Crystalfield symmetries of luminescent Eu$^{3+}$ centers in GaN: The importance of the $^{5}D_{0}$ to $^{7}F_{1}$ transition

K. P. O'Donnell,1,4 a) P. R. Edwards,1 Y. Yamaga,2 K. Lorenz,3 M. J. Kappers,4 and M. Bočkowski5

1SUPA Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, Scotland, United Kingdom
2Department of Mathematical and Design Engineering, Gifu University, Gifu 501-1193, Japan
3IPFN, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
4Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, England, United Kingdom
5Institute of High Pressure Physics PAS, Sokolowska 29/37, 01-142 Warsaw, Poland

(Received 25 November 2015; accepted 24 December 2015; published online 11 January 2016)

EU-doped GaN is a promising material with potential application not only in optoelectronics but also in magneto-optical and quantum optical devices “beyond the light emitting diode.” Its interesting spectroscopy is unfortunately complicated by spectral overlaps due to “site multiplicity,” the existence in a given sample of multiple composite centers in which Eu ions associate with intrinsic or extrinsic defects. We show here that elementary crystalfield analysis of the $^{5}D_{0}$ to $^{7}F_{1}$ transition can critically distinguish such sites. Hence, we find that the center involved in the hysteretic photochromic switching observed in GaN(Mg):Eu, proposed as the basis of a solid state qubit material, is not in fact Eu1, as previously reported, but a related defect, Eu1(Mg). Furthermore, the decomposition of the crystalfield distortions of Eu0, Eu1(Mg), and Eu1 into axial and non-axial components strongly suggests reasonable microscopic models for the defects themselves. © 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4939631]

Semiconductors activated with lanthanide (“rare earth”) ions have been studied since the late 1980s with the main aim of converting the band gap emission of optoelectronic devices into more useful spectral regions. Following the demonstration of a red-emitting GaN:Eu LED (light-emitting diode) by Fujiwara and co-workers in 2009, much attention has focused on the emission spectra of Eu$^{3+}$ ions in GaN (bandgap 3.4 eV), in particular, the strong multiplet of lines due to the $^{5}D_{0}$ to $^{7}F_{2}$ transition near 620 nm (2 eV). More recently, attention has extended to “site multiplicity,” the existence in a given sample of multiple composite centers in which Eu ions associate with intrinsic or extrinsic defects. The ROIs correspond to inter-term transitions of Eu$^{3+}$ to reveal the site symmetries of the most commonly encountered defects. On the basis of these symmetry determinations, we suggest tentative microscopic models for the centers.

Luminescent GaN:Eu (n-type) and GaN(Mg):Eu (p-type) samples were prepared by ion implantation of up to $\sim 10^{15}$ cm$^{-2}$ Eu ions at 300 keV, followed by high-temperature, high-pressure annealing at 1400°C in 1 GPa of N$_{2}$ as detailed in the previous work [e.g., Refs. 4 and 5]; at room temperature, the PL spectra of fresh samples, excited by ultraviolet light from the GaN band edge, feature only the spectra of those defects which we call Eu1 and Eu0, in GaN:Eu and GaN(Mg):Eu samples, respectively. High-resolution PL spectra were recorded using a cooled 1024 × 128-pixel CCD camera in spectral regions of interest (ROI) centred on 594 nm, 608 nm, 622 nm, and 635 nm, with wavelength spans of approximately 15 nm. The ROI correspond to inter-term (atomic) transitions of Eu$^{3+}$, originating on the lowest excited level, $^{5}D_{0}$, and ending on: $^{7}F_{0}$ (at \sim 590 nm); $^{7}F_{1}$ (at \sim 600 nm) and $^{7}F_{2}$ (at \sim 620 nm and 635 nm; see below). In this sequence, the emission lines of Eu$^{3+}$ in GaN become both brighter and broader as the peak wavelengths increase.

a)E-mail: k.p.odonnell@strath.ac.uk
Since the emitting 5D_0 level is a singlet, any line splitting that we observe will reveal the symmetry of the luminescent center in its receiving state. The lowest ground state of Eu$^{3+}$, 7F_0, is also a singlet, and the so-called “sensitive” transitions, from 5D_0 to 7F_0, act as a simple spectroscopic counter of defect species (called sites) that are active in a given Eu-doped sample, discounting accidental overlaps. As an example, Figure 1 shows the sensitive spectral region at room temperature for a GaN(Mg):Eu sample with a prominent Eu0 line near 587 nm and its Stokes’ (S) and anti-Stokes’ (A-S) replicas. For reasons that will become clear later, the corresponding Eu1 transition, which should dominate the spectrum of an undoped GaN:Eu sample in the sensitive region, proves to be relatively weak; it is therefore much harder to observe.

The $(2S + 1)$ multiplicities of the 7F_1 and 7F_2 states, 3 and 5, respectively, determine the maximum possible number of lines to expect for transitions from 5D_0 to these states in a low-symmetry site. However, degeneracies occur in higher symmetry. In the trigonal case, considered by Gruber et al. in a low-symmetry site. However, degeneracies occur in purely trigonal symmetry, we expect to see 2 5D_0 to 7F_0, 1 7F_0 to 7F_1, and 3 5D_0 to 7F_2 lines near 620 nm. Remarkably, one component of the 5D_0 to 7F_2 transition splits away from the others and is located close to 635 nm. This anomaly, overlooked in the previous GaN:Mg studies, both by some of the present authors and by others, turns out to be useful as well as interesting, since it allows a clear demonstration in an isolated spectral region of hysteretic photochromic switching (HPS) in GaN(Mg):Eu samples, as described in Refs. 11 and 12.

It will be clear from the following summary that HPS provides a useful and unique additional “handle” for the identification of groups of transitions belonging to a particular site. The Eu0 spectrum has a characteristic temperature dependence, first reported in Ref. 6 and shown by the present authors to implicate HPS. Upon sample cooling below room temperature, Eu0 transitions first grow rapidly, reaching a maximum intensity at ~200 K and then saturating. In a narrow temperature range below 30 K, the Eu0 signal abruptly decreases to zero intensity. It is progressively replaced by a new set of lines which we here ascribe to Eu1(Mg). Figure 2 shows the spectral changes observed in the 5D_0 to 7F_1 spectral region between 100 K and 25 K.

The photochromic switch from Eu0 to Eu1(Mg) is hysteretic, because it does not reverse itself when a cooled sample warms from 10 K through 30 K. In fact, the Eu0 lines only reappear when the temperature exceeds 100 K. The same HPS behaviour is of course observed for all monitored transitions, allowing the labelled transitions, near 596 nm, 600.8 nm, and 606 nm in Figure 2, to be easily identified as “belonging” to Eu0. In a similar way, lines at ~600-8 nm (again), 601.2 nm, and 602.5 nm “belong to” Eu1(Mg), the hysteretic switching partner of Eu0. The Eu1(Mg) lines are noticeably sharper than those of Eu0, leading to higher peak values, but the integrated intensities of both sets of lines are similar.

In a preliminary conference report of this work, the line at 608 nm was assigned to Eu1(Mg). This assignment is now considered unlikely for 2 reasons: (1) the line at 608 nm is broader than any other in this spectral ROI and shows unresolved structure; it is clearly not the singlet expected from splitting of a 7F_1 level into 3 components; and (2) the line positions of Eu1(Mg) closely resemble those observed by Gruber et al. for the trigonal Eu1 centre in AlN and we expect the CF of GaN and AlN to be similar. However, the actual origin of the 608 nm line is presently unknown and a matter for further study.

In GaN:Eu samples without Mg, the dominant center at RT, Eu1, is distinguished by its excitation spectrum, which

![FIG. 1. Showing emission at room temperature of a GaN(Mg):Eu sample excited above the bandgap of GaN. Phonon assisted transitions are separated by ~90 cm$^{-1}$ (10.5 meV) from the main line (586.7 nm). The small emission line marked n0 will be described in a later publication.](image1)

![FIG. 2. Showing spectra obtained while cooling down a GaN(Mg):Eu sample from RT towards 10 K. In a narrow temperature range below 30 K, the spectrum switches from Eu0-dominated to one featuring a new spectrum, denoted here as Eu1(Mg). The inset shows the corresponding splittings of the receiving 7F_1 states of Eu0 and Eu1(Mg) centers (not to scale).](image2)
shows a prominent sub-gap feature with a peak near 385 nm in addition to the GaN bandedge above ~350 nm. Neither Eu0 nor Eu1(Mg) can be excited efficiently below the GaN gap in this way. However, we do observe, as shown in Figure 3, a weak emission from Mg-doped samples excited below the bandgap at low temperature, which we ascribe to residual Eu1 centers: the observed close-doublet and singlet lines match those of transitions of Eu1 in undoped samples (not shown); the rather different line positions of the 5D0 to 7F1 transitions of Eu1(Mg), indicated by arrows in Figure 3, further distinguish Eu1 from Eu1(Mg).

Although the 5D0 to 7F2 transitions of Eu3+ are by far the brightest, and therefore the ones most intensively studied in the literature, their relative complexity compromises their use in determining the symmetry of the associated luminescent centers. Both Eu0 and Eu1(Mg) show 5 spectral components, including the unexpected “split-off” lines, in the ~620 nm and ~635 nm ROI.Remarkably, the 5D0 to 7F2 transitions of Eu1(Mg) exactly match those reported for Eu1 within experimental error; this spectral coincidence is the main cause of previous misidentifications of the Eu1(Mg) center as Eu1 (e.g., Refs. 5–9, 11, and 12). It is also worth noting that transitions of the “prime” Eu2 center, an unassociated Eu atom on a Ga lattice site, are completely absent from our GaN(Mg):Eu samples at all temperatures.

Figure 4 compares all 5D0 to 7F0,1,2 transitions of Eu0 and Eu1(Mg) centers in GaN(Mg):Eu. It is quite clear that the Eu0 center is of lower symmetry, while Eu1(Mg) is nearly axial, the splittings of the 7F1 level indicate this fact most directly. In line with the Judd-Ofelt model, the higher symmetry of Eu1(Mg) accounts for the weakness, nearly to the point of extinction, of its sensitive transition near 587 nm (Fig. 4). By the same token, the “real” Eu1 center is even closer to axial than Eu1(Mg), with an unresolved 7F2 doublet splitting that is comparable in magnitude to the spectral linewidth (Figure 3). Consequently, its sensitive line is found to be even weaker than that of Eu1(Mg).

We now consider the energy splitting of the 7F1 multiplets of Eu0 (non-axial), Eu1 and Eu1(Mg) (nearly axial) centers according to CF theory. Neglecting terms of 6th order, the equivalent operator Hamiltonian for C3v symmetry is given by

$$H_{CF} = B_{0}^{0}O_{0}^{0} + B_{2}^{0}O_{2}^{0} + B_{3}^{3}(O_{4}^{3} - O_{4}^{3})$$.

(1)

The crystal field operator appropriate to a non-axial distortion adds a perturbative term

$$H_{1} = B_{2}^{2}O_{2}^{2}$$.

(2)
The observed energy splitting of the 7F_1 multiplets ($|0>, |\pm 1>, |\pm 2>\rangle$ for Eu0 and Eu1(Mg) allow us to calculate directly the axial and non-axial components of the interaction, B_0^2 and B_2^2, respectively. In a co-ordinate frame where z coincides with the trigonal axis

$$H = 3B_2^2J_z^2 + 2B_0^2(J_1^2 - J_z^2).$$

Hence, the doublet splitting $2B_0^2$ is expected to be zero for purely axial defects, while $3B_2^2$, the energy separation of the doublet’s center of gravity from the singlet, quantifies the axial distortion of the center. The experimentally determined values are listed in Table I.

The calculated energy distortions are indeed small compared to the term differences of $\sim 17 000 \text{ cm}^{-1}$ but are decisive for symmetry assignment. While the distortion energies for Eu1 and Eu1(Mg) centers are similar, and small, those of Eu0 show a strong non-axial component. The random variation of its larger distortion parameter values, caused by inhomogeneous strain, accounts very well for the excess line broadening of the Eu0 centers, compared with those of Eu1(Mg) and Eu1.

The results of the calculation suggest that Eu is strongly affected by the presence of Mg in the lattice, particularly in the Eu0 center and rather less so in Eu1(Mg). Figure 5 shows the simplest composite defect model with both Eu and Mg substitutional. The absence of Eu2 from GaN(Mg):Eu samples further suggests that this is a preferred configuration for Eu$^{3+}$ ions in the presence of Mg acceptors in GaN. On the other hand, the Eu1(Mg) center, with symmetry close to C_{3v}, is assigned to an Eu$^{3+}$ ion in an Eu1-type center, but with Mg$_{Ga}$ displaced to a relatively long distance in a nearly axial direction. All of these observations support the HPS model, which ascribes the observed hysteretic photochromism to the theoretically predicted shallow-deep instability of the Mg acceptor.

While the 7F_1 splittings provide a rough and ready guide to site symmetry, more information can be extracted from an analysis of the 5D_0 to 7F_2 line patterns. Considering Eqs. (1) and (2), we see that a trigonal field splits the 7F_2 multiplet into a doublet, singlet and doublet according to the magnitudes of B_0^2 and B_2^2, while B_0^2 further splits the level into 5 singlets, as observed experimentally. The results of the more complex calculations required to determine these distortion parameters will be discussed in full elsewhere.

In summary, the symmetry of composite Eu$^{3+}$ centers (sites) in GaN is most clearly made evident in the crystal field splitting of the 7F_1 state as revealed by the line pattern of the 5D_0 to 7F_1 spectra near 600 nm. Eu0 and Eu1-type centers are clearly distinguished as non-axial and near-axial, respectively. The axial and non-axial distortions of different composite centers are characterised by their relative magnitude, allowing a simple differentiation of centers, which promises to solve, at least partially, the long-standing site multiplicity problem. Informed structural assignments are a key for producing and controlling luminescence centers in future optical communication and quantum information applications.

K.P.O’D. was partly supported by EPSRC (UK) through a “pump-priming” grant from the National III-V Centre and subsequent funding (EP/N00275X/1). M. Yamaga is indebted to the Ogawa Science and Technology Foundation. K. Lorenz acknowledges funding by FCT, Portugal (PTDC/CTM-NAN/2156/2012, PTDC/FIS-NAN/0973/2012, Investigador FCT). The data presented in this letter can be downloaded from http://dx.doi.org/10.15129/9da49e30-896d-43f5-9515-63bed987721c.