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Abstract This work deals with the stabilisation of mixed methods for the Stokes
problem on anisotropic meshes. For this, we extend a method proposed previously
in Liao & Silvester (2013), to cover the case in which the mesh contains anisotrop-
ically refined corners. This modification consists of adding extra jump terms in se-
lected edges connecting small shape regular with large anisotropic elements. We
prove stability and convergence of the proposed method, and provide numerical ev-
idence for the fact that our approach successfully removes the dependence on the
anisotropy.

1 Introduction

This work deals with a stabilised discretisation of the Stokes problem. In a bounded,
connected, polygonal domain Ω ⊂R2, this problem reads as follows: Find a velocity
u and a pressure p such that

−∆u+∇p = f , divu = 0 in Ω (1)

subject to u = 0 on ∂Ω and 〈p〉
Ω
= 0, where 〈p〉

ω
denotes the mean value of p over

ω ⊂Ω , and f ∈ L2(Ω)2 is a given source term.
For the discrete space we choose the Q1×P0 pair and allow the mesh to be

anisotropic. It is well known that the Q1×P0 pair is not inf-sup stable (cf. [5]).
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Over the years several stabilised finite element methods have been proposed (see
the introduction in [7] and the references therein).

In this work, we focus on the case in which the mesh used contains anisotropic el-
ements. This possibility is considered in [7], but the method needs to be extended to
accommodate the anisotropies we consider in this paper. More precisely, the method
considered in [7] is an extension of the locally stabilised FEM [6]. To build the
method, the mesh P used in the discretisation has to be a uniform refinement of an
initial partition P0 (see Fig. 1). In this initial partition, each macro element M is di-
vided into 4 quadrangles by connecting the mid-points of opposite edges (see Fig. 1,
right). The stability of the locally stabilised method is a consequence of the stability
of the Q2×P0 space over the initial partition P0. Now, it is well-known (see [3]) that
the following fact holds

inf
q∈P0

sup
v∈Q2

(q,divv)
Ω

|v|1,Ω ‖q‖0,Ω
≥C
√

κ (2)

where κ = h/H is the grading factor1. This leads to a deterioration of the stability
constant when the grading factor κ tends to zero, as in Figure 1. This dependence
is still present in [7], since that method only considers jumps inside the macro-
elements M ∈ P0, and then, in such a case, a deterioration of stability of the type (2)
will not be corrected.
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Fig. 1 Partition P0 (left) and P (right). We call this P0 corner patch.

The objective of this work is to propose an extension of the method from [7]
which remains uniformly stable as the grading factor goes to zero. For this, we apply
the techniques recently developed in [2] and augment the method by adding jumps in
selected edges of the partition P (not present in the original method). More precisely,
we add jumps to the formulation that allow to “connect” the small (shaded) corner
macro-element in P0 to the rest of the corner patch from Figure 1.

Throughout, we use standard notation for Sobolev spaces [1]. The variational
form of (1) consists of seeking u ∈ V := H1

0(Ω) and p ∈M := L2
0(Ω) such that

B(u, p;v,q) = (f,v)
Ω

for all (v,q) ∈ V×M (3)

1 Not to be confused with the aspect ratio ρ = h/H, in case of P0 given by Figure 1 (left).
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where
B(u, p;v,q) = (∇u,∇v)

Ω
− (divv, p)

Ω
− (divu,q)

Ω . (4)

Problem (3) is well-posed as consequence of inf-sup condition [5, pp. 58-61]:

inf
q∈M

sup
v∈V

(divv,q)
Ω

|v|1,Ω ‖q‖0,Ω
= βΩ > 0. (5)

The rest of this paper is organised as follows. We define required notation and ex-
tend the stabilisation terms of the method in [7] by a few jumps. Then, the stability,
a-priori estimates and numerical experiments are stated. These experiments confirm
the dependency on the grading factor κ and that the additional jumps remove it.
The proof of the main results is given after the concluding remarks. An appendix
justifies the numerical experiments made.

1.1 The finite element approximation

Let P be a given conforming partition of Ω into the union of closed parallelograms
for which the non-empty intersection of distinct elements K and K′ is either a single
common point or an edge of both elements. We define the spaces

Q`,P :=
{

v ∈ V : v|K ∈Q`(K)2 ∀K ∈ P
}
, `= 1,2 (6)

and
MP := {q ∈M : q|K ∈ P0(K) ∀K ∈ P} . (7)

Then, the approximation of the solution of Problem (3) is sought within Q1,P×MP.
It is well known that the pair Q1,P×MP does not satisfy a discrete version of (5)

(cf. [7] and the references therein). Adding stabilisation terms can circumvent this
disadvantage. We now introduce notation and requirements on the partition P:

• The partition P is a uniform refinement of a macro element partition P0. That is,
each M ∈ P0 is split into K1,K2,K3,K4 ∈ P such that |Ki| = |M|/4(i = 1, ..,4)
by connecting the midpoints of opposite edges of P0. Here and throughout |ω|
denotes the area of ω ⊂ R2 and length of ω ⊂ R.

• Let EP denote the interior edges of partition P. For each M ∈ P0, let EM be the
collection of its interior edges (dashed in Figure 1, right). Every e ∈ EP satisfies
e = K∩K′, for two K,K′ ∈ P.

• For each corner in the initial partition P0 (shaded in Fig. 3) we select a single
edge γc ∈ EP0 that separates a (possibly) extremely small corner macro element
(shaded) from a highly stretched neighbouring macro element, e.g. the embraced
edges in Fig. 1 or Fig. 3. We collect all the edges γc in the set Ec.

Now, we present the stabilised method: Find (us
P, ps

P) ∈Q1,P×MP such that

Bs (us
P, ps

P;v,q) = (f,v)
Ω

for all (v,q) ∈Q1,P×MP . (8)
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Here,

Bs (u, p;v,q) =B(u, p;v,q)− 1
4

S̃(p;q) , (9)

the stabilisation terms are

S̃(p;q) := ∑
M∈P0

SM(p;q)+ ∑
γc∈Ec

Sγc(p;q) (10)

where, if J·K stands for the jump of a function across edge e = K∩K′, then

SM(p;q) := ∑
e∈EM

|M|
4 |e|

∫
e
JpKJqK ds ,

Sγc(p;q) := ∑
e⊂γc

min{|K| , |K′|}
|e|

∫
e
JpKJqK ds .

Remark. The method proposed in [7] seeks (u, p) ∈Q1,P×MP, such that

B(u, p;v,q)− 1
4 ∑

M∈P0

SM(p;q) = (f,v)
Ω

for all (v,q) ∈Q1,P×MP . (11)

Then, the difference is given by additional jumps across a few selected edges.
For simplicity, we restrict ourselves to axis-parallel meshes (although the results

can be easily extended to meshes consisting of parallelograms). We summarise the
existence and a-priori results here, the proofs are postponed until after the numerical
experiments.

Theorem 1. Let |||(v,q)|||2 := |v|21,Ω + ‖q‖2
0,Ω . Then, there exists a constant µs > 0

independent of grading factors κ and aspect ratios ρ , such that

sup
(v,q)∈Q1,P×MP

Bs (w,r;v,q)
|||(v,q)||| ≥ µs |||(w,r)||| for all (w,r) ∈Q1,P×MP . (12)

Consequently, Problem (8) has a unique solution (us
P, ps

P) ∈Q1,P×MP. Moreover,
if p ∈ H1(Ω), then there exists a positive constant C such that

|||(u−us
P, p− ps

P)||| ≤ (1+Cµ
−1
s )

{
∑

K∈P

(
hK,x ‖∂x p‖0,K +hK,y

∥∥∂y p
∥∥

0,K

)
+ inf

(vP,qP)∈Q1,P×MP

|||(u−vP, p−qP)|||
}

(13)

where hK,x and hK,y is the length of cell K ∈ P in x- and y-direction, respectively.
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1.2 Numerical results

We compare µs from (12) and the stability constant ξ from [7] given by

ξ = inf
(w,r)∈Q1,P×MP

sup
(v,q)∈Q1,P×MP

B(w,r;v,q)−4−1 ∑M∈P0
SM(r;q)

|||(v,q)||| |||(w,r)||| .

The experiments in Fig. 2 were performed on partitions P shown in Fig. 1 (right) and
Fig. 3 on the domains Ω = (0,1)×(0,1) and Ω = (−3,3)×(0,2)∪(−1,1)×(−2,0],
respectively. The set of additional edges Ec was set to contain all edges enclosed by
a jump symbol J·K. We observe for κ→ 0, that while µs remains uniformly bounded
away from zero, ξ degrades and tends to zero. Hence, the additional jumps correct
the dependency of ξ on κ . We used Corollary 1 (cf. Appendix) to calculate the
values of ξ and µs.
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Fig. 2 Stability constants µs in (12) and ξ in [7, (3.12)] for various grading factors κ . Left: on the
mesh of Fig. 1, right: on mesh in Fig. 3.
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Fig. 3 An anisotropic mesh on a T-shaped domain.



6 Gabriel R. Barrenechea and Andreas Wachtel

1.3 Conclusions

In this work we have extended the method from [7] to cover the case in which
the meshes contain anisotropically refined corners. We have enhanced the afore-
mentioned method with selected, appropriately weighted jumps that improve the
stability constant by curing its dependency on the grading factor. Finally, it is worth
mentioning that the refinement strategy proposed in [7] leads to meshes for which
the method is as stable as it was on the initial mesh. This explains some numerical
results in that reference, since the original mesh used was shape-regular.

2 Proof of stability

In this section we prove the stability estimate (12). We start by deriving a uniformly
inf-sup-stable subspace G ⊂ MP and an inf-sup deficiency. To this end, we recall
the definition of Ec.

Lemma 1. For the subspace G⊂MP0 ⊂MP, defined by

G :=
{

q ∈MP0 : JqK
γc
= 0 for γc ∈ Ec

}
, (14)

there exists a constant βG independent of aspect ratios and grading factors such that

sup
vP∈Q1,P

(divvP,qP)Ω

|vP|1,Ω
≥ βG ‖qP‖0,Ω for all q ∈ G . (15)

Proof. We reason by similarity of the velocity spaces Q1,P and Q2,P0 . For the pair
Q2,P0 ×G the result is a consequence of [2, Theorem 1]. ut

The result above induces the following inf-sup deficiency of Q1,P×MP.

Lemma 2. Let G be defined by (14) and let ΠG : MP→ G be an operator. Then

sup
v∈Q1,P

(divv,q)
Ω

|v|1,Ω
≥ βG ‖ΠGq‖0,Ω −‖q−ΠGq‖0,Ω for all q ∈MP . (16)

Furthermore, if ΠGq = q for all q ∈ G, then (16) implies (15).

Proof. Let q∈MP, then ΠGq∈G and by (15) there exists a non-zero v∈Q1,P such
that

βG |v|1,Ω ‖ΠGq‖0,Ω ≤ (divv,ΠGq)
Ω
≤ |v|1,Ω ‖q−ΠGq‖0,Ω +(divv,q)

Ω .

Dividing by |v|1,Ω gives (16) for one v ∈Q1,P. The rest follows easily. ut
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The last results can be read as follows: The inf-sup deficiency (2) is caused by
functions whose jumps do not vanish across edges in Ec. Then, in the rest of this
section, we show that it is enough to control such jumps to obtain uniform stability.

We recall that each selected edge γc ∈ Ec can be written as γc = M∩M′ where
M,M′ ∈P0 and M is the small and M′ is the large one. In order to simplify the proof
we define ωγc := M∪M′. Now, let G be defined by (14) and let ΠG : MP → G be
the L2-projection given by the rule

ΠGq
∣∣
M =

{
〈q〉

ωγc
if M ⊂ ωγc ,

〈q〉M otherwise.
(17)

Now, Lemma 3 proves properties of the stabilisation terms (10). The proof uses
the characteristic function on subdomains ω ⊂Ω given by

χω(x) :=

{
1 if x ∈ ω ,

0 otherwise.

Lemma 3. Let qP ∈MP. On M ∈ P0 with M 6⊂ ωγc we have the equivalence

2‖qP−ΠGqP‖2
0,M ≤ SM(qP;qP)≤ 4‖qP−ΠGqP‖2

0,M , (18a)

on ωγc = M∪M′ we have

1
4
‖qP−ΠGqP‖2

0,ωγc
≤
(
SM +SM′ +Sγc

)
(qP;qP)≤ 6‖qP−ΠGqP‖2

0,ωγc . (18b)

Furthermore, let S̃|M := SM and S̃|ωγc := SM +SM′ +Sγc , then

S̃(qP;qP)
∣∣∣
ω

≤C

{
‖qP‖2

0,ω

∑K⊂ω

(
‖p−qP‖2

0,K +h2
K,x ‖∂x p‖2

0,K +h2
k,y

∥∥∂y p
∥∥2

0,K

) (19)

for all p ∈ H1(Ω), where ω = M ∈ P0 or ω = ωγc .

Proof. Equivalence (18a) has been proved in [7], however, we include an alternative
proof because it supplies us with notation and arguments for (18b). To this end, let
M ∈ P0 be a 2-by-2 macro element such that M 6⊂ ωγc , γc ∈ Ec. We define ra :=
(qP−ΠGqP)|M and realise ra ∈MP∩L2

0(M). Since, all cells K ⊂M have the same
area, an orthogonal (w.r.t. the inner product in L2) basis of MP∩L2

0(M) is given by
(cf. Figure 4, left)

φ1,M := χK1 −χK2 ,

φ2,M := χK1∪K2 −χK3∪K4 ,

φ3,M := χK3 −χK4 .

(20)

Below, we omit the subscript M when it is clear from the context. Therefore, by
definition (20) we get ra = ∑3

i=1 αiφi,M . Then, using |Ki|= |M|/4, (i = 1, . . . ,4) and
adding the jumps counter-clockwise we get
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K1,M K2,M

K3,MK4,M

K1,M K2,M

K3,MK4,M

K1,M′ K2,M′

K3,M′K4,M′

Fig. 4 A macro element M ∈P0 (left) and set ωγc (right) with cells Ki,M ∈P.

SM(qP;qP) =
|M|
4 ∑

e∈EM

1
|e|
∫

e
JqPK2 =

|M|
4 ∑

e∈EM

1
|e|
∫

e
JraK2 =

|M|
4 ∑

e∈EM

JraK2
e

=
|M|
4
[
(2α1)

2 +(2α2−α1−α3)
2 +(2α3)

2 +(−2α2−α3−α1)
2]

=
|M|
4
[
4α

2
1 +4α

2
3 +8α

2
2 +2(α1 +α3)

2]
= 2‖α1φ1‖2

0,M +2‖α3φ3‖2
0,M +2‖α2φ2‖2

0,M +
|M|
2

(α1 +α3)
2

= 2‖ra‖2
0,M +

|M|
2

(α1 +α3)
2 , (21)

which proves the lower bound of (18a). Applying (α1 + α3)
2 |M|/2 ≤ 2‖ra‖2

0,M
proves the upper bound. Now, we fix an edge γc ∈Ec and let rb := (qP−ΠGqP)|ωγc

.
Then

rb = α0φ0 + ra + r′a ,

where φ0 = |M|−1 χM−|M′|−1 χM′ and ra = ∑3
i=1 αiφi,M and r′a = ∑3

i=1 α ′i φi,M′ . Us-
ing (21), the definition of φ0 and |K| ≤ |K′| (since |M| ≤ |M′|), the stabilisation terms
(10) inside ωγc satisfy

(
SM +SM′ +Sγc

)
(qP;qP)≥ 2‖ra‖2

0,M +2
∥∥r′a
∥∥2

0,M′ + ∑
e⊂γc

|K|
|e|
∫

e
JrbK2 (22)

where the two additional edges e⊂ γc satisfy e⊂M∩M′.
We only need a lower bound for the last term. In fact

∑
e⊂γc

∫
e

JrbK2

|e| =
(
Jα0φ0Kγc

−α2 +α
′
2−α3−α

′
3

)2
+
(
Jα0φ0Kγc

+α2−α
′
2−α1−α

′
1

)2

= 2Jα0φ0K2
γc
+2(α2−α

′
2)

2 +(α1 +α
′
1)

2 +(α3 +α
′
3)

2

−2(Jα0φ0Kγc
+α2−α

′
2)(α1 +α

′
1)−2(Jα0φ0Kγc

−α2 +α
′
2)(α3 +α

′
3)

≥ Jα0φ0K2
γc
+(α2−α

′
2)

2− (α1 +α
′
1)

2− (α3 +α
′
3)

2

≥ Jα0φ0K2
γc
+(α2−α

′
2)

2−2(α2
1 +α

′2
1 +α

2
3 +α

′2
3 ) .

By multiplying with |K|= |M|/4≤ |M′|/4 we get
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|K|Jα0φ0K2
γc
= α

2
0
|M|
4

(
1
|M| +

1
|M′|

)2

≥ 1
4

α
2
0

(
1
|M| +

1
|M′|

)
=

1
4
‖α0φ0‖2

0,ωγc

and

2 |K|
(
α

2
1 +α

′2
1 +α

2
3 +α

′2
3
)
≤ |M|

2
(α2

1 +α
2
3 )+

|M′|
2

(α ′21 +α
′2
3 )

≤ ‖ra‖2
0,M +

∥∥r′a
∥∥2

0,M .
Gathering (22), these estimates and using the fact that φ0 is orthogonal to φi,M and
φi,M′ yields the lower bound

(
SM +SM′ +Sγc

)
(qP;qP)≥ ‖ra‖2

0,M +
∥∥r′a
∥∥2

0,M +
1
4
‖α0φ0‖2

0,ωγc
≥ 1

4
‖rb‖2

0,ωγc .
(23)

The upper bound follows using that rb is constant on each K ⊂ ωγc with value rK
and that jumps across at most three edges e⊂ ∂K are penalised, i. e.(

SM +SM′ +Sγc

)
(qP;qP) =

(
SM +SM′ +Sγc

)
(rb;rb)

≤ ∑
e∈EM∪EM′∪{e : e⊂γc}

2
|K|
|e|
∫

e
(r2

K + r2
K′)≤ 6 ∑

K⊂ωγc

|K|r2
K = 6‖rb‖2

0,ωγc .

Now, equivalence (18b) follows from estimate (23) and this upper bound.
Bound (19)1 is a consequence of (18) and ‖qP−ΠGqP‖2

0,ω +‖ΠGqP‖2
0,ω = ‖qP‖2

0,ω
for ω = M ∈ P0 or ω = ωγc . Finally, estimate (19)2 follows using p ∈ H1(M) and
the arguments used to prove [7, Estimate (3.24)]. ut

Proof (of Theorem 1). First, by Lemma 1 we notice that the pressure space MP con-
tains a uniformly inf-sup stable subspace G. Then, thanks to (18), the stabilisation
terms control the non-stable part of MP. Then, (12) follows by standard arguments,
as in [2, 4, 7]. Using (19) the a-priori estimate also follows known arguments, see
for instance [2]. ut
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Appendix

For completeness we include a standard result Lemma 4. Corollary 1 is a direct
consequence of Lemma 4 and justifies our numerical experiments.

Lemma 4. Let A ,B ∈ Rn×n be symmetric matrices and let B be positive definite.
Then, the generalised eigenvalue problem

A v = ξ Bv , (24)
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has n real eigenvalues {ξi}i, and an A ,B-orthogonal basis of eigenvectors of Rn,
{vi}i, such that 〈

v j,A vi
〉
= ξi δi j and

〈
v j,Bvi

〉
= δi j . (25)

Moreover, we have the (sharp) discrete inf-sup condition:

sup
v∈Rn

v>A u√
v>Bv

≥ |ξ1|
√

u>Bu for all u ∈ Rn (26)

where ξ1 is an eigenvalue of problem (24) of smallest magnitude.

Proof. A proof for a special case is given in [8, Section 3.B]. The extension to the
general case presented here is straightforward. ut

Corollary 1. Let B be as in (4) and let s : MP×MP→R be an arbitrary symmetric
non-negative bilinear form. Then

inf
(u,p)∈Q1,P×MP

sup
(v,q)∈Q1,P×MP

B(u, p;v,q)− s(p;q)
|||(v,q)||| |||(u, p)||| = |ξ1|

where ξ1 is an eigenvalue of smallest magnitude of the problem(
A B

B> −S

)
U = ξ

(
A 0
0 M

)
U (27)

with matrices A,B and S defined as usual from B and s, the mass-matrix M on the
pressure space MP and U ∈ Rn, n = dim(Q1,P×MP).
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