Establishment of a Continuous Sonocrystallization Process for Lactose in an Oscillatory Baffled Crystallizer

Humera Siddique, Cameron J. Brown, Ian Houson, and Alastair J. Florence

ABSTRACT: Crystallization at production scale (>10 kg) is typically a poorly understood unit operation with limited application of first-principles understanding of crystallization to routine design, optimization, and control. In this study, a systematic approach has been established to transfer an existing batch process enabling the implementation of a continuous process in an oscillatory baffled crystallizer (OBC) using ultrasound. Process analytical technology (PAT) was used to understand and monitor the process. Kinetic and thermodynamic parameters have been investigated for lactose sonocrystallization using focused beam reflectance measurement (FBRM) (Mettler Toledo) and mid-infrared spectroscopy (mid-IR) (ABB) in a multiturbine batch oscillatory baffled crystallizer (Batch-OBC). This platform provides an ideal mimic of the mixing, hydrodynamics and operating conditions of the continuous oscillatory flow crystallizer (COBC) while requiring only limited material. Full characterization of the hydrodynamics of the COBC was carried out to identify conditions that deliver plug-flow behavior with residence times of 1–5 h. The results show that continuous crystallization offers significant advantages in terms of process outcomes and operability, including particle size distribution (mean particle size <1500 µm) of alpha lactose monohydrate (LMH), as well as reduced cycle time (4 h compared to the 13-20 h in a batch process). Continuous sonocrystallization was performed for the first time at a throughput of 356 g·h⁻¹ for 12–16 h. During the run at near plug flow, with supersaturation and controlled nucleation using sonication, no issues with fouling or agglomeration were observed. This approach has demonstrated the capability to provide close control of particle attributes at an industrially relevant scale. A recent review of the literature has revealed an increasing number of patents and published applications demonstrating the increased intensity of activities in process engineering for continuous manufacturing of chemicals.¹ The benefits, often declared in continuous processing, include better product yields and quality; use of lower amount of solvent and other materials; less extreme operating conditions; more efficient consistent mixing; better control over process parameters; improved safety, improved purity profiles, and ease of scale-up. In a manufacturing process, downstream processing stages can be a bottleneck to making a quality product in an economic, safe, and profitable way, as the components and processes involved are often time-consuming, inefficient, and poorly understood. Crystallization is one of the most important downstream processes in determining the purity, form, shape, size, and size distribution of the final particles and is governed by complex interacting variables—a simultaneous heat and mass transfer process with a strong dependence on fluid and particle mechanics. A number of continuous reactor designs have been described and have the potential to deliver crystallization. These include mixed suspension mixed product removal (MSMPR), continuous stirred tank reactor (CSTR) cascade systems, plug-flow reactors (PFRs), and oscillatory baffled crystallizers (OBC).²⁻⁴ A batch OBC has been investigated for a number of reactions,²⁻⁵⁻⁷ but its use for crystallization has not received immediate attention.²⁻⁷ The basic design and operating principle of OBC has been described elsewhere.₄⁻⁵ The basic design comprises a tubular network containing periodically spaced orifice baffles superimposed with oscillatory motion of a fluid. Oscillatory flow mixing has been developed and investigated as a process intensification technology to achieve efficient and controlled mixing in tubular crystallizers. Unlike conventional tubular crystallizers in which the mixing is caused by the turbulent net flow, the mixing achieved in an OBC is mainly obtained by fluid oscillations and thereby the residence time distribution within the device can be adjusted by the oscillatory conditions and net flow rate allowing longer residence times in short reactors and hence is more suitable for slower processes like crystallization.⁷⁻¹² Previous studies have shown that processing in an OBC resulted a greater regularity of particle shape with fewer defects and better control over the crystallization process. A recent review provides a detailed description of OBCs for crystallization as well as summarizing the relevant literature.⁶³ These are attributed to the uniform mixing when compared to a batch stirred tank system.³ Batch to continuous translation of crystallization processes can be achieved by maintaining same geometric ratios in continuous as in batch and ensuring similar values for oscillatory and net flow Reynolds number.⁴ In addition to the recent advances in developing continuous crystallization systems, use of process analytical technologies have shown increased interest due to their ability to simultaneously analyze and control process parameters. The manuscript document is not visible.
(PAT) for real-time monitoring of crystallization process is also progressing well.13–15 For a crystallization process, it is important to know in real-time the stories of particle size distribution, crystal form, and the solution-phase concentration of active ingredient. With recent advances in technology, more online analytical tools have become available for these measurements.13 Among these FBRM, particle vision measurement (PVM), Raman, ultraviolet (UV), and mid-IR spectroscopy are most commonly used analytical tools. These PAT help in relating OBC process conditions to the crystallization process and then to product attributes.

Lactose is a disaccharide of glucose and galactose with two isomeric forms, \(\alpha\) and \(\beta\), that interconvert by mutarotation and exist at equilibrium in solution.16 When a lactose solution in water is supersaturated at moderate temperatures (below 95 °C), \(\alpha\) lactose monohydrate (ALM) crystals will be obtained since the \(\alpha\) form is less soluble and crystallization will continue so long as \(\alpha\)-lactose in solution can be replenished fast enough by mutarotation.16 Lactose cooling crystallization in batch under constant stirring from aqueous lactose solutions of different concentration results in varied crystal size, shape, and surface texture.17–21 Induction times as long as 3–10 h with crystallization growth times ranging from 8–20 h are required to reach D90 of 85–100 μm. The yield varied from 45 to 60% with the lactose concentration from 44% to 53% (w/w).

Further, these particles exhibited a wide particle size distribution (PSD) (particle span 3–4), resulting in a relatively small fraction of crystals in the desired size range.17–21 In recent years sonocrystallization of lactose has been investigated to optimize crystallization time and particle size distribution.22–29 Additionally, the implementation of sonocrystallization to OBC has already been achieved.62

A notable challenge in lactose crystallization is the long induction times. To overcome this problem seeding methodologies are adopted. Lactose sonocrystallization has shown rapid nuclei induction and crystal growth.22,23 When ultrasound propagates through a liquid medium, its power is not only a driving force for mass transfer but also initiates an important phenomenon known as cavitation. When a cavitation bubble implosions, a localized hot spot is formed with high temperature and pressure releasing a powerful shock wave.22,23

This cavitation generates high local supersaturation leading to spontaneous nucleation in otherwise unsaturated liquid. The acoustic streaming, microstreaming, and highly localized temperature and pressure within the fluid causes spontaneous induction of primary nucleation, reduction of crystal size,20 inhibition of agglomeration, and manipulation of crystal size distribution.20,21 Sonication can promote fines in batch processes, so sonication should only be used for nucleation, and then production of larger crystals can be achieved by growth of those seed crystals.

This work sets out to develop a rational approach (Figure 1) (direct control) based on crystallization fundamentals to offer a continuous sonocrystallization process for ALM in a COBC (Rattlesnake from Cambridge Reactor Design). A sequence of steps is followed to acquire the relevant process parameters to enable the transfer from a batch to continuous process (Figure 1). The initial focus is on control of particle size with no fouling or blockage with direct control method and demonstration of the feasibility of continuous crystallization process for ALM and use of sonication for seed generation to control particle size distribution while maintaining a good yield.

2. MATERIALS AND METHODS

2.1. Materials. ALM and sodium benzoate (tracer material) were purchased from Sigma-Aldrich, UK.

2.2. Methods. 2.2.1. Crystallization Setup. 2.2.1.1. Batch crystallizer (Solubility Study, Thermodynamics). Mettler Toledo “Optimax-1001” was used to determine the solubility profile and metastable zone width of ALM. The Optimax-1001 platform is a stirred tank crystallizer (STC) with a working volume of 1 L and a 45° pitched four-blade impeller. Ports are available in the STC to introduce process analytical tools such as FBRM, mid-IR, PVM, and thermocouples. Mid IR was used in the STC to measure the solubility of lactose at different temperatures.

2.2.1.2. Batch Oscillatory Baffle Crystallizer (Optimization of Cooling Profile, MSZW). The batch OBC used here consists of a glass jacketed cylindrical reactor, having a length of 500 mm and an internal diameter of 69 mm (Figure 2). The module contains 23 baffles, constructed from stainless steel with a FEP (fluorinated ethylene propylene) nonstick coating. The baffles are positioned 18 mm from one another with the openings in adjacent baffles aligned. Each baffle comprises 33 circular openings of 6 mm in diameter. Temperature control within the reactor is provided through a water filled jacket.
159 connected to a heater/chiller. The temperature is monitored at
160 three different points: the top, middle, and bottom. Oscillatory
161 mixing is provided by pistons operated using a hydraulic
162 actuator. Lactose solution was introduced into the batch OBC
163 from the top of the reactor. Cooling crystallization was
164 performed using defined cooling profile. At the end of each
165 crystallization, crystals were filtered using a vacuum filter and
166 washed with pure ethanol. The crystals were allowed to dry at
167 40 °C in an oven for 24 h. After drying, a small amount of
168 sample was taken from the batch for characterization.

2.2.1.3. Continuous Oscillatory Baffle Crystallizer (Rattle-
169 snake from Cambridge Reactor Design). The COBC consists
170 of four jacketed modules and has been described elsewhere.35
171 The crystallizer is illustrated diagrammatically in Figure 3. Each
172 module is cylindrical, constructed from polished stainless steel, 173
174 having a length of 740 mm and an internal diameter of 69 mm. 174
175 Each module has an internal baffle/obstruction design as described in Section 2.2.1.2. Temperature control within a 176 module is provided through a double water filled jacket: a primary jacket arranged with liquid flow in a cocurrent
177 configuration, within which a secondary coil is positioned 179 with liquid flow in a counter-current configuration.35 This shell
180 and tube jacketed design provide a smooth temperature
181 control, which is the most important parameter in cooling
182 crystallization.
183 Temperature monitoring is possible at the junctions at the
184 end of the modules allowing six monitoring points. Based on
185 the temperature readouts, the operation of the water filled
186 jacket on each module can be adapted to mimic a desired
187 cooling profile. Oscillatory mixing is provided using the same
188 mechanism as the batch platform. Both the frequency and the
189 stroke of the piston can be varied on demand to achieve
190 optimum mixing conditions and solid suspension.
191 The crystallization setup also includes means for initiating
192 crystallization (Sonicator 4000, Misonix). The ultrasonic device
193 can be located at any position at the ends of the module and
194 can be operated in pulsed or continuous mode. The solution
195 weight and the position of the probe inside the solution were
196 kept constant for all experiments. The device works at a
197 constant frequency of 20 kHz and allows the amplitude to
198 change from 0 to 100%, delivering a power range between 10
199 and 70 W. Ultrasonic energy (Q) dissipated to the solution was
200 calculated using a calorimetric method according to eq 1:
201
\[
Q = (m_{\text{water}}C_p,\text{water} + m_{\text{lactose}}C_p,\text{lactose})(T_f - T_i)
\]
202
1
203 where \(m\) is the weight of solution, \(C_p\) is the heat capacity, and \(T_f\)
205 and \(T_i\) are the final and initial solution temperatures.52 Heat
206 capacities of lactose and water are 0.45 and 4.181 kJ kg-1 K-1
208 respectively. Power and energy density were expressed as W
209 g-1.

Figure 2. (a) Optimax (STC) and (b) batch OBR with FBRM and sonication equipment.

Figure 3. Schematic of continuous oscillatory baffle reactor (module details are taken from ref 35). The inset illustrates the baffle multiorifice design in plan view.
2.2.2. Residence Time Distribution Characterization. To investigate the effect of oscillatory flow conditions on the mixing behavior in continuous crystallization, the residence time distribution was determined under different oscillatory conditions. The nature of oscillatory flow has been characterized quantitatively and qualitatively in previous studies.7–12,42–47 Oscillatory flows are characterized by three dimensionless numbers, the oscillatory Reynolds number (eq 2), the velocity ratio (eq 3), and the Strouhal number (eq 4), defined as,

\[Re_\text{o} = \frac{2\pi f_0 \rho d}{\mu} \]
\[\psi = \frac{Re_\text{o}}{Re_\text{n}} \]
\[St = \frac{d}{4\pi f_0} \]

where \(Re_\text{o} \) is the oscillatory Reynolds number, \(f_0 \) is the frequency of oscillation (Hz), \(\rho \) is the density of material (kg m\(^{-3}\)), \(d \) is the column diameter (m), and \(\mu \) is fluid viscosity (kg m\(^{-1}\)s\(^{-1}\)). The axial dispersion coefficient \(D \) [eq 5; \(D = \frac{E}{uL} \) where \(E \) is the axial dispersion number, \(u \) is the mean axial velocity (m\(\cdot \)s\(^{-1}\)), and \(L \) is the length of reactor (m)] is used to describe the characteristics of mixing in continuous reactors.36 It is a measure of the degree of deviation in flow from the true plug flow scenario; in theory it should be zero for truly plug flow behavior. The equation governing \(D \) in a continuous system is

\[\frac{d\epsilon}{dt} = \frac{D}{dx} \left(\frac{d\epsilon}{dx} \right) - U \frac{d\epsilon}{dx} \]

where \(\epsilon \) is dimensionless concentration, \(t \) is dimensionless time, and \(x \) is dimensionless length. The dispersion model (eq 5), where the reactor is seen as a continuous path, is used to study RTD in oscillatory baffled flow systems. This model is applied on a continuous reactor when Bodenstein number is the range of 1–100.2,5,6–41

Most of the previous RTD studies41 were performed by standard imperfect pulse injection techniques in which the concentration time profile at the two points of the system was measured and an axial dispersion model was applied following statistical analysis of data.42

Twelve milliliters of 20 g \(L^{-1} \) sodium benzoate tracer was injected "instantaneously" above the feed position (Figure 4). A UV transfectance probe positioned in situ at the end of the first and third straight of COBC is used to record absorbance against time as the tracer elutes. The \(\lambda_{\text{max}} \) for sodium benzoate in water was determined at 226 nm. Different concentrations of sodium benzoate were tested to establish the calibration for the absorbance to concentration conversion. The limit of detection for sodium benzoate was determined as 2.501 \(\times 10^{-6} \) g L\(^{-1} \) (signal: noise, 3:1). Finally, experimental concentration–time data was used to determine deviation from plug flow (\(D/sL \)). Operating conditions are summarized in Table 1.

2.2.3. Particle Size Analysis. Particle size was measured by a laser diffractometer, Mastersizer 3000 Ver.2.00 (Malvern Instruments, Malvern, UK). Analysis was done in triplicate, and mean results are presented as D10, D50, and D90. Ethanol was used as a dispersant, and obscuration was not less than 10% for each measurement. Data analysis was carried out using Malvern Software Version S.2.

2.2.4. Chord Length Distribution from FBRM. The operating principle of FBRM has been described elsewhere.15 All FBRM measurements were carried out using the Mettler Toledo G400-FBRM system.

2.2.5. Infrared Spectroscopy (IR). The mid-IR is an in-line based analytical technique in which information can be obtained via a probe about solution concentration, even in the presence of particles. The analysis is based on the mid-IR region (650–2000 cm\(^{-1}\)). In general the main condition is that a distinctive peak for the solute is present and can be separated from the chosen solvent. An ABB mid-IR MBX3000 system with the 12 mm diameter probe was used for this study.

2.2.6. Differential Scanning Calorimetry (DSC). DSC studies were carried out using NETZSCH DSC STA 449C276 instrument equipped with an intracooler (CC 200). Indium and zinc standards were used to calibrate the DSC temperature and enthalpy scale. The samples were pierced in aluminum crucibles and heated at a constant rate of 10 \(^\circ \text{C}\cdot\text{min}^{-1} \) over a 280 temperature range of 25–250 \(^\circ \text{C} \). An inert atmosphere was maintained by purging helium gas at flow rate of 70 mL\(\cdot \)min\(^{-1}\).

2.2.7. X-ray Powder Diffraction Analysis (XRPD). The XRPD patterns were recorded on X-ray diffractometer. For sample fingerprinting, 10–50 mg of sample was placed on a 28 well plate supported on a polyimide (Kapton, 7.5 \(\mu \text{m} \) thickness) film. Data were collected on a Bruker AXS D8278 transmission diffractometer equipped with \(\theta/\theta \) geometry, primary monochromatic radiation (Cu K\(\alpha \), \(\lambda = 1.54056 \) Å), a Vantec 1-D position sensitive detector (PSD), and an automated multiposition \(x-y \) sample stage. Data were collected in the range 4–35\(^\circ \) 2\(\theta \) with a 0.015\(^\circ \) 2\(\theta \) step size and 1 s step\(^{-1} \) count time. Samples were oscillated \(\pm 0.5 \) mm in the \(x-y \) plane at a speed of 0.3 mm\(\cdot \)s\(^{-1} \) throughout data collection to maximize particle sampling and minimize preferred orientation effects.

2.2.8. Power Density Calculations in Crystallizers. The power density was calculated for MSZW comparison in an STR and batch OBR. The equation used for power density calculation in Optimax (STC) is given below:

\[\epsilon_{\text{STC}} = \frac{P_\rho N^3 D^5}{V_L} \]

where \(P_\rho \) is the number of impeller, \(\rho \) is the density of fluid (kg m\(^{-3}\)), \(N \) is the rotational speed of impeller (s\(^{-1}\)), \(D \) is the diameter of impeller (m), and \(V_L \) is the volume of liquid (m\(^3\)). The power density for the batch OBC was calculated by using eq 7.
3. RESULTS AND DISCUSSION

3.1. Solubility and Metastable Zone Width (MSZW) Investigation. Initial dissolution of ALM occurs rapidly upon addition of solid to water. Subsequently, as mutarotation occurs and conversion from alpha lactose to beta lactose proceeds, then more alpha lactose dissolves until the equilibrium ratio of isomers is reached. The rate-determining step of dissolution is the mutarotation of isomers. Hence the final solubility of lactose can be determined by adding excess alpha lactose monohydrate to water and agitating it, at constant temperature for long enough to establish the mutarotation and solubility equilibrium. To investigate the solubility of alpha lactose monohydrate an in situ Mid IR probe (reactIR, Mettler Toledo) was used. A 1 L feed solution was prepared by adding 60 wt % of lactose and stirred at 200 rpm. A program was established to obtain the solubility curve based on the equilibrium dissolution point of ALM solid in contact with aqueous solution. The solution was heated from 0 to 10 °C at a rate of 0.1 °C·min⁻¹ and then held at this temperature for 8 h until a constant peak area from the IR probe indicated and the mutarotation and solubility equilibrium had been reached. This procedure was performed continuously at 10 °C intervals between 10 and 80 °C (Figure 5). After the preprocessing of spectral data (second order derivative), the equilibrium concentration points were plotted to obtain the temperature-dependent solubility curve (Figure 5). Concentration calibration on data from Mid-IR was performed using PharmaMV software (Perceptive Engineering).

The MSZW was investigated using IR and FBRM to detect concentration and nucleation, respectively. In the STC, a 1 L solution of 47% (w/w) lactose was introduced. The pitched blade agitator speed was set at 900 rpm, and the solution was cooled at a rate of 0.18 °C·min⁻¹. This experiment was also performed at 500 and 200 rpm. Nucleation was detected by the particle count on the FBRM and concentration drop. A similar procedure was adopted to get the MSZW in the batch OBC. 1.8 L of feed solution was introduced into the batch OBC and cooled at 0.18 °C·min⁻¹ using 4 Hz and 1 mm oscillatory conditions. The MSZW is narrower in the STC compared to the batch OBC operated at 900 rpm as shown in Figure 6. It has been reported that the volume averaged shear rate in OBCs is generally of order 10⁻³ to 10⁻⁴ s⁻¹, which is significantly lower than that in stirred tank crystallizers (STC), which are typically 10⁻² s⁻¹ or greater. Power density calculations were carried out for both reactors showing the power density to be 50 times lower in the batch OBC as compared to STC for the same MSZW (Table 2).

![Figure 5. Comparison of solubility curve from the literature with experimentally derived solubility curve in the STC and programmed temperature profile for determination of the temperature-dependent equilibrium solubility points.](image-url)
power consumption in an OBR vs STR for enzymatic saccharification of alpha cellulose. According to their study, 2.36 W·m⁻³ power input was sufficient to produce maximum conversion in the OBR which was 12% higher after 24 h and 25% higher after 6 h than the STR (250 W·m⁻³ required for equivalent conversion). They concluded that efficient mixing performance in an OBR at very low power density is responsible for higher conversion. Unlike STRs that rely on stirring mechanisms for mixing, the OBR uses oscillations to produce vortices. These form periodically along the entire length of the reactor, effectively causing each interbaffle zone to act as a CSTR; the entire reactor therefore consists of a large finite number of CSTRs connected in series.

3.2. Mixing and Flow Characterization of COBC.

The aim of this study was to produce a design space of operating parameters to ensure plug flow conditions are achieved in the COBC during operation. The axial dispersion coefficient was analyzed for different oscillatory and net flow conditions (amplitude, frequency, and flow rate). These flow conditions were established based on accepted ranges of Re_o, St, Re_{on}, and Ψ for traditional continuous oscillatory baffled crystallizers. In a continuous crystallizer, the mean residence time can be used as a basis to determine Re_o. When Re_o is known, the frequency and amplitude should be chosen such that Re_o satisfies the velocity ratio, in the range 2–10 (range selected based on previous RTD studies in oscillatory flow crystallizers). Another important factor is terminal velocity calculations for particle suspension at the above-mentioned flow conditions. Solid loading was reduced for lactose crystallization to 33 wt % to maintain particle suspension in the COBC under these design conditions.

Experimental RTD response is presented in Figures 7 and 8. For each value of flow rate investigated, the RTD response can be seen to be dependent on both frequency and amplitude of oscillation. There is an optimum range of frequency and amplitude at which the system displays a minimum axial dispersion coefficient which is the desired state for near plug flow operation.

Based on the results above, there is an effective minimum value of axial dispersion in the range of $100 \leq Re_{on} \leq 400$, which is an acceptable limit (axial dispersion below 0.02) for plug flow in a reactor. These results are consistent with the experimental literature observations for sharp edge baffled systems. At these Re_o values the vortices formed as a result of oscillations are powerful enough to give effective radial mixing. These results also indicate that the axial dispersion coefficient decreases with increasing Re_{on} which indicates that as expected net flow rate improves the overall RTD performance. It is clear from Figure 8 that, with velocity ratio $1 \leq \tau \leq 5$, a reasonable plug flow response is achievable.

3.3. Optimisation of Cooling Profile and Sonication.

The effect of sonication energy density and residence time on particle size and yield was investigated for 33 wt % lactose feed solution. To achieve minimum axial dispersion the oscillatory conditions were fixed at a frequency of 4 Hz and 1 mm amplitude. A cooling profile for crystallization process was established by applying direct control (model predictive control) on supersaturation using the PharmMV control system from Perceptive Engineering. The methodology for sonocrystallization in batch-OB2 and COBC is presented in Figure 9. Sonication was introduced at a fixed supersaturation of 1.2. Results of sonocrystallization studies from batch
479 experiments are presented in Table 3. Nalajala et al. 480 investigated the physical mechanism of sonocrystallization for 481 a KCl–methanol–water system and reported that the shock 482 waves created by ultrasound affected nucleation, while micro 483 turbulence (microconvection) governed the growth rate. 484

One major benefit of sononucleation is the reproducibility of 485 the size and number of nuclei; the use of ultrasound to generate 486 nuclei in a controlled and reproducible way provides therefore a 487 well-defined starting point for the crystallization process 488 through consistent surface area available for growth. 489

This enables control of the crystal growth via supersaturation and 490 residence time in the crystallizer. It has been reported in the 491 literature that crystal size distribution can be tailored by 492 residence time in the crystallizer. 53

Population Balance Model

where

\[\mu_i(t) = \int_0^\infty L f_n(L, t) dL \]

and

\[f_n(L, t) \] is the crystal size distribution, \(t \) is the time, and \(L \) 496 is the characteristic crystal size. Therefore, a complete model of 497 the crystallization process can be described by considering the 498 first five moment equations and the mass balance equation 56 as 499

\[\begin{aligned}
 \frac{d \mu_0}{dt} &= B - G \mu_0 \\
 \frac{d \mu_1}{dt} &= 2G \mu_1 - BL_0^2 \\
 \frac{d \mu_2}{dt} &= 3G \mu_2 - BL_0^4 \\
 \frac{d \mu_3}{dt} &= 4G \mu_3 - BL_0^6 \\
 \frac{d C}{dt} &= -\rho k_v (3G \mu_2 + BL_0^4)
\end{aligned} \]

where \(C \) is the solution concentration (g/mL water), \(L_0 \) is 500 the crystal size at nucleation, \(\rho \), the crystal density (1.545 g/mL for 501 lactose), \(k_v \), the volume shape factor (0.524), 57 and \(B \) and \(G \) 502 are the primary nucleation and size independent growth rates, 503 respectively, which are described by the power law expressions: 504

\[B = k_1 \Delta C^b \]

(9)

\[G = k_2 \Delta C^g \]

(10)

The calculations of the fourth and third moments allow for 506 the determination of the volume mean size \((L_{43}) \) of the crystal 507 size distribution: 508

\[L_{43} = \frac{\mu_3}{\mu_3} \]

(11)

In addition the solubility of lactose (g/mL water) as a 509 function of temperature, \(T \) (in °C), is defined by 510

\[C = 0.1098T^{0.02767} \]

(12)

For unseeded systems, the initial conditions for the moments 511 and mass balance are defined as \(\mu_i(0) = 0 \) \((i = 0, 1, 2, 3, 4, 5) \) 512 and \(C(0) = C_s = C(550 \, ^\circ C) \). Furthermore, the size of the 513 nuclei is considered negligible \((L_0 = 0)\). 58

Solutions of the system of differentials were obtained by 514 utilizing a Runge–Kutta numerical integration from the time at 515 which ultrasound was activated to the end of the cooling 516 profile. The kinetic parameters \((k_v, b, k_g, and g)\) were estimated 517 by performing a nonlinear optimization via a multiobjective 518 genetic algorithm to minimize the root-mean-square deviation 519 (RMSD) between the experimental measurements and model 520

Table 3. Batch Lactose Crystallization with Varying Sonication Power and Residence Time with Kinetic Parameters Estimated by the Previously Described Population Balance Model

<table>
<thead>
<tr>
<th>residence time (h)</th>
<th>sonication power (W·g⁻¹)</th>
<th>yield %</th>
<th>mean particle size (µm)</th>
<th>ln(μₐ)</th>
<th>b</th>
<th>−ln(μₜ)</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>0.10</td>
<td>17.4 ± 0.7</td>
<td>1010 ± 10</td>
<td>17.627</td>
<td>2.137</td>
<td>5.425</td>
<td>3.785</td>
</tr>
<tr>
<td>2.5</td>
<td>0.15</td>
<td>25.1 ± 0.5</td>
<td>970 ± 7</td>
<td>23.219</td>
<td>5.112</td>
<td>7.641</td>
<td>2.195</td>
</tr>
<tr>
<td>4.0</td>
<td>0.10</td>
<td>19.7 ± 0.8</td>
<td>1530 ± 9</td>
<td>22.205</td>
<td>5.960</td>
<td>5.728</td>
<td>3.476</td>
</tr>
<tr>
<td>4.0</td>
<td>0.15</td>
<td>28.3 ± 0.7</td>
<td>1150 ± 6</td>
<td>28.049</td>
<td>8.679</td>
<td>6.597</td>
<td>2.922</td>
</tr>
</tbody>
</table>

Figure 9. A simple information flow diagram for sonocrystallization of lactose in batch OBC and COBC.
predictions. The values of L_{43} and C at the end of the cooling profile were chosen as the two objectives for the estimation:

$$\text{obj}_1 = \sqrt{(L_{43} - L_{43}^{\text{pred}})^2}$$

(13)

$$\text{obj}_2 = \sqrt{(C^{\text{pred}} - C^{\text{exp}})^2}$$

(14)

Overall yield was low in all sonocrystallization experiments due to low sonication energy density applied. By varying residence time, a change in particle size distribution was observed in batch experiments (Table 3). It can be seen from Table 3 that, with an increase in sonication power, product yield was increased, and particle size was decreased as more nuclei were formed.

In all experiments, a bimodal particle size distribution was observed. Lactose has a very slow growth rate, and a large surface area is required to achieve good yield in the process over the residence times studied. Insufficient nuclei were generated by sonication to produce high yield, as sonication power was limited by the specific probe used. Therefore, the degree of supersaturation increased during the crystallization from the target of 1.2–1.4 as shown in Figure 10a. This higher supersaturation may be responsible for observed secondary nucleation and consequent fines in the product (Figure 10c). Attrition could be another reason for the appearance of smaller particles in the product. The particle size distribution and yield can be optimized by providing high power sonication energy with the help of multiple probes along the length of the reactor.

The benefit of using multiple probes is to avoid extra heat generation which could be a problem with one high power ultrasound source and better control on sonication intensity. Another possible way to reduce fines is to control supersaturation with the help of a slow quadratic cooling profile and hence providing a longer residence time.

3.4. Continuous Lactose Crystallization in COBC. To maximize the yield, based on the batch work, a 4 h mean residence time was selected for continuous crystallization, using a feed flow rate of 50 mL min$^{-1}$, frequency of oscillation 4 Hz, and amplitude of oscillation 1 mm. The scale up operation in the COBC was carried out by implementing the same conditions as identified from the batch OBC experiments described in section 3.2. Oscillatory conditions were selected based on residence time distribution study to achieve near plug flow in COBC (section 3.3). Sonication was introduced at the start of the second straight at a supersaturation of 1.2 to generate seeds (0.15 W g$^{-1}$). FBRM and reactIR probes were placed at the end of second straight to monitor the state of the process.

At the start of the process, the COBC was filled with water, and the required temperature profile was achieved by controlling the cold and hot water flow in the jacket side of the crystallizer. Once the required temperature profile was achieved, the saturated feed solution was introduced in the crystallizer. The system was run for three residence times, and the product collected was analyzed using DSC and laser diffraction for particle size. The system attained steady state after one and a half residence times as shown in Figures 11 and 12. No signs of fouling or blockage were observed during the continuous trial. Images of the crystals produced in the COBC showed that the crystals were of the well-known tomahawk shape (Figure 13).

The product form was confirmed as ALM by DSC, TGA, and XRPD. Full data can be found in Supporting Information.

The crystals obtained from the COBC had similar bimodal particle size distribution (PSD) and morphology (Figure 14) as obtained from the batch OBC experiments with a mean particle size of 1530 μm. However, a wider particle span and slow particle growth was observed in the STC as compared to batch OBC and COBC. It has been reported previously that mass transfer coefficient is approximately 75% higher in the OBC as compared to the STC. The yield was higher (38%) in the continuous trial compared to batch OBC (28.3%) which could be due to low sonication energy density applied. By varying residence time, a change in particle size distribution was observed in batch experiments (Table 3). It can be seen from Table 3 that, with an increase in sonication power, product yield was increased, and particle size was decreased as more nuclei were formed.

In all experiments, a bimodal particle size distribution was observed. Lactose has a very slow growth rate, and a large surface area is required to achieve good yield in the process over the residence times studied. Insufficient nuclei were generated by sonication to produce high yield, as sonication power was limited by the specific probe used. Therefore, the degree of supersaturation increased during the crystallization from the target of 1.2–1.4 as shown in Figure 10a. This higher supersaturation may be responsible for observed secondary nucleation and consequent fines in the product (Figure 10c). Attrition could be another reason for the appearance of smaller particles in the product. The particle size distribution and yield can be optimized by providing high power sonication energy with the help of multiple probes along the length of the reactor.

The benefit of using multiple probes is to avoid extra heat generation which could be a problem with one high power ultrasound source and better control on sonication intensity. Another possible way to reduce fines is to control supersaturation with the help of a slow quadratic cooling profile and hence providing a longer residence time.

3.4. Continuous Lactose Crystallization in COBC. To maximize the yield, based on the batch work, a 4 h mean residence time was selected for continuous crystallization, using a feed flow rate of 50 mL min$^{-1}$, frequency of oscillation 4 Hz, and amplitude of oscillation 1 mm. The scale up operation in the COBC was carried out by implementing the same conditions as identified from the batch OBC experiments described in section 3.2. Oscillatory conditions were selected based on residence time distribution study to achieve near plug flow in COBC (section 3.3). Sonication was introduced at the start of the second straight at a supersaturation of 1.2 to generate seeds (0.15 W g$^{-1}$). FBRM and reactIR probes were placed at the end of second straight to monitor the state of the process.

At the start of the process, the COBC was filled with water, and the required temperature profile was achieved by controlling the cold and hot water flow in the jacket side of the crystallizer. Once the required temperature profile was achieved, the saturated feed solution was introduced in the crystallizer. The system was run for three residence times, and the product collected was analyzed using DSC and laser diffraction for particle size. The system attained steady state after one and a half residence times as shown in Figures 11 and 12. No signs of fouling or blockage were observed during the continuous trial. Images of the crystals produced in the COBC showed that the crystals were of the well-known tomahawk shape (Figure 13).

The product form was confirmed as ALM by DSC, TGA, and XRPD. Full data can be found in Supporting Information.
be associated with more even distribution of shear rate, which on average leads to thinner liquid film (reduced boundary layer thickness). The intensity of mixing is known to affect the mass transfer process in which solute leaves the solution and becomes part of the crystal. The high intensity of mixing enhances the mass transfer process, increasing the amount of solute incorporated into the solid phase. In case of continuous operation, net flow rate is an important factor increasing the overall mixing intensity consequently increasing the mass transfer. However, overall product attributes confirmed that the methodology established to move from batch to continuous COBC operation achieved the same product form with a higher yield. Further work is in progress to optimize the crystallization process to deliver improved control on product attributes, size, impurity rejection, and yield and will be reported in subsequent papers in this series.

4. CONCLUSION

A new systematic approach has been proven to develop a continuous sonocrystallization process using inline PAT and direct control approach. Thermodynamic and kinetic parameters were established for lactose crystallization using FBRM and mid-IR. Sonication was used to initiate nucleation, and the cycle time has been successfully reduced from 13 to 20 h in batch to 4 h in this COBC. The yield was relatively low compared with previous studies on batch lactose sonocrystallization due to the limitations of the maximum power generation from the sonicator used here generating insufficient seeds. As a result of not being able to generate enough nuclei secondary nucleation and fines, generation was observed at the end of the process which can be minimized by further improvements in providing multiple sonication generation units within the crystallizer and control of supersaturation through optimization of process. Narrower particle size distribution of crystals as compared to batch process with ability to vary D50 is achievable in continuous sonocrystallization process established in current work. With the ability to run COBC system for 1–5 h under near plug flow conditions, continuous sonocrystallization was successfully performed for the first time in COBC at a throughput of 356 g h⁻¹ with a consistent product quality and product attributes for 12 h. Further studies are under progress for optimization of lactose crystallization using process analytical tools and control models.
ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.oprd.5b00127.

DSC and XRPD analysis of lactose feed stock and product (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: alastair.florence@strath.ac.uk.

Author Contributions
These authors contributed equally.

Funding
EPSCR funding was provided under grant reference: MOPPS: Made To Order Processing Plants 101334.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the EPSRC Centre for Continuous Manufacturing and Crystalization (www.cmac.ac.uk) for supporting this work. Authors would like to thank Technology Strategy board for funding. Authors would also like to thank Metler Toledo, Perceptive Engineering and ABB for technical support.

ABBREVIATIONS

ALM Alpha lactose monohydrate
Batch-OBBC Batch oscillatory baffled crystallizer
COBC Continuous oscillatory flow crystallizer
CSTR Continuous stirred tank reactor
DSC Differential scanning calorimetry
FBRM Focused beam reflectance measurement
FEP Fluorinated ethylene propylene
MSMRR Mixed suspension mixed product removal reactor
MSZW Metastable zone width
Mid-IR Mid infrared
PAT Process analytical technologies
PFR Plug flow reactor
PSD Particle size distribution
PVM Particle vision measurement
RTD Residence time distribution
STC Stirred tank crystallizer
XRPD X-ray powder diffraction

Nomenclature

x_0 Center to peak amplitude (mm)
\tilde{d} Tube diameter (mm)
μ Fluid viscosity (kg m$^{-1}$ s$^{-1}$)
ν Frequency
δ Dimensionless time
E Exit age distribution
D Axial dispersion coefficient
u Mean axial velocity
c Dimensionless concentration
x Dimensionless length
L Mean axial velocity
ℓ Dimension of reactor
e Power density

P_i Power number for impeller
V_i Volume of liquid
N_i Rotational speed of impeller
D_i Diameter of impeller
N_b Number of baffles per unit length
C_{di} Discharge coefficient
S Ratio of orifice area to baffle area
C_v Heat capacity
T_f Final solution temperature
T_i Initial solution temperature
m Weight of solution
r_n (L,t) Crystal size distribution
L Characteristic crystal size
c Solution concentration (g mL$^{-1}$ water)
r_0 Crystal size at nucleation
ρ_c Crystal density
k_e Volume shape factor
B Primary nucleation
G Size independent growth rates

REFERENCES

(41) Smith, K. B. University of Cambridge, 1999.
(64) http://www.perceptiveapc.com/products/pharmamv/ (last accessed March 4, 2015).