Iridium-catalysed ortho-H/D and -H/T Exchange under Basic Conditions: C-H Activation of Unprotected Tetrazoles

William J. Kerr,*a David M. Lindsay,a Marc Reid,a Jens Atzrod,a Volker Derda,b Patrick Rojahn,b and Remo Weckb

The first examples of selective ortho-directed C-H activation with unprotected 2-aryltetrazoles are described. A new base-assisted protocol for iridium (I) hydrogen isotope exchange catalysis allows access to ortho-deuterated and tritiated tetrazoles, including the tetrazole-containing pharmaceutical, Valsartan. Preliminary mechanistic studies are also presented.

Compounds labelled with hydrogen isotopes (deuterium or tritium) have widespread applications in synthetic, mechanistic, and metabolic studies.1–4 Recently, we5–7 and others8–11 have focused on metal-catalysed C-H functionalisation12–17 methods towards efficient installation of the desired isotopic label via hydrogen isotope exchange (HIE). Of related interest, tetrazoles represent an important class of azacyclic functionality in drug design, and have been employed with appreciable success within an array of therapeutic agents, including, notably, the sartan drug class.18 Despite this, methods to expand the structural diversity of aryl tetrazoles by C-H functionalisation are rare, and have tended to involve N-protected analogues (Scheme 1).19–22 Specific to the focus of this work, directed and selective C-H functionalisation protocols employing unprotected tetrazoles are not known.23 Accordingly, we sought to address this issue by building on our foundations in iridium-catalysed HIE5–7 to deliver a novel method of tetrazole C-H functionalization and labelling.

We first recognised that existing N-protected tetrazole C-H activation protocols5–10 all involve the use of catalyst systems possessing a potential mediator for a concerted metatation-deprotonation (CMD) pathway, for example a carboxylate or carbamate unit.24,25 Secondly, related labelling techniques for carboxylic acids require high temperatures and base-mediated deuteration methods,10 suggesting only a weakly coordinating role for this directing group. These examples of C-H activation are mechanistically distinct from the σ-complex assisted metathesis (σ-CAM) type processes suggested as being operative within iridium-centred HIE catalysis.5,7 Accordingly, inspired by the aforementioned studies, and by recent carboxylate-directed hydrogenation chemistries,26–28 we recognised that a modified approach would be required in order to deliver unique catalytic activity modes with our iridium HIE catalysts and, specifically, to provide a direct method of unprotected tetrazole functionalisation.

Building on our previous design of experiments (DoE) approaches,7,29–31 applicable reaction conditions were investigated for labelling unprotected tetrazole 1 with our HIE catalysts, 232 and 333 (Table 1). Following their use in somewhat related processes,26–28 Et3N and Cs2CO3 were selected as bases, and MeOH chosen as the solvent to aid the solubility of Cs2CO3. With both bases, ambient temperature and short reaction times were insufficient to deliver appreciable levels of labelling (Entries 1–3). Encouragingly, increasing the temperature to 37.5 °C, in combination with the use of Cs2CO3 for 2 h, delivered 66% ortho-deuteration of 1.

Scheme 1 Directed C-H activation with tetrazoles.

aDepartment of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XJ, U.K. E-mail: w.kerr@strath.ac.uk
bDSAR, DD-ICMS, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65766 Frankfurt, Germany

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x000000xx
with catalyst 3; this complex also outperformed catalyst 2 with either Et3N or Cs2CO3 under similar conditions (Entry 7 versus 4–6). The superiority of Cs2CO3 over Et3N (a CMD versus non-CMD mediator) as base was drawn out further at 50 °C (Entries 8 and 9), with the slightly longer reaction time of 3 h (cf. 1 h), also providing more optimal deuterium incorporation (Entries 9 versus 10, and 12 versus 11). In line with our hypothesis, base was necessary for effective catalysis (Entry 12 versus 14), while lowering the loading of 3 from 5 mol% to 2.5 mol% led to only a minor decrease in deuterium incorporation (Entry 13). Overall, the conditions detailed in Entry 12 represented a promising practicable approach for ortho-deuteration of unprotected aryl tetrazoles.

Under these selected reaction conditions, the scope of this method for C–H activation and labelling of unprotected 2-aryl tetrazoles was investigated (Scheme 2). Satisfactorily, a range of electron-donating and -withdrawing substituents were tolerated in the para-position (4a–4d) with good to very good levels of deuterium incorporation being recorded. The meta-substituted derivatives 4e–f also readily underwent labelling. Notably, any preference to label the most accessible ortho-site varied depending on the ability of the substituent to also further assist labelling at the more hindered position (cf. 4e and 4f).34 Even sterically restrictive substrates such as ortho-methyl derivative 4g could be labelled with high efficiency, albeit over a longer reaction time. Benzyltetrazole (not shown), however, did not undergo labelling,35 demonstrating that departure from a 5-membered metallacyclic intermediate (5-mmi) is not compatible with these optimised conditions.

Table 1 Reaction discovery and optimisation.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Base</th>
<th>t / h</th>
<th>T / °C</th>
<th>%D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Et3N</td>
<td>1</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Cs2CO3</td>
<td>1</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Cs2CO3</td>
<td>1</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Et3N</td>
<td>2</td>
<td>37.5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Cs2CO3</td>
<td>2</td>
<td>37.5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Et3N</td>
<td>2</td>
<td>37.5</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>Cs2CO3</td>
<td>2</td>
<td>37.5</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>Et3N</td>
<td>3</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>Cs2CO3</td>
<td>3</td>
<td>50</td>
<td>83</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>Cs2CO3</td>
<td>1</td>
<td>50</td>
<td>72</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>Cs2CO3</td>
<td>1</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>Cs2CO3</td>
<td>3</td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>13a</td>
<td>3</td>
<td>Cs2CO3</td>
<td>3</td>
<td>50</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>50</td>
<td><5</td>
</tr>
</tbody>
</table>

*a Standard reagent quantities: D2 (1 atm), 1 (0.086 mmol, 13.8 mg), Cs2CO3 (0.043 mmol, 14.0 mg) or Et3N (0.043 mmol, 0.006 mL), 2 (5 mol%, 4.4 mg) or 3 (5 mol%, 7.4 mg). BArF = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate. D incorporation determined by 1H NMR spectroscopy. **2.5 mol% of catalyst 3 was employed.

We next investigated the applicability of our method in labelling more structurally challenging and pharmaceutically-relevant tetrazole structures. To this end, the angiotensin receptor blocker, Valsartan 5,36 was subjected to our newly developed method, with slightly modified conditions to account for the additional acidic site in the molecule (Scheme 3). Under these conditions, Valsartan 5 was labelled selectively in the sole ortho-position, with a high 88% D incorporation and only minor degradation of the product (by LC-MS).35 This method has also been successfully applied to the corresponding tritiation of 5.35 Using 1H NMR spectroscopy (Scheme 3, bottom), we confirmed that labelling remained selective for the desired position, with the other functional groups present not being in a position to directly via a 5-mmi.

In a further study, bifunctional substrate 4h was subjected to our developed reaction conditions, both with and without base (Scheme 4) in order to probe potential site selectivity. With base, data from 1H NMR spectroscopy, LC-MS, and HRMS shows formation of the di-deuterated product in accordance with tetrazole-directed reactivity, such that 4h represents yet another viable substrate for this novel labelling method. Alternatively, without base, a low conversion was observed, along with an almost equal distribution of deuterium in all sites of 4h, indicating balanced competition between the neutral tetrazole and the nitro directing groups in this case.

This developed method not only represents the first example of selective ortho C–H functionalisation of unprotected tetrazoles, but the requirement for base

```
```

Scheme 2 Substrate scope of unprotected tetrazole labelling.

Scheme 3 Regioselective isotopic labelling of Valsartan.
potentially indicates a new mode of reactivity for catalysts 2 and 3. Preliminary investigations have thus been initiated in order to probe the nature of a base-assisted pathway versus the o-CAM-type mechanism previously established for our H/D exchange systems.\(^5\)\(^7\) Firstly, both the optimised reaction conditions and the unproductive, base-free counterpart (cf. Table 1, Entry 12 versus 14) were applied to substrate 4d, with the pH indicator methyl red being added to both reaction mixtures after 3 h.\(^3\)\(^7\) Without base, a red solution resulted, indicating an acidic medium of pH ≤ 4.4.\(^3\)\(^5\) In contrast, and perhaps unsurprisingly, the reaction conducted in the presence of Cs\(_2\)CO\(_3\) resulted in a yellow solution, indicating a more basic medium of pH ≥ 6.6. Therefore, under the operative reaction conditions, the tetrazole substrate (pKa ≈ 4 in water)\(^3\)\(^8\) is most likely deprotonated. This observation was consistent with analysis of the \(^{19}\)F NMR spectrum of substrate 4d, which shows that the tetrazole is deprotonated under the basic reaction conditions (Figure 1). This is also in line with that observed with substrate 4h (Scheme 4) where a high concentration of deprotonated, and more strongly binding, tetrazole anion dictates the selectivity of labelling at high pH.

A \(^{31}\)P\(^{[H]}\) NMR study of the catalyst in methanol-d\(_4\) under various conditions revealed an additional role of the base, with an intriguing variation in the phosphate-containing species present in solution.\(^3\)\(^5\) Only when 3, Cs\(_2\)CO\(_3\), and H\(_2\) were mixed together was the active catalytic species observed.\(^3\)\(^9\) Additional analysis of the NMR spectra of the catalyst\(^3\)\(^5\) suggests that pH may also affect the structure of the active catalyst in solution. In addition to these observations, the activity of the catalyst was found to depend on the order of addition of reactants. Specifically, if the catalyst, tetrazole, base and solvent were preheated to 50 °C before the addition of D\(_2\), no labelling was observed. In contrast, our optimal labelling conditions were established by mixing all reaction components at room temperature then heating to 50 °C.

![Figure 1](image-url) The nature of the substrate and reaction basicity. \(^{19}\)F NMR studies: methanol-d\(_4\), top: 4d only; middle: 4d (1 eq.), 3 (0.05 eq.), Cs\(_2\)CO\(_3\) (0.5 eq.), D\(_2\), 27 °C; bottom: 4d (1 eq.), 3 (0.05 eq.), D\(_2\), no base, 27 °C.

To further enhance the understanding of our developing system, we considered suitable kinetic studies. Due to the nature of the optimised process, acquisition of rate data was impractical. However, halting reactions after 5 min (rather than 3 h) offered insight into the relative rates of labelling electronically varied tetrazoles (Table 2). Although the rates for 4c and 4d (Entries 4 and 5, X = Cl and CF\(_3\)) were too high, even within 5 min, to be considered as initial rates, pseudo-Hammett analysis for X = H, Me, and OMe yielded ρ = +1.60, when assuming the resonance and field effects were almost equal.\(^3\)\(^6\) It is important to note that the Hammett data alone is not sufficient to discount an alternative oxidative addition process at iridium, rather than a CMD-type process. However, this Hammett analysis is most consistent with a base-assisted CMD mechanism, when considering that the non-CMD base, Et\(_3\)N, does not efficiently mediate the C-H activation process.

Further insight was gained when considering the beneficial role of the NHC/phosphine ligand combination and, more specifically, when catalyst 2 was compared to derivative 6, where the phosphine ligand has been replaced by a more labile acetonitrile ligand\(^4\) (Table 3). For all unprotected tetrazoles (Entries 1–5), catalyst 2 proved vastly superior to 6. In contrast, the N-Me analogue 4i was labelled to only a small extent by both catalysts 2 and 6 (Entry 6).

Finally, the source of the deuterium label was probed. Employing methanol-d\(_4\) as the sole deuterium source with tetrazole 1 (under argon rather than D\(_2\)), a low 8% labelling was achieved.
D-incorporation was recorded, indicating the necessity for molecular \(D_2 \) (Scheme 5, top). Conversely, employing \(D_2 \) and methanol-\(d_4 \) together was found to improve the D-incorporation to 98\% (Scheme 5, bottom), compared to 85\% using MeOH as the solvent (Scheme 2). Consequently, these results suggest a non-innocent role of the solvent, interacting with the catalyst and \(D_2 \).

In summary, complexes 2 and 3 have been shown to effectively catalyse the ortho-deuteration and tritiation of pharmaceutically-relevant aryl tetrazoles. Furthermore, this method represents the first case of selective C-H functionalisation with unprotected tetrazole species. Initial, exploratory mechanistic investigations have revealed evidence to support a base-assisted CMD-type catalysis process with complexes 2 and 3. Future work in this area will concentrate on probing further the reaction mechanism(s), and expanding the scope of this industrially-aligned C-H activation method to encompass related directing functionality.

W.J.K. and M.R. would like to thank the Carnegie Trust for funding, and the EPSRC UK National Mass Spectrometry Facility at Swansea University for analyses. M.R., J.A., V.D., P.R. and R.W. would like to thank Martin Sandvoss and Gerald Scholz for further analytical assistance.

Notes and references

Regioselective labeling

- 11 examples
- Up to 93% D
- Preliminary mechanistic analysis
Supporting Information for:

Iridium-catalysed ortho-H/D and -H/T Exchange under Basic Conditions: C-H Activation of Unprotected Tetrazoles

William J. Kerr, *a David M. Lindsay, a Marc Reid,a Jens Atzrodt, b Volker Derdau, b Patrick Rojahn, b and Remo Weckb

a Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland (U.K.)
Email: w.kerr@strath.ac.uk

b DSAR, DD-ICMS, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, G876, 65926 Frankfurt, Germany
Contents

1. General ... S3
 1.1 General Experimental Considerations ... S3
 1.2 General Procedure – Deuteration Procedure Using Carousel ... S5

2. Reaction Optimisation for \textit{ortho}-HIE with N-H Tetrazoles ... S6

3. Substrate Scope for Tetrazole \textit{ortho}-HIE Protocol ... S7
 3.1 Notes .. S7
 3.2 Tetrazole Substrate Scope ... S8

4. Isotope Labelling of Valsartan ... S19
 4.1 Deuteration of Valsartan ... S19
 4.2 Tritiation of Valsartan .. S23

5. Investigating Nitro versus Tetrazole Labelling ... S25

6. Mechanistic Studies .. S28
 6.1 Investigating the pH of the Reaction and Likely State of the Tetrazole .. S28
 6.2 31P NMR Spectroscopic Study of the Catalyst with Various Components of the Tetrazole Labelling Method .. S31
 6.3 Investigating the Effect of Substrate Electronics in Ir-catalysed Tetrazole Labelling S40
 6.4 Investigating the Role of the PPh$_3$ Ligand in Ir-catalysed Tetrazole Labelling S42
 6.5 Investigating the Importance of N-H Tetrazoles and Changes in the Active Catalyst – Additional Reactions Not in the Main Text ... S47
 6.6 Probing the Deuterium Source in Ir-catalysed Tetrazole Labelling .. S48

7. Additional HRMS Data ... S49

8. Additional LC-MS Data .. S59

9. References ... S63
1. General

1.1 General Experimental Considerations

All reagents were obtained from commercial suppliers (Aldrich, Alfa Aesar, or Strem) and used without further purification, unless otherwise stated. Solvents were purchased as anhydrous, and stored over molecular sieves (4 Å) under an argon atmosphere.

\(^1\)H NMR spectra were recorded on Bruker spectrometers, at 300, 400 or 500 MHz. \(^{13}\)C, \(^{11}\)B, \(^{19}\)F, and \(^{31}\)PNMR spectra were recorded on a Bruker DPX 400 spectrometer at 100 MHz, 128 MHz, 376 MHz, and 162 MHz, respectively. Chemical shifts are reported in ppm. Coupling constants are reported in Hz and refer to \(^3\)J_{H-H} couplings, unless otherwise stated.

The distribution of hydrogen isotopes in the products was determined by one of two liquid chromatography-mass spectrometry (LC-MS) systems:

System 1: using a Symmetry Shield RP18 column, 3.9 mm × 150 mm with gradient program. LC column conditions were as follows:

mobile phase A: water (900 mL), acetonitrile (100 mL), TFA (1 mL).
mobile phase B: water (100 mL), acetonitrile (900 mL), TFA (0.75 mL).
Flow rate: 0.6 mL min\(^{-1}\).
Detection: UV (254 nm and 210 nm).

System 2: using a Dionex Summit LC System with a DAD, coupled to a Thermo MSQ+ single quad MS. The LC column used was a Phenomenex Luna C18(2), 3 \(\mu\)m particle size, 100 Å pore size, 4.6 mm × 150 mm.

mobile phase A: water (900 mL), acetonitrile (100 mL), formic acid (1 mL).
mobile phase B: water (100 mL), acetonitrile (900 mL), formic acid (0.75 mL).
Flow rate: 0.6 mL min\(^{-1}\).
Detection: UV (254 nm and 210 nm).

For system 2, prior to mass detection, eluted LC samples were mixed with a 2.5% (v/v) solution of aqueous ammonia in order to form anionic entrants to the MS system.

High resolution mass spectrometry (HRMS) data were acquired in positive or negative ESI mode and the method is specifically stated for each compound. Data were obtained from the EPSRC UK National Mass Spectrometry Service Centre (NMSSC) at Swansea University. Alternatively, HRMS was provided by Sanofi (Frankfurt, Germany) via a Bruker micro-TOF-QII in positive ESI mode. Calibration was achieved against a sodium formate injection. A Dionex Ultimate 3000 RSLC system was used as an inlet to the MS, employing a flow of 0.5 mLmin⁻¹ of 0.044 % TFA in 50% acetonitrile (aq.). Use of this system is stated where necessary.
1.2 General Procedure – Deuteration Procedure Using Carousel

All reactions were carried out using a Radley 12-chamber carousel. The water inlet for the carousel reflux system was turned on prior to any further reaction set up. To a 25 mL oven-dried carousel tube was added the requisite tetrazole substrate (0.086 mmol, unless otherwise stated), base (0.043 mmol), and iridium(I) precatalyst (0.0043 mmol, 5 mol%, unless otherwise stated) under air. The requisite solvent (1 mL, unless otherwise stated) was added, rinsing the inner walls of the tube. The tube was then sealed at the screw cap (with gas inlet tap left open to air) and reconnected to the carousel rack. After charging all carousel tubes with their reactants, the air in the tubes was replaced with argon before cooling the base of the tubes in the rack to 0 ºC using an ice/water cooling bath. Separately, the carousel heating block was set to the desired reaction temperature. Whilst in the cooling rack, the cooled flasks were evacuated and flushed with deuterium via a balloon, and this cycle repeated one further time. The carousel tube gas inlets were then closed, creating a sealed atmosphere of deuterium. After sealing the flasks, the rack of tubes was transferred back to the heating block and the reaction timer was started. The reaction mixture was stirred for the allotted time before removing excess deuterium and replacing with air. At the end of each reaction time, a 2 µL sample was removed for LC-MS analysis. The reaction solution was then transferred to a single-necked flask, using DCM to wash in any residues in the reaction tube, before removing the solvent under reduced pressure. The remaining residue was partitioned between water (5 mL) and 2-MeTHF (5 mL) in a separating funnel. The organic phase was washed with 0.1 M HCl (5 mL), then dried over anhydrous Na₂SO₄ before filtering and concentrating in vacuo. The product was then analysed directly via ¹H NMR spectroscopy. The integrals were calibrated against a peak corresponding to a position not expected to be labelled.

NOTE: it is imperative that the reaction mixture be cooled prior to the introduction of deuterium. Heating the basified reaction mixture before adding D₂ was found to degrade the catalyst before the reaction began.
2. Reaction Optimisation for ortho-HIE with N-H Tetrazoles

Table S1 is a reprint of Table 1 of the main text, provided for convenience. The general procedure for deuteration using the reaction carousel, as described in Section 1.2, was followed. Relevant spectroscopic and spectrometric data are provided in Section 3 (substrate scope).

Table S1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Base</th>
<th>t / h</th>
<th>T / °C</th>
<th>%D<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Et<sub>3</sub>N</td>
<td>1</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>1</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>1</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Et<sub>3</sub>N</td>
<td>2</td>
<td>37.5</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>2</td>
<td>37.5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Et<sub>3</sub>N</td>
<td>2</td>
<td>37.5</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>2</td>
<td>37.5</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>Et<sub>3</sub>N</td>
<td>3</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>3</td>
<td>50</td>
<td>83</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>1</td>
<td>50</td>
<td>72</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>1</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>3</td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>13<sup>c</sup></td>
<td>3</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>3</td>
<td>50</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>50</td>
<td><5</td>
</tr>
</tbody>
</table>

^a Standard reagent quantities: D₂ (1 atm), 1 (0.086 mmol, 13.8 mg), Cs₂CO₃ (0.043 mmol, 14.0 mg) or Et₃N (0.043 mmol, 0.006 mL), 2 (5 mol%, 4.4 mg) or 3 (5 mol%, 7.4 mg).

^b D incorporation determined by ¹H NMR spectroscopy.

^c Reaction carried out using 2.5 mol% of catalyst 3.
3. Substrate Scope for Tetrazole ortho-HIE Protocol

3.1 Notes

1. In the 1H NMR spectroscopic data reported for the tetrazoles, the N-H protons are not visible and are thus not reported.

2. Literature references are provided for the characterisation data of known compounds.

3. For each substrate, an overlay is shown of the 1H NMR spectra of both the starting tetrazole (green, top spectrum) and the labelled material (black, bottom spectrum). The integrals used to determine the level of incorporation on the labelled material are shown on the corresponding spectrum. Please note that only the 1H NMR spectrum of the labelled material is aligned with the x-axis (ppm).

4. In all reactions reported for the substrate scope (Scheme 2, main text), catalyst 3 (7.4 mg, 0.0043 mmol, 5 mol%) was employed. All reactions in Scheme 2 used 1 mL from a stock solution of Cs$_2$CO$_3$ (0.043 mM in methanol) as the combined source of solvent and base, and all reactions employed a temperature of 50 °C. Following the general procedure, results are reported as a) amount of substrate, b) reaction time, and c) level of deuterium incorporation.
3.2 Tetrazole Substrate Scope

5-Phenyl-1H-tetrazole 4a

Chemical Formula: C₇H₅N₄
Molecular Weight: 146.15

¹H NMR (300 MHz, DMSO-d₆): δ 8.05–8.02 (m, 2H, ArH), 7.63–7.58 (m, 3H, ArH¹ + ArH²). Incorporation expected at δ 8.05–8.02. Determined against integral at δ 7.63–7.58.

HRMS (positive ESI): m/z calculated for C₇H₅D₂N₄⁺ [M-d₂+H]⁺: 149.0796; found: 149.0791.

a) 12.6 mg, 0.086 mmol, b) 3 h and c) 87% D.
5-(4'-Methylphenyl)-1H-tetrazole 1^2

Chemical Formula: $C_8H_7N_4$
Molecular Weight: 160.18

1H NMR (300 MHz, DMSO-d_6): δ 7.92 (d, 2H, $J = 8.1$ Hz, ArH3), 7.40 (d, 2H, $J = 8.1$ Hz, ArH2), 2.38 (s, 3H, ArCH$_3^1$). Incorporation expected at δ 7.92. Determined against integral at δ 2.38.

HRMS (positive ESI): m/z calculated for $C_8H_7D_2N_4^+ [M-d_2+H]^+$: 163.0947; found: 163.0946.

a) 13.8 mg, 0.086 mmol, b) 3 h, and c) 85% D.
5-4′-Methoxyphenyl)-1H-tetrazole 4b³

Chemical Formula: C₈H₇N₄O
Molecular Weight: 176.18

¹H NMR (300 MHz, DMSO-d₆): δ 7.97 (d, 2H, J = 8.8 Hz, ArH³), 7.15 (d, 2H, J = 8.8 Hz, ArH²), 3.83 (s, 3H, OCH₃). Incorporation expected at δ 7.97. Determined against integral at δ 3.83.

HRMS (positive ESI): m/z calculated for C₈H₇D₂N₄O⁺ [M-d₂+H]⁺: 179.0896; found: 179.0895.

a) 15.2 mg, 0.086 mmol, b) 3 h, and c) 86% D.
5-(4′-Chlorophenyl)-1H-tetrazole 4c

Chemical Formula: C₇H₅ClN₄
Molecular Weight: 180.60

¹H NMR (300 MHz, DMSO-d₆): δ 8.04 (d, 2H, J = 8.6 Hz, ArH²), 7.68 (d, 2H, J = 8.6 Hz, ArH¹). Incorporation expected at δ 8.04. Determined against integral at δ 7.68.

HRMS (positive ESI): m/z calculated for C₇H₄D₂³⁵ClN₄⁺ [M-d₂+H]⁺: 183.0407; found: 183.0398.

HRMS (positive ESI): m/z calculated for C₇H₄D₂³⁷ClN₄⁺ [M-d₂+H]⁺: 185.0377; found: 185.0372.

a) 15.5 mg, 0.086 mmol, b) 3 h, and c) 93% D.
5-(4′-Trifluoromethylphenyl)-1H-tetrazole 4d

Chemical Formula: C₈H₅F₃N₄
Molecular Weight: 214.15

^1H NMR (300 MHz, DMSO-d₆): δ 8.25 (d, 2H, J = 8.3 Hz, ArH²), 7.98 (d, 2H, J = 8.3 Hz, ArH¹). Incorporation expected at δ 8.25. Determined against integral at δ 7.98.

HRMS (positive ESI): m/z calculated for C₈H₄D₂F₃N₄⁺ [M-d₂+H]⁺: 217.0670; found: 217.0665.

a) 18.4 mg, 0.086 mmol, b) 3 h, and c) 91% D.
5-(3-Methylphenyl)-1H-tetrazole 4e

Chemical Formula: C$_8$H$_7$N$_4$
Molecular Weight: 160.18

1H NMR (300 MHz, DMSO-d$_6$): δ 7.86 (s, 1H, ArH5), 7.82 (d, 1H, $J = 7.7$ Hz, ArH4), 7.48 (t, 1H, $J = 7.7$ Hz, ArH3), 7.41–7.39 (m, 1H, ArH2), 2.40 (s, 3H, ArCH$_3$). Incorporation expected at δ 7.86 and 7.82. Determined against integral at δ 2.40.

HRMS (positive ESI): m/z calculated for C$_8$H$_7$D$_2$N$_4^+$ [M-d$_2$+H]$^+$: 163.0947; found: 163.0946.

HRMS (positive ESI): m/z calculated for C$_8$H$_8$DN$_4^+$ [M-d$_1$+H]$^+$: 162.0884; found: 162.0884.

a) 13.8 mg, 0.086 mmol, b) 3 h, and c) 83% D (ArH4), 58% D (ArH5).
5-(3-Chlorophenyl)-1H-tetrazole 4f

Chemical Formula: C$_7$H$_5$ClN$_4$
Molecular Weight: 180.60

1H NMR (300 MHz, DMSO-d_6): δ 8.07–8.06 (m, 1H, ArH$_4$), 8.02–7.98 (m, 1H, ArH$_3$), 7.68–7.60 (m, 2H, ArH$_1$ + ArH$_2$). Incorporation expected at δ 8.07–8.06 and 8.02–7.98. Determined against integral at δ 7.68–7.60.

HRMS (positive ESI): m/z calculated for C$_7$H$_4$D$_2$35ClN$_4^+ $ [M-d$_2$+H]$^+$: 183.0407; found: 183.0403.

HRMS (positive ESI): m/z calculated for C$_7$H$_4$D$_2$37ClN$_4^+ $ [M-d$_2$+H]$^+$: 185.0377; found: 185.0372

a) 15.5 mg, 0.086 mmol, b) 3 h, and c) 91% D (ArH$_3$), 93% D (ArH$_4$).
5-(2-Methylphenyl)-1H-tetrazole 4g

Chemical Formula: C₈H₈N₄
Molecular Weight: 160.18

¹H NMR (300 MHz, DMSO-d₆): δ 7.92 (d, 1H, J = 7.6 Hz, ArH⁵), 7.50–7.36 (m, 3H, ArH²⁻⁴), 2.43 (s, 3H, ArCH₃¹). Incorporation expected at δ 7.92. Determined against integral at δ 2.43.

HRMS (positive ESI): m/z calculated for C₈H₈DN₄⁺ [M-d₁+H]⁺: 162.0890; found: 162.0884.

a) 13.8 mg, 0.086 mmol, b) 16 h, and c) 81% D.
5-Benzyl-1H-tetrazole\(^1\) (Not shown in Scheme 2 but discussed in the manuscript text)

\[
\begin{array}{cccccccc}
\text{Chemical Formula: } & C_9H_8N_4 \\
\text{Molecular Weight: } & 160.18 \\
\end{array}
\]

\(^1\text{H NMR (300 MHz, DMSO-d}_6\): } \delta 7.35–7.25 \text{ (m, 5H, ArH}\(^1\text{–3}), 4.28 \text{ (s, 2H, PhCH}_2\(^4\).}

Incorporation expected at δ 7.35–7.25. Determined against integral at δ 4.28.

a) 13.8 mg, 0.086 mmol, b) 3 h, and c) 0% D.
4. Isotope Labelling of Valsartan

4.1 Deuteration of Valsartan

The deuterium labelling reaction was carried out in a Heidolph Synthesis 1 Liquid 16 device. **NOTE**: compared to the Radley carousel, the Heidolph system possesses smaller reaction tubes (10 mL *versus* 25 mL). This results in an overall reduced excess of deuterium gas.

Following the general procedure, no work-up of the sample was carried out. Results adjacent to spectroscopic data are reported as: a) amount of 5, b) amount of 3, c) amount of Cs₂CO₃, d) amount of MeOH, e) reaction temperature, f) reaction time, and g) %D.

It has been reported in the literature that Valsartan 5 exists in solution as a pair of rotamers, due to hindered rotation around the amide bond. In light of these complications, full ^1^H NMR spectroscopic analysis of 5 is not provided. Instead, partial analysis of the aromatic and stereogenic protons is given, along with the LC-MS trace showing the predominance of 5-d₁.

Valsartan 5

![Chemical Structure of Valsartan 5](image)

Chemical Formula: C₂₄H₂₉N₅O₃
Molecular Weight: 435.52

^1^H NMR (500 MHz, DMSO-d₆): δ 7.69–7.64 (m, 2H, ArH¹ + ArH³), 7.56–7.52 (m, 2H, ArH² + ArH⁴), 7.25–7.02 (2 × d, with each d split in the ratio 2:1 according to the presence of two rotamers, 4H in total, both d share J = 8.3 Hz, ArH⁵ + ArH⁶), 4.59 and 4.15 (1 × d split in the ratio 2:1 according to the presence of two rotamers, 1H in total,
both d share $J = 10.6$ Hz, CH12). Incorporation expected at δ 7.69–7.6. Determined against integral at δ 7.25–7.02.

HRMS (positive ESI): m/z calculated for C$_{24}$H$_{29}$DN$_5$O$_3^+$ [M-d$_1$+H]$^+$: 437.2412; found: 437.2406.

a) 18.5 mg, 0.043 mmol, b) 3.7 mg, 0.002 mmol, 5 mol%, c) 14.0 mg, 0.043 mmol, d) 1mL, e) 50 °C, f) 6 h, and g) 88% D.

The 1H NMR spectrum of deuterium labelled Valsartan 5 is shown below, followed by expansions of the 7.4–7.9 ppm and 4.1–4.6 ppm regions, respectively. From this, it can be seen that the stereogenic proton, H12, remains largely unchanged, with an estimated total integration of ~1H:
LC-MS (System 1) supports the presence of 5-d₁ as the major product.
4.2 Tritiation of Valsartan

The tritiation of Valsartan 5 was carried out at Sanofi (Frankfurt) using a standard Tritec® tritium manifold. Valsartan 5 (3.5 mg, 8.0 µmol), Cs₂CO₃ (2.62 mg, 8.0 µmol, 1 eq.), and catalyst 3 (0.7 mg, 8.0 µmol, 6.7 mol%) were dissolved in MeOH (0.7 mL) in a 1.0 mL reaction flask before being connected to the manifold. The solution was frozen in liquid nitrogen and the flask was evacuated, then charged with tritium (1.5 Ci, 212–370 mbar). The reaction mixture was then allowed to warm to room temperature over 15 min before stirring at r.t. for a further 30 min (212 mbar pressure). The reaction mixture was then heated to 50 °C (370 mbar pressure) and stirred for 45 min before cooling again to r.t. and stirring for a final 2 h. Purification and isolation via HPLC gave the tritiated product (0.91 mg, 5-T₁, 98.9% radiochemical purity). Radiochemical purity was established by comparison of the activity of the product-containing CH₃CN/H₂O fraction following HPLC purification (1168.7 MBq), with the activity of 5-T₁ (15 Ci/mmol), which was measured by TOF-MS.

³H NMR (533 MHz, DMSO-d₆): δ 7.63 (d, 1H, ³J₃-H₁ = 9.1 Hz, ArH¹)

HRMS (positive ESI): m/z calculated for C₂₄H₂₉TN₅O₃⁺ [M-t₁+H⁺]: 438.2431; found: 438.2502.

The ³H NMR spectrum, below, shows tritium incorporation ortho to the tetrazole only:
533 MHz 3H/T Dr. De Valsartan-T FFC. URA.055.1 0.05mg ; DMSO-d6

S24
5. Investigating Nitro versus Tetrazole Labelling

In both studies, substrate 4h (16.4 mg, 0.086 mmol) was employed with catalyst 3 (7.4 mg, 0.0043 mmol, 5 mol%). The basic reaction (Table S2, entry 1) employed base from a stock solution of Cs₂CO₃ (1 mL, 0.043 mM in MeOH) as the combined source of solvent and base. The base-free reaction (Table S2, entry 2) used MeOH (1 mL) as the solvent rather than the stock base solution. The general labelling procedure for the optimized deuteration conditions was followed otherwise, and no work-up was used before analysis. The results are summarised in Table S2.

Table S2

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>%D<sup>a</sup></th>
<th>%D<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>a</sup></td>
<td>basic</td>
<td>89</td>
<td>8</td>
</tr>
<tr>
<td>2<sup>b</sup></td>
<td>base-free</td>
<td>30</td>
<td>27</td>
</tr>
</tbody>
</table>

^a Conditions: 4h (16.4 mg), Cs₂CO₃ (1 mL, 0.043 mM in MeOH), 3 (5 mol%), 3 h, 50 ºC.

^b Conditions: 4h (16.4 mg), MeOH (1 mL), 3 (5 mol%), 3 h, 50 ºC.
5-(4-Nitrophenyl)-1H-tetrazole 4h

\[
\text{Chemical Formula: } C_7H_5N_5O_2 \\
\text{Molecular Weight: 191.15}
\]

\(^1\text{H NMR (300 MHz, DMSO-d}_6\)): \(\delta 8.42 (d, 2H, J = 8.8 \text{ Hz, ArH}^1), 8.29 (d, 2H, J = 8.8 \text{ Hz, ArH}^2)\). Incorporation expected at all positions. For the base-free reaction, incorporation at positions ArH\(^1\) and ArH\(^2\) was measured against an equimolar quantity of the following internal standard (15.5 mg, 0.086 mmol):

\[
\text{Chemical Formula: } C_{10}H_{12}O_3 \\
\text{Molecular Weight: 180.20}
\]

\(^1\text{H NMR (300 MHz, DMSO-d}_6\)): \(\delta 7.61 (s, 2H, \text{ArH}^3), 3.67 (s, 3H, \text{ArOCH}_3^1), 2.23 (s, 6H, \text{ArCH}_3^2)\). Signal at \(\delta 3.67\) used to calibrate the extent of integrals in labelled 4i.

For the base-mediated reaction, the ratio of \(^1\text{H NMR spectrum signals in the product was compared to HRMS data in order to estimate the %D adjacent to each directing group. Specifically, a } ^1\text{H NMR spectrum residual peak ratio of 1:0.095 b:a (i.e. favouring tetrazole labelling) was compared to HRMS peaks } [\text{M-d}_n\text{+H}^+]^+ (n = 1, 2, 3) \text{ in the ratio 7.4:85.0:7.6 (d}_1:\text{d}_2:\text{d}_3) \text{. This translates to approximately 89% D}^a \text{ and 8% D}^b.\]

\text{HRMS (positive ESI): m/z calculated for } C_7H_4D_2N_5O_2^+ [\text{M-d}_2\text{+H}]^+: 194.0647; \text{ found: 194.0655.}
6. Mechanistic Studies

6.1 Investigating the pH of the Reaction and Likely State of the Tetrazole

Methyl red indicator test

As described in the results section (main text), substrate 4d was used in repeat experiments of the conditions from Table 1, Entries 12 and 14. In the first instance, these two reactions were compared visually (after the 3 h reaction time) without the addition of indicator (top, Figure S1). Separately, two more reactions were carried out, and a similar visual comparison made after the addition of a spatula-tip of methyl red into each carousel flask (bottom, Figure S1). See Figure S1 below for a comparison of the reactions with and without indicator; left flask – without base; and right flask – with base.

![Figure S1](image_url)

Figure S1. The nature of the substrate versus reaction basicity.
19F NMR studies of substrate 4d

NOTE: all NMR studies in this section were carried out separately from the methyl red experiments. The following NMR data relates to the right-hand side of Figure 1 in the main text.

The relevant data for substrate 4d in methanol-d$_4$ are provided below:

![Chemical Structure of 4d](image)

1H NMR (400 MHz, Methanol-d$_4$): δ 8.24 (d, 2H, $J = 8.6$ Hz, ArH2), 7.89 (d, 2H, $J = 8.6$ Hz, ArH1).

19F NMR (376 MHz, Methanol-d$_4$): δ −64.6 (CF$_3$).

To assess the effects of the basic reaction conditions on tetrazole 4d, the substrate (18.4 mg, 0.086 mmol), catalyst 3 (7.4 mg, 0.0043 mmol), and Cs$_2$CO$_3$ (14.0 mg, 0.043 mg) were dissolved in methanol-d$_4$ (1 mL) and added to an oven-dried NMR tube. After sealing the tube with a rubber septum, D$_2$ was bubbled through the tube for 30 min prior to NMR spectroscopic analysis at 300 K.

Similarly, for assessing the base-free conditions, a sample identical to that above, minus the addition of Cs$_2$CO$_3$, was prepared in a separate NMR tube.

Comparative 1H NMR spectrum resonances (not shown in the main text) are provided below. In addition, all peak positions and relevant integrations are listed in Table S3, below the spectra.
Table S3

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>19F NMR / ppm</th>
<th>1H NMR / ppma</th>
<th>Integral ratio (ArH$_2$:ArH$_1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tetrazole only</td>
<td>-64.6</td>
<td>8.24, 7.89</td>
<td>2.0 : 2.0</td>
</tr>
<tr>
<td>2b</td>
<td>Basic reaction</td>
<td>-64.2</td>
<td>8.24, 7.77</td>
<td>0.3 : 2.0</td>
</tr>
<tr>
<td>3</td>
<td>Base-free reaction</td>
<td>-64.6</td>
<td>8.26, 7.91</td>
<td>1.8: 2.0</td>
</tr>
</tbody>
</table>

a Position of each resonance stated only (no coupling given).

b Significant deuterium labelling observed in ortho-positions.
6.2 31P NMR Spectroscopic Study of the Catalyst with Various Components of the Tetrazole Labelling Method

The relevant spectroscopic analyses of complex 3 in methanol-d$_4$ are given below. **NOTE**: the complex is only sparingly soluble in methanol-d$_4$ and has to be shaken vigorously to obtain a red solution.

19F NMR (376 MHz, methanol-d$_4$): δ -64.3 (BAr$_f$ ArCF$_3$). These spectral details were largely unchanged between 300 K and 318 K.

31P NMR (162 MHz, methanol-d$_4$): δ -5.94 (PPh$_3$).

31P NMR (162 MHz, methanol-d$_4$): δ 32.1 (Ph$_3$P=O).

1H NMR (400 MHz, methanol-d$_4$): δ 7.74 (s, 2H, NCH=CHN), 7.61–7.59 (m, 12H, ArH$_{BaF}$), 7.52–7.48 (m, 3H, ArH), 7.38–7.33 (m, 6H, ArH), 7.24–7.19 (m, 6H, ArH), 7.13 (s, 2H, ArH), 6.76 (s, 2H, ArH), 4.48–4.45 (m, 2H, COD CH), 3.39–3.36 (m, 2H, COD CH), 2.37 (s, 6H, ArCH$_3$), 2.17 (s, 6H, ArCH$_3$), 1.83 (s, 6H, ArCH$_3$), 1.76–1.52 (m, 6H, COD CH$_2$), 1.34–1.29 (m, 2H, COD CH$_2$).

31P NMR (162 MHz, methanol-d$_4$): δ 16.2 (PPh$_3$).

Triphenylphosphine oxide

31P NMR (162 MHz, methanol-d$_4$): δ 32.1 (Ph$_3$P=O).
A $^{31}\text{P}^{1\text{H}}$ NMR spectroscopic study of the catalyst in methanol-d$_4$ under various conditions revealed an intriguing variation in the phosphine-containing species present in solution. A single peak at 16.2 ppm was visible for the precatalyst, 3, in the absence of any other reagent. Interestingly, whether mixing either 3 with H$_2$, or 3 with Cs$_2$CO$_3$, complete conversion to a peak at 32.3 ppm, corresponding to Ph$_3$P=O, was observed in both cases. Only when 3, Cs$_2$CO$_3$, and H$_2$ were mixed together, were distinct peaks at 14.2 and 13.3 ppm observed, corresponding to the active catalyst, with both signals persisting in the presence of tetrazole 4d. Figure S2 below shows the $^{31}\text{P}^{1\text{H}}$ NMR spectroscopic study of complex 3 with various components of the tetrazole labelling method. The specific details of each entry (1 – 7) are detailed following the image.

![Figure S2. $^{31}\text{P}^{1\text{H}}$ NMR study of complex 3.](image-url)
Analysis of Catalyst 3 + Cs$_2$CO$_3$

Catalyst 3 (7.4 mg, 0.0043 mmol) and Cs$_2$CO$_3$ (2.8 mg, 0.0086 mmol, 2.0 eq.) were dissolved in methanol-d$_4$ (1 mL) in an NMR tube, which was then sealed under an argon atmosphere. The contents of the tube were shaken vigorously for 10 min, causing a red to yellow colour change. NMR spectroscopic analysis of the sample at 300 K is provided (primarily 31P). Additional spectral overlays are provided for 1H NMR spectroscopic data (relative to catalyst 3) where formal peak assignment is not yet possible.

31P NMR (162 MHz, methanol-d$_4$): δ 32.3 (unknown).

19F NMR (376 MHz, methanol-d$_4$): δ –64.3 (BArF ArCF$_3$).

1H NMR (400 MHz, methanol-d$_4$): overlayed with 3 (green) below (7.8–6.3 ppm, 6.2–2.4 ppm and 2.4–1.0 ppm regions, respectively).
Similar results were obtained with only 1 eq. of Cs$_2$CO$_3$ (14.0 mg, 0.043 mmol) under otherwise identical conditions.
Analysis of Catalyst 3 + H₂

Catalyst 3 (7.4 mg, 0.0043 mmol) was placed in methanol-d₄ (1 mL) in an NMR tube, which was then sealed using a rubber septum. Hydrogen gas was bubbled through the mixture with shaking, dissolving the precatalyst and giving a clear yellow solution.

³¹P NMR (162 MHz, methanol-d₄): δ 32.4 (unknown).

¹⁹F NMR (376 MHz, methanol-d₄): δ −64.3 (BArF₃ArCF₃).

¹H NMR (400 MHz, methanol-d₄): overlayed with 3 (green).

No hydride signals (δ < 0 ppm) were observed. This is presumably due to exchange with methanol-d₄.
Analysis of Catalyst 3 + H₂ + Cs₂CO₃

Catalyst 3 (7.4 mg, 0.0043 mmol) and Cs₂CO₃ (14.0 mg, 0.043 mmol) were dissolved in methanol-d₄ (1 mL) in an NMR tube, which was then sealed using a rubber septum. Hydrogen gas was then bubbled through the mixture, producing a clear yellow solution.

³¹P NMR (162 MHz, methanol-d₄): δ 32.3, 14.2, 13.3 (unknown).

¹⁹F NMR (376 MHz, methanol-d₄): δ −64.3 (BArF ArCF₃).

¹H NMR (400 MHz, methanol-d₄): The overlap provided shows the current experiment (black) versus the previous experiment (green), where catalyst 3 was mixed only with H₂. Analysis of the aliphatic region shows the formation of at least two distinct patterns of mesityl substitution. Analysis of the hydride region shows a trace doublet (−9.7 ppm) with a suspected ³J_H,P = 13.6 Hz, consistent with a cis-ligated phosphine relative to at least one hydride ligand.
Analysis of Catalyst 3 + H₂ + Cs₂CO₃ + tetrazole 4d

Catalyst 3 (7.4 mg, 0.0043 mmol), Cs₂CO₃ (14.0 mg, 0.043 mmol) and tetrazole 4d (1.1 mg, 0.0086 mmol) were dissolved in methanol-d₄ (1 mL) in an NMR tube, which was then sealed using a rubber septum. Hydrogen gas was bubbled through the mixture, producing a clear yellow solution.

³¹P NMR (162 MHz, methanol-d₄): δ 32.3, 14.3 (trace), 13.5 (unknown).

¹⁹F NMR (376 MHz, methanol-d₄): δ -64.3 (BArF ArCF₃), -64.2 (tetrazole CF₃).

¹H NMR (400 MHz, methanol-d₄): The overlay provided shows the current experiment (black) versus the previous experiment (red), where the tetrazole was absent. Firstly, it appears that similar species are formed in solution in the presence or absence of tetrazole 4d. Most interestingly, however, complete exchange of the ortho-protons was observed, despite the fact that H₂ has been used in place of D₂. The use of a 1:2 mixture of 3:4d does not allow definitive conclusions to be drawn regarding the catalytic reactions. Nonetheless, this may indicate a favorable exchange between H (in the H₂) and D (in methanol-d₄), mediated by iridium. Analysis of the hydride region allowed observation of the same trace doublet (~9.7 ppm) with a suspected ³J_H-P = 12.8 Hz, consistent with a cis-ligated phosphine relative to at least one hydride.
6.3 Investigating the Effect of Substrate Electronics in Ir-catalysed Tetrazole Labelling

Following the general labelling procedure, tetrazoles 1 and 4a–4d were subjected to the optimised labelling conditions as reported above for the reaction scope. The only change was in the reaction time (now 5 min rather than 3 h). For brevity, readers are directed to the spectroscopic data and reagent stoichiometries reported in Section 3.2. For construction of the Hammett plot, the %D values for substrates manifesting <30\% D incorporation after 5 min (X = H, Me, and OMe) were used as reaction rate surrogates. These values are shown below, in Table S4.

Table S4

<table>
<thead>
<tr>
<th>Entry</th>
<th>X</th>
<th>Substrate</th>
<th>%D</th>
<th>%D_X/%D_H</th>
<th>log_{10}(%D_X/H)</th>
<th>F^b</th>
<th>R^b</th>
<th>\sigma_P^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>4a</td>
<td>26</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>1</td>
<td>14</td>
<td>0.54</td>
<td>-0.27</td>
<td>0.01</td>
<td>-0.18</td>
<td>-0.17</td>
</tr>
<tr>
<td>3</td>
<td>OMe</td>
<td>4b</td>
<td>10</td>
<td>0.38</td>
<td>-0.41</td>
<td>0.29</td>
<td>-0.56</td>
<td>-0.26</td>
</tr>
<tr>
<td>4^a</td>
<td>Cl</td>
<td>4c</td>
<td>73</td>
<td>2.81</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5^a</td>
<td>CF_3</td>
<td>4d</td>
<td>67</td>
<td>2.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Not considered in the Hammet analysis.

^b Field (F) and resonance (R) values obtained from the literature.11

^c \sigma_P = a.F + b.R such that \sigma_P produces a straight line of R^2 = 1 when plotted against log_{10}(%D_X/H). Here, a = 1.00 and b = 0.98. In other words, field and resonance effects are almost balanced.
The graph in Figure S3 shows the ρ value calculated from Table S4:

$$y = 1.60x - 0.00$$

$R^2 = 1.00$

Figure S3. Pseudo-Hammett values for 1, 4a and 4b.
6.4 Investigating the Role of the PPh₃ Ligand in Ir-catalyzed Tetrazole Labelling

Synthesis of \(\eta^4 \)-cycloocta-1,5-diene(1,3-dimesitylimidazol-2-ylidene)(acetonitrile)iridium(I) hexafluorophosphate 6

The yellow complex [(COD)Ir(IMes)Cl] (0.250 g, 0.389 mmol, 1 eq.,12) was dissolved in dry THF (10 mL) in a flame-dried round-bottom flask, fitted with a stopcock sidearm. After all the solids had dissolved, AgPF₆ (0.098 g, 0.389 mmol, 1 eq.) was added, affording a yellow to opaque orange colour change and formation of a precipitate. The reaction mixture was stirred for 15 min at r.t. before filtration through Celite under argon. Addition of dry acetonitrile (0.020 mL, 0.016 g, 0.389 mmol, 1 eq.) to the clear orange solution resulted in the immediate appearance of a bright red colour. After stirring for 16 h at r.t., the THF solution was reduced to a quarter of its original volume and the residue triturated using cold hexane, to afford the product as an orange solid (0.241 g, 78% yield).

Appearance: orange/yellow solid.

m.p.: \(>175 \) °C (dec.).

FTIR (neat): 2980, 2935, 2920, 2885, 1607, 1495, 1335, 1240 cm\(^{-1}\).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.10 (s, 2H, NCH=CHN), 7.08 (bs, 4H, ArH), 4.03–4.01 (m, 2H, COD CH), 3.46–3.44 (m, 2H, COD CH), 2.48 (s, 3H, CH\(_3\)CN), 2.41 (s, 6H, ArCH\(_3\)), 2.18 (s, 12H, ArCH\(_3\)), 1.89–1.82 (m, 2H, COD CH\(_2\)), 1.75–1.66 (m, 2H, COD CH\(_2\)), 1.61–1.51 (m, 4H, COD CH\(_2\)).
\textbf{13C NMR (100 MHz, CDCl}$_3$\textbf{)}: \(\delta\) 173.9, 140.0, 135.0, 134.9, 129.3, 125.1, 124.2, 82.7, 65.8, 32.8, 29.0, 21.1, 18.3, 3.44.

\textbf{13C JMOD NMR (100 MHz, CDCl}$_3$\textbf{)}: \(\delta\) 140.0 (CH$_3$CN, inverted), 135.0 (inverted), 134.9 (inverted), 129.3, 125.1 (inverted), 124.2, 82.7 (inverted), 65.8 (inverted), 32.8 (inverted), 29.0 (inverted), 21.1, 18.3, 3.44 (CH$_3$CN, inverted).

\textbf{31P NMR (162 MHz, CDCl}$_3$\textbf{)}: \(\delta\) –144.4 (septet, \(^1\)J\textsubscript{P,F} = 711.8 Hz, PF$_6$).

\textbf{19F NMR (376 MHz, CDCl}$_3$\textbf{)}: \(\delta\) –73.2 (d, \(^1\)J\textsubscript{P,F} = 711.8 Hz, PF$_6$).

\textbf{HRMS (positive ESI)}: No mass ion was observed nor was expected, based on literature precedent.13 Suspected fragment (structure shown below) m/z calculated for \([\text{M} – \text{PF}_6 – \text{COD} – \text{MeCN} – 2\text{H}]^+\): 495.1412; found: 495.1402.

![Chemical Formula: C$_{31}$H$_{22}$IrN$_2$
Molecular Weight: 494.6380]

\textit{Application of NHC/Acetonitrile Catalyst 6 in Tetrazole Labelling}

Following the general procedure (page S5), tetrazoles 1, 4a – 4d, and 4i were subjected to identical labelling conditions as reported earlier for the reaction scope. The only change was in the catalyst (2 and 6, rather than 3). The comparison of catalysts here was chosen in order to maintain the same counterion whilst comparing the phosphine/NHC and acetonitrile/NHC combinations. For brevity, readers are directed to the spectroscopic data and reagent stoichiometries reported in Section 3.2. The data for catalysts 2 versus 6 are shown in Table S5 below. Spectroscopic data for substrate 4i are also provided.
Table S5

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>X</th>
<th>R</th>
<th>%D (catalyst 2)a</th>
<th>%D (catalyst 6)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4a</td>
<td>H</td>
<td>H</td>
<td>83</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Me</td>
<td>H</td>
<td>83</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4b</td>
<td>OMe</td>
<td>H</td>
<td>89</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>4c</td>
<td>Cl</td>
<td>H</td>
<td>78</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>4d</td>
<td>CF\textsubscript{3}</td>
<td>H</td>
<td>93</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>4i</td>
<td>H</td>
<td>Me</td>
<td>17 (29)c</td>
<td>22</td>
</tr>
</tbody>
</table>

a Conditions: Substrate (0.086 mmol), Cs\textsubscript{2}CO\textsubscript{3} (1 mL from 0.043 mM solution in MeOH), 2 (4.3 mg, 0.0043 mmol, 5 mol%).

b Conditions: Substrate (0.086 mmol), Cs\textsubscript{2}CO\textsubscript{3} (1 mL from 0.043 mM solution in MeOH), 6 (3.4 mg, 0.0043 mmol, 5 mol%).

c The reaction in parenthesis was carried out in the absence of base.
5-Phenyl-N-methyltetrazole 4i14

![Chemical structure of 4i]

Chemical Formula: C\textsubscript{8}H\textsubscript{8}N\textsubscript{4}
Molecular Weight: 160.18

1H NMR (300 MHz, Methanol-d\textsubscript{4}): \(\delta\) 7.85–7.82 (m, 2H, ArH3), 7.68–7.61 (m, 3H, ArH1–2), 4.21 (s, 3H, NCH\textsubscript{3}). Incorporation expected at \(\delta\) 7.85–7.82. Determined against integral at \(\delta\) 4.21.

13.8 mg, 0.086 mmol of substrate 4i were employed.

Entry 6, catalyst 2:
Entry 6, catalyst 2 (parenthesis):

Entry 6, catalyst 6:
6.5 Investigating the Importance of N-H Tetrazoles and Changes in the Active Catalyst – Additional Reactions Not in the Main Text

In reaction both with and without base, substrate 4i (13.8 mg, 0.086 mmol) was employed with catalyst 3 (7.4 mg, 0.0043 mmol, 5 mol%). The base-free reaction (A, below) used MeOH (1 mL) as the solvent rather than the stock base solution. The basic reaction (B, below) employed base from a stock solution of Cs$_2$CO$_3$ (1 mL, 0.043 mM in MeOH) as the combined source of solvent and base. The general labelling procedure for the optimised deuteration conditions was followed otherwise, and no work-up was used before analysis. As for similar reactions employing catalyst 2 (Table S5), the N-protected tetrazole gave only low levels of deuterium incorporation under the reaction conditions (Table S6, below), showing again that the method is selective for unprotected tetrazoles.

![Diagram](image)

Table S6

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>% D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>basic</td>
<td>28</td>
</tr>
<tr>
<td>2b</td>
<td>base-free</td>
<td>17</td>
</tr>
</tbody>
</table>

a Conditions: 4i (13.8 mg, 0.086 mmol), Cs$_2$CO$_3$ (1 mL, 0.043 mM in MeOH), 3 (5 mol%).

b Conditions: 4i (13.8 mg, 0.086 mmol), MeOH (1 mL), 3 (5 mol%).
6.6 Probing the Deuterium Source in Ir-catalysed Tetrazole Labelling

Labelling of Substrate 1 in Methanol-d₄ in the Absence of D₂

Following the general labelling procedure, tetrazole 1 (13.8 mg, 0.086 mmol), Cs₂CO₃ (14.0 mg, 0.043 mmol), and catalyst 3 (7.4 mg, 0.0043 mmol) were dissolved in methanol-d₄ (1 mL) and added to an oven-dried carousel tube under an argon atmosphere. Here, no cooling was carried out as no D₂ was introduced to the system. The reaction tube was heated to 50 °C (as before) and the solution stirred for 3 h. The solvent was removed in vacuo and the product analysed directly via ¹H NMR spectroscopy (8% D incorporation). See Section 3.2 for the spectroscopic data relating to 1.

Labelling of Substrate 1 in Methanol-d₄ in the Presence of D₂

Following the general labelling procedure, tetrazole 1 was subjected to identical labelling conditions as reported in Section 3.2 for the reaction scope, but replacing MeOH with methanol-d₄. The concentrated reaction mixture was analysed directly via ¹H NMR spectroscopy (98% D incorporation). See Section 3.2 for the spectroscopic data relating to 1.
7. Additional HRMS Data

Tetrazole 1

HRMS (positive ESI; NMSSC):
Tetrazole 4a

HRMS (positive ESI; Sanofi):

[Image of HRMS spectrum]

Acquisition Date: 1/14/2015 9:45:29 AM
Operator: def16998
Instrument: miroTOF-Q II

Analysis Info
Analysis Name: D:\Data\Labor 119\NMR\Labor\Marc Reid HRMS\MR 11.1_BB1_01_345.d
Method: low more dry gas calip spae.rt.n
Sample Name: MR 11.1
Comment: "halixassker"
A: H2O/ACN/TFA 900:100:0.5
B: H2O/ACN/TFA 100:500:0.375
Tetrazole 4b

HRMS (positive ESI; NMSSC):
Tetrazole 4c

HRMS (positive ESI; Sanofi):

[Image of HRMS graph]

M/z: 183.0398, 185.0372, 182.0332, 184.0406, 186.0390
Tetrazole 4d

HRMS (positive ESI; Sanofi):

Generic Display Report

Acquisition Date: 1/14/2015 9:52:35 AM
Analysis Name: D:\Data\Labor 119\NMR\Labor 119 HRMS/HRMS/11.2_B82_01_347.d
Method: low m/z dry gas calibr stakes
Sample Name: MR 11.2
Comment: Halbmasseter
A: H2O/ACN/TFA 995:100:0.5
B: H2O/ACN/TFA 100:900:0.375

M11.2_B82_01_347.d: m/z 31.1-0.2 min #1-12

Bruker Compass DataAnalysis 4.1 printed: 1/14/2015 10:03:17 AM by: de016956 Page 1 of 1
Tetrazole 4e

HRMS (positive ESI; NMSSC):
Tetrazole 4f

HRMS (positive ESI; Sanofi):
Tetrazole 4g

HRMS (positive ESI; Sanofi):
Tetrazole 4i (base-mediated)

HRMS (positive ESI; Sanofi):

![HRMS spectrum image]
Tritiated Valsartan 5-t
8. Additional LC-MS Data

Tetrazole 4a

LC-MS(System 2):

Tetrazole 4b

LC-MS(System 2):
Tetrazole 4c

LC-MS(System 2):

Tetrazole 4d

LC-MS(System 2):
Tetrazole 4e

LC-MS(System 2):

Tetrazole 4f

LC-MS(System 2):
Tetrazole 4g

LC-MS(System 2):

5-Benzyl-1H-tetrazole

LC-MS(System 2):
9. References