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The Sum of Absolute Differences (SAD) is widely used in video coding and disparity

computation for its simplicity. However SAD is not very common in tracking applications

due to issues like partial occlusion and target changes, which can dramatically affect its

performance. In this Letter we present a novel adaptive template matching algorithm for

target tracking, based on a Sum of Weighted Absolute Differences (SWAD). The target

template is updated using an infinite impulse response filter, while a weighting kernel is

adopted to reduce the effects of partial occlusion. Simulation results demonstrate that

the proposed tracker outperforms conventional SAD in terms of efficiency and accuracy,

and its performance is comparable with more complex trackers, such as the Mean Shift

algorithm.

Introduction: Visual tracking is the process of inferring information between detec-

tions of a selected target in consecutive frames, and it is an important task in many

video processing systems. Many algorithms with medium-high complexity have been

proposed in literature, as reported in [1]. As the majority of them deal with partial occlu-

sion, we argue that, for the same level of tracking performance, simpler algorithms are

preferable. The Sum of Absolute Difference is a well known metric and it is often used

in video coding and disparity computation for stereo images, due to its simplicity. How-

ever SAD is not very common in tracking applications, as issues like partial occlusion

and target template changes can dramatically affect its performance. In this Letter we

present a novel adaptive template matching algorithm for robust target tracking based

on a modified SAD called Sum of Weighted Absolute Differences (SWAD), where a

Gaussian weighting kernel is employed to reduce the effects of partial occlusion. The

target template is updated using an infinite impulse response filter approach, to implic-

itly deal with visual changes of the target, such as rescaling and rotation. Simulation

results demonstrate that the proposed SWAD-based tracker outperforms conventional

SAD in terms of efficiency and accuracy. The proposed algorithm is also compared

with the widely used Mean Shift tracker [2], to show that its performance is comparable
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to more complex algorithms. The simplicity and algorithmic structure of the SWAD-

based tracker makes it suitable for real time implementations in embedded systems

with fixed-point architecture.

Tracking Algorithm: The novel tracking algorithm presented in this Letter is based

on template matching, and in particular on the minimization of a Sum of Weighted

Absolute Differences (SWAD) in a region of interest (ROI) Ri within the current frame

Fi, as shown in Fig. 1b. The target model is represented by a template Ti of NT ×NT

pixels, and computed as:

Ti = (1− α)Ti−1 + αT̂i−1 (1)

where α ∈ [0, 1] is a blending factor, and Ti−1 and T̂i−1 are respectively target template

and best match in the previous frame Fi−1 (Fig. 1a). In the first frame F0 the target

template T0 is initialized as the portion of F0 containing the selected target. The ROI

Ri in position qi is selected as the neighbouring area around T̂i−1 in the previous frame

Fi−1, with size of NR × NR pixels, where NR = NT + 2NS and NS is a spatial offset

around T̂i−1. The proposed algorithm requires single colour plane images, therefore it

can be applied to both gray scale and colour video sequences. In the case of colour

images, Fi can be the luminance component. The absolute differences in the SWAD

metric are weighted by a kernel K of NT ×NT pixels. In the current implementation a

Gaussian weighting kernel has been employed, to assign high weights to central pixels

and low weights to peripheral ones, as these pixels might belong to background or even

occluding objects. Assuming integer pixel values in the range [0, 255], the kernel K is:

K(x, y) =

⌊
255× g(x, y)

g(bµc , bµc)

⌋
(2)

where x, y ∈ [0, NT − 1] and g(x, y) is 2-dimensional Gaussian function with mean

µ = (NT − 1)/2 and standard deviation σ = NT /5, defined as:

g(x, y) = exp

(
−(x− µ)2

2σ2
− (y − µ)2

2σ2

)
(3)

Given the current template Ti, its best match T̂i in Fi is searched within Ri (Fig. 1c).

For this purpose the SWAD coefficient ψ(x, y) at location (x, y) within Ri is computed

as:

ψ(x, y) =

NT−1∑
m=0

NT−1∑
n=0

K(m,n)∆(x, y,m, n) (4)
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where K is the Gaussian weighting kernel and ∆(x, y,m, n) is the pixel difference:

∆(x, y,m, n) = |Ri(x+m, y + n)− Ti(m,n)| (5)

The position of the best match T̂i within Ri for the given template Ti is represented by

the 2-dimensional index bi, obtained by minimizing the SWAD coefficient as in (6):

bi = arg max
x,y∈[0,NR−NT ]

ψ(x, y) (6)

The index bi refers to the top-left pixel of the best matching block T̂i. The position of T̂i

within Fi is computed as pi = qi+bi, as illustrated in Fig. 1c. Once the best match T̂i in

the current frame has been found, the new target model Ti+1 for the next frame Fi+1 is

computed using equation (1), which describes an infinite impulse response filter and it

ensures that the target template is updated and adapts to changes, while guaranteeing

tracker stability by reducing the effects of partial occlusion. Moreover, updating the

template as in (1) implicitly deals with possible rescaling and rotation of the target. The

value of the blending factor α mainly depends on the approach one wants to follow to

update the target template. In a high frame rate implementation, α can be set to 0.5,

giving equal weight to current and past templates, so that Ti can adapt to changes

fairly quickly. For a more conservative approach, i.e. to preserve the template and let it

adapt slowly, the blending factore can be α < 0.5. Finally a new region of interest Ri+1

for the next frame Fi+1 is defined around the position pi of T̂i, within Fi (Fig. 1d). In

particular the position qi+1 of Ri+1 in Fi+1 is computed as:

qi+1(1) = min (max (pi(1)−NS , 1) ,W −NR)

qi+1(2) = min (max (pi(2)−NS , 1) , H −NR) (7)

where W and H are respectively width and height of the frame. Equation (7) ensures

that Ri+1 is entirely within the frame Fi+1. The steps of the proposed tracking algorithm

for each frame Fi are summarized as follows:

1. Given Ri and Ti, minimize the SWAD coefficient ψ(x, y) as in (4)-(6), to obtain

the position bi of the best match T̂i in Fi.

2. Given bi and the position qi of Ri within Fi, compute the target position pi.

3. Given Ti and the best match T̂i, update the target model using (1).
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4. Compute the position qi+1 of the ROI Ri+1 in the next frame Fi+1 from (7).

Evaluation: A comparison between Matlab implementations of the adaptive template

matching algorithm with both SWAD and SAD has been carried out to assess relative

tracking capability. Visual results for the PETS2006 video sequence S1-3 are shown

in Fig. 2, where the first and second rows refer respectively to SAD and SWAD. Both

trackers are initialized in frame #968, on the person with the backpack entering the

scene from the right, as shown in Fig. 2a and Fig. 2d. It can be seen that the SAD

tracker begins to lose the target in frame #1087 (Fig. 2b) and loses track at #1117 (Fig.

2c), while the SWAD algorithm keeps tracking the target (Fig. 2e-f). The SAD-based

tracker is obviously confused with the tile structure on the background.

The SWAD tracker was also compared against the Mean Shift tracker on the PETS2007

sequence S06-1, with the selected target being the blonde woman in red clothing en-

tering the scene from the top. From Fig. 3 it can be seen that the error distances from

the manually labelled ground truth in both trackers have roughly the same behaviour.

In this experiment, the error associated with MS has mean value µe = 12.57 pixels

and variance σe = 6.23 pixels, while the error associated with SWAD has mean value

µe = 9.47 pixels and variance σe = 5.69 pixels. The error with MS is higher than the

error with SWAD in 88% of the frames, while the error with SWAD is higher in 12% of

the frames. This experiment shows that the performance of the SWAD-based tracker

is comparable to the more complex Mean Shift tracker approach.

Finally, the proposed tracking algorithm has been implemented on a DM6437 Evalua-

tion Module [3], equipped with a fixed-point DSP from Texas Instruments. The SWAD

algorithm takes advantage of the fixed-point architecture of such DSP and it runs at

16 ms per frame, largely meeting the real-time requirements of an embedded applica-

tion. The work in [4] presents an optimized implementation on the same architecture

of the Camshift face tracker, which is based on the Mean Shift tracker. Such imple-

mentation on the DM6437 runs at about 120 ms per frames, which is almost an order

of magnitude slower than the adaptive template matching algorithm proposed in this

Letter.

Conclusion: This Letter has presented a novel adaptive template matching algorithm
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for tracking, based on the minimization of the Sum of Weighted Absolute Differences. A

Gaussian weighting kernel is used to assign different weights to pixels distant from the

target centroid, as these pixels may experience partial occlusion. The target template

is updated using an infinite impulse response filter to adapt to template changes, such

as rescaling and rotation. Despite its simplicity, experimental results have shown the

robustness of the tracker and its higher accuracy with respect to SAD-based tracking.

Moreover, the tracking performance of the proposed algorithm is comparable with the

ones of more complex trackers. The SWAD-based tracker is ideal for real-time imple-

mentations on devices with low computational capabilities, as in the case of fixed-point

embedded DSP platforms.
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Figure captions:

Fig. 1: Layout of the current frame Fi showing the best match T̂i, the region of interest

Ri and their positions within Fi.

Fig. 2: Comparison between SAD and SWAD: the first row refers to SAD tracking,

while the second row refers to SWAD tracking, where SWAD maintains high accuracy

in tracking, especially for frame #1087 and frame #1117.

Fig. 3: Error distance from ground truth for MS and SWAD trackers.
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Figure 1

(a) (b) (c) (d)
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Figure 2

(a) SAD - #968 (b) SAD - #1087 (c) SAD - #1117

(d) SWAD - #968 (e) SWAD - #1087 (f) SWAD - #1117
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Figure 3
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