant in the present

study. A small imperfection in the form of the first buckling mode shape and

a magnitude of 1% of the plate thickness is imposed to each finite element

modelling.

Figures 2-4 show the postbuckling results of VAT composite plates com-

pared with straight-fibre laminates for the cases A, B and C, respectively.
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The results of both VAT laminates and straight-fibre laminates obtained

by the Rayleigh-Ritz method correlate well with FEA. In the Rayleigh-

Ritz method, sufficient number of polynomials for each admissible function

was chosen to achieve converged results. For the simply-supported square

plate problem, R = 6, S = 6 is chosen for the deflection function and

P = 4, Q = 4, K = 4 for the Airy’s stress function. The maximum trans-

verse displacement wmax is normalised with respect to the plate thickness h.

The average axial load Nx is normalised with the critical buckling load N iso
x

for a quasi-isotropic laminate. The strain εx is normalised with respect to

εisox , which is the end shortening strain at critical buckling load for a quasi-

isotropic laminate (Diaconu and Weaver, 2005).

Fig. 2-a shows the normalised load vs normalised axial end-shortening

strain curves for case A. For the constant stiffness laminates, the maximum

compressive stiffness is, obviously, given by a [0]16 laminate, while [±45]4s

laminate has the maximum buckling load and very poor performance with

respect to both the pre- and postbuckling stiffness. Three VAT laminates are

selected for the comparison in Fig. 2-a. The [90± 〈0|75〉]4s laminate has the

highest buckling load among all the VAT configurations [φ± 〈T0|T1〉]4s with

linear variation of fibre angles (Gürdal et al., 2008), however, its prebuckling

and postbuckling axial stiffness is much lower than the quasi-isotropic and

[0]16 laminates. On the other hand, the relative postbuckling stiffness of the

[90±〈0|75〉]4s VAT plate is relatively high (Kr = 0.56), which means there is

less reduction of axial stiffness after entering the postbuckling regime. This is

mainly because the majority of compressive load is redistributed towards the

edges and the load redistribution due to the variable stiffness is still dominant
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in the initial postbuckling regime. The VAT laminate [90±〈10|75〉]4s exhibits

higher value of relative postbuckling stiffness Kr = 0.71 compared to other

linear VAT configurations. VAT plate [0± 〈0|15〉]4s exhibits the lowest end-

shortening strain, in other words the highest overall stiffness, under a given

load (2Niso). Its prebuckling stiffness is almost the same as [0]16 but the

postbuckling stiffness is slightly improved. Fig. 2-b shows the normalised

maximum transverse displacement wmax/h function vs the normalised axial

load. The maximum transverse deflection for [90±〈0|75〉]4s VAT laminate is

found to be much less than the other layups and this result demonstrates the

considerable superiority of applying variable stiffness to restrict the maximum

transverse deflection for a postbuckled laminated plate.

The postbuckling behaviour of plates under uniform compression with

transverse edges constrained (case B) were studied and the results are shown

in Fig. 3. The end-shortening curves in Fig. 3-a clearly show that both

[±32]4s and [0 ± 〈0|50〉]4s laminate exhibit high buckling load, but perform

poorly in the postbuckling regime. The fibre distribution of [0 ± 〈0|50〉]4s
laminate gives rise to no re-distribution of the axial compression load, and

provides much less contribution to improve postbuckling stiffness. The VAT

plate [0±〈0|20〉]4s exhibits higher prebuckling and postbuckling stiffness than

the other [φ±〈T0|T1〉]4s layups (Fig.3-a) and the [0]16 laminate demonstrated

high overall stiffness value when compared to VAT laminates. Fig. 3-b

shows the nonlinear transverse deflection response of different laminates and

the VAT plate [90 ± 〈0|85〉]4s demonstrates the lowest maximum transverse

displacement.

The structural responses of plates under the boundary condition of case
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C are shown in Fig. 4, in which the results of case A are also presented

(denoted by the dash-dot lines) for comparison purposes. For the boundary

condition of case C, the prebuckling behaviour and the critical buckling state

of the straight-fibre laminates and VAT plates with stiffness varying along y

direction (θ(y)) were observed to be identical to case A (Gürdal and Olmedo,

1993; Gürdal et al., 2008). The postbuckling behaviour (stiffness) of straight-

fibre laminates under case C are generally bounded in between the results

of case A and case B (Bulson, 1970). The effects of in-plane boundary

conditions on the postbuckling responses of VAT laminates largely depend

on the distributions of their variable stiffness. Three VAT plates are shown in

Fig. 4-a to illustrate the differences raised by the boundary conditions of case

A and case C on their postbuckling behaviour. The [0±〈0|20〉]4s plate gives

the highest overall stiffness among the VAT laminates with linear varation of

fibre angles ([φ±〈T0|T1〉]4s) for case C. Fig. 4-a shows that the postbuckling

stiffness of quasi-isotropic, 0◦ and VAT layup [0 ± 〈0|20〉]4s under case C is

slightly higher than the result for case A. The differences in the load-end

shortening behavior between case A and case C are much less for the other

two VAT plates [90±〈0|75〉]4s and [90±〈10|75〉]4s. In particular, the solutions

of the [90±〈0|75〉]4s VAT laminate for case C are nearly the same as that of

case A. The load-transverse deflection curves for these laminates are plotted

in Fig. 4-b, which demonstrates the similar trends with the results shown in

Fig. 2-b for case A.

In the manufacture of VAT laminated plates with shifted fibre paths using

the tow-steered techniques, thickness variation is an inevitable consequence.

Tows consist of multiple fibres which are free to slide over each other for dry
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tow placement and deform in shear for towpreg techniques such as automatic

fibre placement. As such, when a flat tow is curved, individual fibres slide to

narrow the tow and minimise the excess length associated with outer radius

compared with inner radius. In so doing, the tow thickens. Once all tows are

laid down such thickness change manifests itself as a smooth variation across

the plate (Kim et al., 2012). For example, the thickness along the transverse

edges of the [90±〈0|75〉]4s VAT laminate or other analogous layups are likely

to be increased due to the maximum change in shifting angle. From the simu-

lation results, it was observed that such a thickness build-up further improve

the postbuckling stiffness (relative stiffness) of these VAT laminates. This

suggests that the thickness variation offers us an additional design parameter

to perform the postbuckling design of VAT laminates. However, a thorough

study of the effects of thickness variation on the postbuckling behaviour of

VAT laminate is beyond the scope of the paper and, it will be investigated

in the future works.

5.2. Parametric study

A parametric study of postbuckling behaviour of square VAT plates with

linear variation of fibre angles is presented in this section. The postbuckling

analysis were carried out on the VAT laminates by varying the fibre angles

T0 and T1 (Eq. (1)) between 0◦ to 90◦ with a step of 5◦. Only the varia-

tion of fibre angles (stiffness) along y direction ([±θ(y)]4s) is considered in

this study, as these configurations demonstrate good buckling performance

(Gürdal et al., 2008; IJsselmuiden et al., 2010; Wu et al., 2012c) for the

three in-plane boundary conditions. The relative stiffness Kr, postbuckling

stiffness Kpost, the plate overall stiffness Ko and the critical buckling load
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of the VAT plates under the boundary conditions of case B and case C are

computed. The results for case A are not presented, as it has been dis-

cussed that this boundary case is similar to case C. The computed results

Kr, Kpost, Ko, N
cr
x are normalised and shown in Figures 5 and 6 as functions

of the normalised prebuckling stiffness for case B and case C, respectively.

Each curve in the figures represent a series of VAT plates with various values

of T1 (from 0◦ at the left-end to 90◦ at the right-end), but with the same

value of T0, which is labeled in the figure. The red dash curve denotes the

result of straight-fibre laminates which vary from [90]16 to [0]16 as one moves

from left to right in each plot.

For case B, the largest relative stiffness shown in the Fig. 5-a is Kr = 0.75

and is achieved by the VAT configuration [90 ± 〈0|25〉]4s, which is slightly

more than the maximum value Kr = 0.73 given by the straight-fibre laminate

[±65]4s. But the prebuckling stiffness of these two laminates are relatively

low and results in poor behaviour of the overall stiffness. From Figs. 5-b

and -c, the variation of postbuckling stiffness with respect to various VAT

formats is very close to that describing the overall stiffness. The buckling

performance of the VAT plates under case B is shown in Fig. 5-d. The

[90 ± 〈0|80〉]4s has the maximum normalised buckling load (N cr
x /N

iso
x ) 1.40,

which is 25% higher than the maximum value 1.12 obtained by a straight-

fibre laminate [±30]4s. The [0]16 laminate exhibits the highest prebuckling

stiffness for the case of uniaxial compression and it also results in the largest

postbuckling stiffness (overall stiffness) as shown in Figs. 5-b and -c. Nev-

ertheless, if the VAT plate’s normalised prebuckling stiffness Kpre/Kiso is

restricted to 0.5 and 2, the stress redistribution caused by tow-steering is

26



significant and this phenomena is responsible for considerable improvement

of the postbuckling responses. For prebuckling stiffness out of this range, the

stress redistribution is primarily due to the von Kármán nonlinear strain-

displacement relations governing the postbuckling behaviour. For instance,

considering a VAT plate [90±〈20|90〉]4s and a straight-fibre laminate [±38]4s,

both of them approximately have an equivalent prebuckling stiffness as the

quasi-isotropic laminate (Kpre = Kiso). The relative stiffness, postbuckling

stiffness, overall stiffness and buckling load of the VAT plate [90± 〈20|90〉]4s
show an improvement of 291%, 317%, 230% and 15% over the straight-fibre

laminate [±38]4s, respectively.

The superiority of VAT laminates with respect to the postbuckling re-

sponses was also observed for case C, as shown in Fig. 6. The VAT plate

[90 ± 〈10|70〉]4s has the maximum relative stiffness Kr = 0.72 and exhibits

12% improvement over the maximum value 0.64 of a straight-fibre laminate

[±55]4s. The sharp variation of postbuckling behaviour with small variations

in linear fibre distribution, observed in Fig. (6)-a and -b, can be attributed to

discrete changes in mode shape with associated similar buckling loads (Rah-

man et al., 2011). The buckling performance for this case is shown in Fig.

6-d, which is identical to the results shown in (Gürdal et al., 2008). Similar

to case B, VAT configurations provide considerably improved postbuckling

responses when the plate’s normalised prebuckling stiffness is less than 2. It

was concluded that load redistribution towards the supported edges is the

primary mechanism for the improvement of postbuckling response. There-

fore, Figs. 5 and 6 show that the VAT concept provides more flexibility in

stiffness tailoring of the laminate configurations to achieve better postbuck-
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ling performance.

6. Conclusion

In this work, a semi-analytical variational approach was developed to

perform postbuckling analysis of VAT plates under uniform axial compres-

sion loading. The generality of the proposed approach was discussed and

shown by modelling mixed stress/displacement boundary conditions. The

different in-plane boundary conditions are implemented either using trigono-

metric functions or Legendre polynomials. The postbuckling solutions for

each boundary condition are determined using the proposed approach and

validated with FEA to show the good accuracy, robustness and efficiency of

this proposed approach.

The load-end shortening curves and load-transverse deflection curves for

the postbuckled VAT plates were computed and compared with the results of

straight-fibre laminates. The effects of in-plane boundary conditions on the

postbuckling behaviour of VAT plates are discussed. Subsequently, a para-

metric study on the postbuckling behaviour of VAT plates was shown with a

linear fibre angle variation. In this study, the postbuckling stiffness, relative

stiffness, overall plate stiffness and the critical buckling load are computed

and plotted as functions of the normalised prebuckling stiffness. It is demon-

strated that enhanced results are given by the VAT laminates, in which only

small amounts of stiffness reduction occur in the postbuckling regime and si-

multaneously their overall stiffness and critical buckling load are maintained

to be relatively high. From this study, the advantages of applying the vari-

able stiffness concept for enhanced postbuckling performance of composite
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laminates were demonstrated.
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Appendix

The explicit forms for the tensors in the postbuckling model (Eq. (22))

are expressed below. Each vectorized coefficient in Eq. (22) is reverted back

to its matrix form, Wr or Ws to Wrs(Wr̄s̄) and φp to φpq(φp̄q̄) (For example,

W0 = W00,W1 = W01,W2 = W02, · · · ,).

Kmm
pi (Kmm

pqp̄q̄) =

∫ 1

−1

∫ 1

−1

[
µ4a11XpYq,ηηXp̄Yq̄,ηη+

µ2a12(XpYq,ηηXp̄,ξξYq̄ +Xp,ξξYqXp̄Yq̄,ηη)+

a22Xp,ξξYqXp̄,ξξYq̄ + µ2a66Xp,ξYq,ηXp̄,ξYq̄,η−

µ3a16(Xp,ξYq,ηXp̄Yq̄,ηη +XpYq,ηηXp̄,ξYq̄,η)−

µa26(Xp,ξξYqXp̄,ξYq̄,η +Xp,ξYq,ηXp̄,ξξYq̄)

]
dξdη

(29)

Kmc
li (Kmc

lp̄q̄ ) =

∫ 1

−1

∫ 1

−1

(
µ4a11ψ

c
lXp̄Yq̄,ηη + µ2a12ψ

c
lXp̄,ξξYq̄−

µ3a16ψ
c
lXp̄,ξYq̄,η

)
dξdη

(30)

Kmd
li (Kmd

lp̄q̄ ) =

∫ 1

−1

∫ 1

−1

(
µ2a12ψ

d
lXp̄Yq̄,ηη + a22ψ

d
lXp̄,ξξYq̄−

µa26ψ
d
lXp̄,ξYq̄,η

)
dξdη

(31)
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Kmb
rsi (K

mb
rsr̄s̄p̄q̄) =

1

2
µ2

∫ 1

−1

∫ 1

−1

(
Xr,ξYsXr̄,ξYs̄Xp̄Yq̄,ηη+

XrYs,ηXr̄Ys̄,ηXp̄,ξξYq̄,ηη +Xr,ξYsXr̄Ys̄,ηXp̄,ξYq̄,η

)
dξdη

(32)

Kcc
li (Kcc

ll̄ ) =

∫ 1

−1

∫ 1

−1

µ4a11ψ
c
lψ

c
l̄ dξdη (33)

Kcd
li (Kcd

ll̄ ) =

∫ 1

−1

∫ 1

−1

µ2a12ψ
c
lψ

d
l̄ dξdη (34)

Kcb
rsi(K

cb
rsr̄s̄l̄) =

1

2
µ2

∫ 1

−1

∫ 1

−1

Xr,ξYsXr̄,ξYs̄ψ
c
l̄ dξdη (35)

Kdd
li (Kdd

ll̄ ) =

∫ 1

−1

∫ 1

−1

a22ψ
d
l ψ

d
l̄ dξdη (36)

Kdb
rsi(K

db
rsr̄s̄l̄) =

1

2
µ2

∫ 1

−1

∫ 1

−1

XrYs,ηXr̄Ys̄,ηψ
d
l̄ dξdη (37)

Kbb
ri (K

bb
rsr̄s̄) =

∫ 1

−1

∫ 1

−1

[
D11Xr,ξξYsXr̄,ξξYs̄

+ µ2D12(XrYs,ηηXr̄,ξξYs̄ +Xr,ξξYsXr̄Ys̄,ηη)

+ µ4D22XrYs,ηηXr̄Ys̄,ηη + 4µ2D66Xr,ξYs,ηXr̄,ξYs̄,η

+ 2µD16(Xr,ξYs,ηXr̄Ys̄,ηη +XrYs,ηηXr̄,ξYs̄,ηη)

+ 2µ3D26(Xr,ξξYsXr̄,ξYs̄,η +Xr,ξYs,ηXr̄,ξξYs̄)

]
dξdη

(38)

Kbc
rli(K

bc
rslr̄s̄) = µ2

∫ 1

−1

∫ 1

−1

Xr,ξYsψ
c
lXr̄,ξYs̄dξdη (39)

Kbd
rli(K

bd
rslr̄s̄) = µ2

∫ 1

−1

∫ 1

−1

XrYs,ηψ
d
lXr̄Ys̄,ηdξdη (40)

Kcm
pi = (Kmc

li )T , Kdm
pi = (Kmd

li )T , Kdc
li = (Kcd

li )T (41)

where r, r̄ = 0, 1, 2, · · · , R, s, s̄ = 0, 1, 2, · · · , S, p, p̄ = 0, 1, 2, · · · , P , q, q̄ =

0, 1, 2, · · · , Q, l, l̄ = 0, 1, 2, · · · , L.
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A list of captions for the figures.

Figure 1: Boundary Conditions and Loading Cases.

Figure 2: Rayleigh-Ritz and FEA solutions of a square subjected to case

A: (a) Normalised axial loads Nx/N
iso
x versus Normalised axial strain εx/ε

iso
x

(b) Normalised axial loads Nx/N
iso
x versus Normalized maximum transverse

displacement wmax/h function.

Figure 3: Rayleigh-Ritz and FEA solutions of a square subjected to case

B : (a) Normalised axial loads Nx/N
iso
x versus Normalised axial strain εx/ε

iso
x

(b) Normalised axial loads Nx/N
iso
x versus Normalised maximum transverse

displacement wmax/h function.

Figure 4: Rayleigh-Ritz and FEA solutions of a square subjected to case

C : (a) Normalised axial loads Nx/N
iso
x versus Normalised axial strain εx/ε

iso
x

(b) Normalised axial loads Nx/N
iso
x versus Normalised maximum transverse

displacement wmax/h function.

Figure 5: Postbuckling and buckling performance of square simply-supported

laminates under uniform displacement compression and the transverse edges

are constrained (case B). (a) Relative stiffnessKr versus Normalised prebuck-

ling stiffness (Kpre/Kiso) (b) Normalised postbuckling stiffness Kpost versus

Normalised prebuckling stiffness (c) Normalised overall stiffness Ko versus

Normalised prebuckling stiffness (d) Normalised buckling load versus Nor-
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malised prebuckling stiffness.

Figure 6: Postbuckling and buckling performance of square simply-supported

laminates under uniform displacement compression and the transverse edges

are free to move but keep straight (case C ). (a) Relative stiffness Kr versus

Normalised prebuckling stiffness (Kpre/Kiso) (b) Normalised postbuckling

stiffness Kpost versus Normalised prebuckling stiffness (c) Normalised overall

stiffness Ko versus Normalised prebuckling stiffness (d) Normalised buckling

load versus Normalised prebuckling stiffness.
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Figure 1: Boundary Conditions and Loading Cases
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(a)

(b)

Figure 2: Rayleigh-Ritz and FEA solutions of a square simply-supported plate subjected

to case A: (a) Normalised axial loads Nx/N
iso
x versus Normalised axial strain εx/ε

iso
x

(b) Normalised axial loads Nx/N
iso
x versus Normalized maximum transverse displacement

wmax/h function.
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(a)

(b)

Figure 3: Rayleigh-Ritz and FEA solutions of a square simply-supported plate subjected

to case B : (a) Normalised axial loads Nx/N
iso
x versus Normalised axial strain εx/ε

iso
x

(b) Normalised axial loads Nx/N
iso
x versus Normalised maximum transverse displacement

wmax/h function.
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(a)

(b)

Figure 4: Rayleigh-Ritz and FEA solutions of a square simply-supported plate subjected

to case C : (a) Normalised axial loads Nx/N
iso
x versus Normalised axial strain εx/ε

iso
x

(b) Normalised axial loads Nx/N
iso
x versus Normalised maximum transverse displacement

wmax/h function.
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(a) (b)

(c) (d)

Figure 5: Postbuckling and buckling performance of square simply-supported laminates

under uniform displacement compression and the transverse edges are constrained (case

B). (a) Relative stiffness Kr versus Normalised prebuckling stiffness (Kpre/Kiso) (b) Nor-

malised postbuckling stiffness Kpost versus Normalised prebuckling stiffness (c) Normalised

overall stiffness Ko versus Normalised prebuckling stiffness (d) Normalised buckling load

versus Normalised prebuckling stiffness
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(a) (b)

(c) (d)

Figure 6: Postbuckling and buckling performance of square simply-supported laminates

under uniform displacement compression and the transverse edges are free to move but

keep straight (case C ). (a) Relative stiffness Kr versus Normalised prebuckling stiffness

(Kpre/Kiso) (b) Normalised postbuckling stiffness Kpost versus Normalised prebuckling

stiffness (c) Normalised overall stiffness Ko versus Normalised prebuckling stiffness (d)

Normalised buckling load versus Normalised prebuckling stiffness
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