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ABSTRACT
Recent advances in the massively parallel computational
abilities of graphical processing units (GPUs) have increased
their use for general purpose computation, as companies
look to take advantage of big data processing techniques.
This has given rise to the potential for malicious software
targeting GPUs, which is of interest to forensic investiga-
tors examining the operation of software. The ability to
carry out reverse-engineering of software is of great impor-
tance within the security and forensics fields, particularly
when investigating malicious software or carrying out foren-
sic analysis following a successful security breach. Due to
the complexity of the Nvidia CUDA (Compute Unified De-
vice Architecture) framework, it is not clear how best to ap-
proach the reverse engineering of a piece of CUDA software.
We carry out a review of the different binary output formats
which may be encountered from the CUDA compiler, and
their implications on reverse engineering. We then demon-
strate the process of carrying out disassembly of an example
CUDA application, to establish the various techniques avail-
able to forensic investigators carrying out black-box disas-
sembly and reverse engineering of CUDA binaries. We show
that the Nvidia compiler, using default settings, leaks useful
information. Finally, we demonstrate techniques to better
protect intellectual property in CUDA algorithm implemen-
tations from reverse engineering.

CCS Concepts
•Security and privacy → Software reverse engineer-
ing; Software and application security;
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1. INTRODUCTION
In its simplest form, the reverse engineering of software is

the process through which the means of operation of a piece
of software (for which source code is typically not available)
can be discovered. The process of reverse engineering soft-
ware for CPU architectures (such as x86 and x86 64) is well-
documented [5] [21]. Despite this, the techniques commonly
applied to CPU-based software are not necessarily optimal
when dealing with CUDA, which is effectively another layer
of abstraction on top of an existing computer, introducing
its own nuances, which may aid the reverse engineering pro-
cess.

Reverse engineering of CUDA-based GPU binaries may
be necessary, for example, to investigate the extent and im-
pact of a security breach, where suspected malicious code is
executed on a GPU [12] [22]. Being able to identify the oper-
ations carried out may allow an investigator to establish the
potential exposure of confidential information, or to identify
what operations were carried out on data previously held
on the GPU [1]. Analysis may be necessary for the purpose
of creating intrusion detection system signatures [2] or the
detection and classification of similar threats in future.

Reverse engineering can also be used to gain an under-
standing of code being executed; perhaps for the purpose
of software auditing — the use of reverse engineering could
ensure that software handling sensitive data is not abus-
ing its privileges. Additionally, as GPU applications often
represent a commercial investment of the originating com-
pany, reverse engineering can pose a direct threat through
the theft of Intellectual Property (IP) [16].

Code intended to run on a CUDA-enabled GPU is com-
piled against the CUDA API on a host computer, and the
resulting binary is executed on a host computer. The stan-
dard ELF-based binary is executed on the host CPU like any
other software, and carries out initialisation of the graph-
ics processor before loading the desired CUDA code on to
GPU, where the code is ultimately executed. CUDA code is
therefore not executed directly on the host CPU; rather it
is transferred into GPU memory via the host initialisation
routine. The CUDA code is subsequently executed follow-
ing a call from the host to the CUDA driver API [23]. The
presence of a host-executable ELF binary is of significance
to the reverse engineering process as the operation of this
host binary can be investigated using standard techniques,



yet this analysis alone will not yield any information as to
the code executed on the GPU.

Given that GPUs come into contact with potentially sen-
sitive data being processed, they are a clear and attractive
target for malicious software [22] [19]. For this reason, writ-
ers of malicious software may wish to prevent their code from
being understood, and those using GPUs for data process-
ing may wish to understand the actions a piece of software
carried on their GPU.

In the case of forensic investigation, the ability to anal-
yse GPU-based memory may yield important clues as to the
data which was processed by the GPU and therefore what
data may have been accessed by an attacker, as a result
of data remanence on GPUs [1]. This analysis, however, re-
quires a forensic investigator to know specific details of mem-
ory allocation of the CUDA binary, which would need to be
obtained through reverse engineering of the target CUDA
software. A clear understanding of the various CUDA bi-
naries likely to be encountered and means of understanding
their relation to the code being executed, is therefore highly
beneficial for an investigator, and forms the basis of our con-
tributions.

This paper makes four contributions. Firstly, it demon-
strates that the default Nvidia CUDA compiler settings sig-
nificantly aid in reverse engineering. Secondly, strategies
are presented to improve protection of intellectual property
within CUDA software, and reduce the ease of reverse engi-
neering. Thirdly, static and dynamic analysis of CUDA bi-
naries is explored, with exploration of the tools available. Fi-
nally, the reverse engineering strategies presented are demon-
strated as effective against various CUDA binaries.

2. REVERSE ENGINEERING AND RELA-
TION TO CUDA

The field of reverse engineering is best split into two cat-
egories — those of static and dynamic analysis. In static
analysis, the target binary is not actually executed; instead,
it is loaded into a disassembler. The disassembler parses the
compiled executable binary, mapping machine code opera-
tions back to the somewhat more human-readable assembly
listing format. This process is carried out on the compiled
program code, since the source code is not available. Vari-
ous static analysis tools are available from the most simple
GNU tools with origins from original Unix operating sys-
tems, such as the strings utility which looks for readable
text strings contained within a file, through to specialist
Nvidia tools to extract information from CUDA binaries.
These are discussed in greater detail in Sections 5 and 6.

In contrast, dynamic reverse engineering involves the ex-
ecution of the code, typically on a virtualised or debuggable
physical environment [10]. Through the use of a debugger,
which permits the flow of the program code to be monitored,
interrupted and altered, it is possible to gain an insight into
the operation of the code, and a clearer understanding as
to the areas of interest within a program. For example,
the system memory may be monitored for the presence of
a particular value of interest, triggering a breakpoint when
detected, thus highlighting that the code is handling a par-
ticular value. It can also be used to investigate the operation
of a given section of complex code, through sequential execu-
tion with various selected input values. Debugging can also
be used to identify function or system calls of interest, such

as those which are defined within the CUDA API libraries,
or calls to the CUDA driver.

Within the context of analysis of CUDA code being ex-
ecuted on a GPU, it is important to note the distinction
between host code, which is executed on the host platform
CPU, like any other piece of software, and device code,
which is executed by the CUDA driver on the GPU. While
host code can be reverse engineered using standard tech-
niques [9], there is currently very limited research into the
background information necessary to investigate the CUDA-
based code [22] [20].

Having the ability to investigate the operation of CUDA-
based software is of great importance, specifically given the
well-documented use of GPUs for the unauthorised process-
ing of potentially confidential data [1], as well as for use
in compression and cryptography [15]. With sensitive data
routinely being exposed to GPUs, the ability for forensic in-
vestigators to respond to security incidents involving the po-
tential compromise of these systems and rapidly investigate
the precise nature of the suspect code involved, is critical to
presenting an effective incident response.

3. OVERVIEW OF CUDA ARCHITECTURE
The Compute Unified Device Architecture framework [17]

allows developers to take advantage of the massively paral-
lel processing capabilities of graphics processors, allowing
GPUs to become widely available general purpose comput-
ing devices. The CUDA framework largely extends the func-
tionality of the C99/C++ languages, allowing developers to
take full advantage of the parallel nature of the hardware,
through the use of a flexible abstraction model.

CUDA applications are compiled by nvcc (the Nvidia Cuda
Compiler). The compiler takes a set of source files as input,
and generates a variety of compiled output formats, allowing
backward and forward compatibility between devices. The
standard output format from the nvcc compiler is an ELF-
based host executable, which is executed like any standard
program on the host CPU. This program then initialises
the GPU via the CUDART library, and loads the relevant
CUDA code onto the GPU. The ELF binary is a container,
holding a variety of different formats of program code.

The GPU code present in the CPU-executed ELF binary
is known as a kernel. When invoked, the kernel first al-
locates the required memory on the GPU, and loads the
desired data onto the device for processing. After process-
ing, the resulting output is transferred back to the host CPU
memory and the GPU memory is released for use by other
applications [3].

4. CUDA BINARIES
While a regular piece of software to be executed on the

host CPU would typically be translated to machine code,
there are a number of different output formats that CUDA
code can take. All of these output format can be bundled
in the ELF binary. Some of these make the process of re-
verse engineering the compiled code considerably easier than
others, yet may still be found in compiled binaries.

The highest level of abstraction is the original CUDA
C/C++ source code. It is highly unlikely, however, that
source code for a given binary would be available to a foren-
sic investigator attempting to ascertain what was being done
by a piece of software on a GPU. Nonetheless, if open-source
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Figure 1: Compilation Process

code was being used (and an investigator could determine
this), it may be possible to acquire the source code from the
original authors and inspect it to understand the operation
of that code.

The CUDA source code of a given piece of CUDA software
is not distributed as part of the executable binary. Like with
regular programming languages for host CPUs, the source
code undergoes compilation to produce an executable binary
for the target instruction set. Due to the rapid development
and improvements in GPU technology and their associated
capabilities, CUDA GPUs do not all support the same base-
line instruction set as is the case with an x86-based CPU, for
example. Where almost all general purpose desktop CPUs
support the 8086 instruction set with full backward compat-
ibility (from 1978), this is not the case with Nvidia CUDA
GPUs.

Compiled CUDA binary code is often referred to as a
Cubin, a contraction of CUDA and binary, which contains
executable machine code, designed to run on a given tar-
get architecture. As a result of the heavily architecture-
dependent nature of Cubin executables, the Nvidia CUDA
nvcc compiler compiles CUDA source code into a platform-
independent intermediary language, known as PTX. PTX is
laid out in an assembly-like structure (using basic primitive
instructions for all operations), while still remaining GPU-
agnostic (allowing for the same code to be executed on dif-
ferent GPUs) [18]. An example of PTX code is shown in
Section 5. It is produced by the nvcc compiler, which trans-
lates CUDA code into PTX (rather than directly to assem-
bly, as a conventional CPU compiler would). The CUDA
graphics driver can process the resulting PTX, producing
native binary code (a cubin), capable of being executed on
the GPU [6] [4]. Cubin files are composed of PTX (Parallel
Thread eXecution) code, and SASSM (Streaming ASSeM-
bly) instructions as shown in Figure 1.

If a host ELF binary contains PTX intermediary code, a
suitable CUDA binary for any supported GPU architecture
can be compiled at runtime (including GPUs which were not
released at the time of writing the code), since the PTX code
is platform-agnostic and can be targeted at the detected
GPU architecture based on the register mapping data con-
tained within the CUDA driver. By including PTX code in
the output binary, the compiled CUDA host ELF executable
will be as generic as possible, and will enjoy a degree of for-
ward compatibility with future GPUs [23]. Given the nature
of the PTX format, however, its presence will significantly
aid the disassembly and reverse engineering processes, since
it yields highly readable and generic intermediate-language

code somewhat similar in nature to Android’s intermediary
Dalvik code [11], that can be understood with relative ease.

SASSM is used as a definition of the instruction set imple-
mented by the GPU. Each major GPU architecture (Tesla,
Fermi, Kepler) has its own instruction set [23]. This allows
new GPU architectures to change their underlying techni-
cal design, to improve performance without need for consid-
eration of backwards compatibility. By combining the ap-
propriate target specific register definitions with platform-
independent PTX code, the GPU driver can produce an ex-
ecutable SASSM re-bundled into a CUDA binary (Cubin),
designed for execution on the correct GPU architecture.

As such, from the perspective of a forensic investigator
wishing to carry out an investigation of code running on
a GPU, they are likely to encounter one of two scenarios.
The first (most likely) scenario is that the code running on
the GPU was executed using a host binary containing PTX
code for the algorithm in question. Since the host binary
contains the PTX code, it is relatively straightforward to
extract the PTX section of the binary (using the tools dis-
cussed in Section 5) and use it to determine the operation
of the CUDA code in question. The second and less likely
scenario is that the code being executed on the GPU has
the PTX section stripped, perhaps in order to hinder in-
spection or reverse engineering of the code. In this case,
the platform-specific compiled Cubin code must therefore
be disassembled, to yield a listing of the machine code being
executed.

5. STATIC ANALYSIS OF CUDA ELF BI-
NARIES

The SANS institute recommends static analysis as the
first step when performing reverse engineering [7]. Different
strategies can be used against Cubins to reveal the opera-
tions carried out by the software. The reverse engineering
was performed against simple open-source applications, to
demonstrate the information which could be recovered from
the host ELF executable.

The first sample application used to demonstrate the re-
verse engineering process is a simple hash brute-forcing ap-
plication (which is a task that GPUs are commonly used for,
given their highly parallel nature). The application accepts
two inputs — one MD4/5 hash, and one dictionary contain-
ing plain text words, both of which are transferred to the
GPU by the host binary. A comparison is then made be-
tween the computed MD4/5 hashes of each word contained
in the dictionary and the original MD4/5 hash and if a match
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Figure 3: Recovering all Function Instances and Ar-
guments

is found, it is returned to the host CPU.
Figure 2 shows a selection of the key tools available on

Unix systems, as well as some CUDA specific tools, which
are useful for reverse engineering purposes. These tools are
not all specifically designed for the purpose of reverse engi-
neering — many are standard base utilities, which can be
used to retrieve essential information from binaries. Fun-
damentally, for someone attempting to reverse engineer a
CUDA application, there is considerable potential for side-
information to be identified simply from these basic standard
utilities.

For example, the standard GNU strings utility, executed
against the host ELF file produced by nvcc allows the foren-
sic investigator to retrieve the name of every function in the
code. The strings tool is designed to highlight all printable
text strings of 4 or more characters in length. This is nat-
urally useful if original strings (such as variable or function
names) were not stripped out of the binary, or modified. We
found this to be the default behaviour of the nvcc compiler,
meaning that there is a good chance that useful strings may
be found from cursory inspection of the host ELF in this
way.

Both CUDA-specific tools and the common CPU reverse
engineering tools can be used against the CUDA-produced
ELF binary. Figure 3 shows the name of the functions used
for a simple MD4 and MD5 brute-force application. Two
functions have been found (bruteforce, bruteforce2) as well
as their required arguments, the dictionary and the md4-5
hash — dict_a being the first argument and the md4-5_b

being the second argument.
Being able to see the names of functions, as well as their

__global__

void bruteforce(char dict , char md5){

...

}

Figure 4: Original Function Declaration

bruteforce

leftSalt

rightSalt

dictionary

password

Figure 5: Name of the Constant Variables in the
Software.

incoming parameter definitions, can be useful when carry-
ing out reverse engineering, as it offers a rapid way to gain
familiarity with the layout of the code in question. Addition-
ally, presuming the developer of the CUDA software was not
taking active steps to avoid this analysis (such as deliber-
ately naming functions in a meaningless manner), there may
be considerable side information about the operation of the
program able to be determined simply from the naming of
functions and parameters.

Figure 4 shows the original function declaration in the
source code of our example application. The function is
named “bruteforce” and receives two arguments, “dict” and
“md5”as shown in Figure 3. Names of the constant variables
can also be discovered in the executable, using the strings

command. Figure 5 shows the constant variable names used
in the application. This behaviour is unlike traditionally
compiled C applications and may be useful for an investiga-
tor wishing to gain a quick understanding of the operation
of the code. This will aid in the planning of further analysis.

Furthermore, using the strings tool, the forensic investi-
gator can find cudaError comments embedded in the code
to analyse the overall behaviour of the application.

Figure 6 shows two cudaErrors defined by the developer of
the original code, as well as one cudaError type defined via
the CUDA framework. These custom error messages can
be valuable to understand the algorithmic flow. By using
CUDA specific tools, the forensic investigator can retrieve
useful information initially intended for the programmer.

5.1 cuobjdump
The cuobjdump tool allows the forensic investigator to

dump information directly from the the binary, such as the
.section assembly directives, which can yield valuable in-
formation about the different variables, functions and argu-
ments, as well as information about the memory layout of
function arguments and the type of storage used for each

checkCUDAError ("Wrong Memory Allocation ")

checkCUDAError (" UnAllocated Variable ")

checkCUDAError(cudaError_t cuError)

Figure 6: CudaError Comments Embedded in the
Code.



ld.param.u64 %rd1, [_Z5VecAddPcPi_param_0];
ld.param.u64 %rd2, [_Z5VecAddPcPi_param_1];
cvta.to.global.u64 %rd3, %rd1;
cvta.to.global.u64 %rd4, %rd2;
mov.u32 %r1, %tid.x;
cvt.u64.u32 %rd5, %r1;
mul.wide.u32 %rd6, %r1, 4;
add.s64 %rd7, %rd4, %rd6;
ld.global.u32 %r2, [%rd7];
add.s64 %rd8, %rd3, %rd5;
ld.global.u8 %r3, [%rd8];
add.s32 %r4, %r3, %r2;
st.global.u8 [%rd8], %r4;
ret;

PTX SASSM

1
2
3
4
5
6
7
8
9

10
11
12
13
14

MOV R1, c[0x0][0x44];                         
S2R R0, SR_TID.X;
MOV32I R3, 0x4;
IMAD.U32.U32 R6.CC, R0, R3,c[0x0][0x148];
IMAD.U32.U32.HI.X R7, R0, R3,c[0x0][0x14c];
IADD R4.CC, R0, c[0x0][0x140];
IADD.X R5, RZ, c[0x0][0x144];
LD.E R0, [R6];
LD.E.U8 R3, [R4];
IADD R0, R3, R0;
ST.E.U8 [R4], R0;
EXIT;
BRA 0x70;
NOP;   

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 7: Comparing PTX code and SASSM code

variable. It is also possible to dump the PTX code, as well
as the SASSM code, and a standalone Cubin binary.

A second code sample is shown in Figure 7, to highlight
the difference between the PTX code on the right and the
SASSM code on the left. This code demonstrates a simple
vector addition between two variables.

The PTX code shows the name of the function and the
number of parameters received (line 1, 2). It shows that both
are stored in global memory (line 3, 4). The vector addition
is then performed. Similar instructions can be seen for the
SASSM code, however, as PTX is a higher-level language, it
is easier to understand, and infer the kernel C source code,
as discussed by Dong et al. [8]. In particular, PTX contains
variable names and function names, conveying semantic in-
formation, unlike SASSM which is directly using registers.

5.2 ptxas
The ptxas tool compiles PTX code into GPU-specific

micro-code. After retrieving the PTX code from the ELF
binary, the forensic investigator can use the ptxas tool to
create an object file of the CUDA functions, if they wish to
carry out further dynamic analysis, and actually execute the
code in a controlled environment.

Using the PTX code, it is also possible to add debug infor-
mation to the object file, as well as line number information,
to assist during later stages of the disassembly process.

5.3 nvdisasm
Nvdisasm is an hybrid static and dynamic analysis tool,

which allows a forensic investigator to extract information
from the standalone CUDA binary (Cubin) and present this
information in a readable format. As such, it is possible to
create a flowchart of the different function calls used in the
software, as well as their relation to each other as shown
in Figure 8. The tool is also able to show register usage
alongside each executed instruction, and can therefore be
considered a form of dynamic analysis tool, since it effec-
tively executes the code, in order to establish which regis-
ters would be used to store values during execution. This
is useful if attempting to establish the contents of a register
at a given point, perhaps due to later usage of that register
elsewhere in the PTX or disassembled code. In the case of a
multi-tenant computing situation, where GPUs are shared
between several independent users of a system such as in
platform-as-a-service situations, this could be used to carry
out pre-execution behavioural checks against CUDA soft-
ware, to attempt to identify malicious behaviours, such as
attempting to dump the contents of all GPU registers, or to
allocate the full extent of available GPU memory in a single

Figure 8: Representation of the different functions

array. This could be attempts to exploit data remanence of
GPUs to extract data processed by a previous user of the
shared GPU [1].

6. DYNAMIC ANALYSIS OF CUDA BINA-
RIES

Dynamic analysis is the second step of our proposed re-
verse engineering process. This analysis makes use of infor-
mation previously retrieved from static analysis, such as the
function flowchart, the PTX code and the object files gener-
ated. The CUDA framework comes with its own debugger,
allowing a forensic investigator to run the host CPU code in
a pseudo-virtualised environment.

6.1 cuda-gdb
Cuda-gdb is the official CUDA debugger. It allows pro-

grammers to run their algorithm on the host system, while
being able to use a set of debug instructions to pause and
step through code, analyse memory requirements, variable
values and thread positions. Cuda-gdb is based upon the
GNU gdb utility, which is a standard x86 debugger.

While running code through the cuda-gdb debugger, the
investigator is able to place breakpoints within the com-
piled SASSM code, which is the machine-code that is ac-
tually executed on the GPU, in order to better understand
the behaviour of the software, as shown in Figure 9. The



Table 1: Reverse Engineering Strategy and Extraction Result Summary

ELF Binary Tools

ELF CUBIN PTX SASSM cuobjdump ptxas nvdisasm cuda-gdb

Variables Yes Yes No No No No No No

Functions Name Yes Yes Yes Yes Yes No Yes Yes

Functions Arguments Yes Yes No No No No No No

CUDA Errors Yes Yes No No No No No No

PTX Yes Yes N/A No Yes No No No

SASSM Yes Yes No N/A Yes No Yes Yes

CUBIN Yes N/A No No Yes No Yes No

Code Logic No No Yes Yes No Yes Yes Yes

1 (cuda -gdb) b _Z6vecAddPiS_S_

2 Breakpoint 1 at 0x4026ff

3 (cuda -gdb) r

4 (cuda -gdb) cuda kernel block thread

5 kernel 1, block(1,0,0), thread (1024 ,0 ,0)

Figure 9: Cuda-gdb primitives to analyse the be-
haviour of the code

./ vectorAdd

Vector Addition

Using Device 0: "Tesla K20m"

Module Path <./ vectorAdd_kernel64.ptx >

loading module: <./ vectorAdd_kernel64.ptx >

Figure 10: Just In Time Compilation

first line places a breakpoint on the GPU kernel “VecAdd”
and the third line then executes the main CPU code, thus
launching the kernel on the GPU. The breakpoint is then
triggered when the kernel loads, allowing for further debug
commands to be executed, such as inspecting variable values
or stepping through code line-by-line. For example, the in-
vestigator can request the debugger provide information on
the state of the kernel, such as the number of threads (line
5), when the breakpoint is encountered, the code execution
temporarily pauses.

Furthermore, the debugger can be used to ascertain more
detailed information on nuances of the flow of the software,
and to complete any missing information that static analysis
did not reveal. The PTX code obtained during static analy-
sis can also be used to extend dynamic analysis, by making
small adjustments to its assembler-like code, in order to force
a specific set of operations to be carried out. The Just-In-
Time (JIT) compilation capabilities of the framework are
then used to create and execute the PTX code rapidly on
the GPU, allowing for rapid modifications and testing cycles
to be completed.

As shown in Figure 10, by loading both the object file and
PTX code at runtime, the forensic investigator can modify
the behaviour of the PTX code before it is JIT-compiled and

executed, therefore allowing for further dynamic analysis of
the code. By making small alterations to the instructions
in the PTX code as needed, the JIT compiler then pro-
duces a new object file, which is executed, allowing for the
rapid modification and testing of modified versions of the
CUDA code. This allows different portions of the code to
be examined in isolation, and can reduce the time needed
for dynamic analysis by allowing unneeded portions to be
“short-circuited” out in the PTX, thus allowing an investiga-
tor to focus only on areas of interest. Being able to rapidly
alter and execute modified code is a significant advantage
to anyone attempting to reverse engineer the software, al-
though this is only possible if a PTX section is present in
the binary. We found this to be be the default behaviour of
the nvcc compiler, meaning it is likely that CUDA binaries
encountered elsewhere will contain this section, thus aiding
dynamic analysis.

The results achieved by the reverse engineering strategy,
using the different types of outputs produced by the differ-
ent formats generated by the nvcc compiler are summarised
in Table 1 where “Yes” represents the possibility of retriev-
ing data, “No”the impossibility of retrieving data and“N/A”
indicates a given test was not applicable. The results demon-
strate the possibilities of reverse engineering for forensic in-
vestigators and highlight possible intellectual property con-
cerns regarding the format and informations yielded by the
different binaries. Perhaps most significantly, these find-
ings highlight that more information about a given CUDA
program can be obtained from direct analysis of the bina-
ries, which is not readily exposed using the NVidia tools. It
is therefore important for developers to note that a binary
which reveals no valuable information when inspected with
the NVidia tools may still contain such information, acces-
sible directly through the techniques we have discussed.

7. RECOMMENDATIONS TO PROTECT IN-
TELLECTUAL PROPERTY

It should be noted that as with all security measures which
attempt to prevent the extraction of intellectual property
from compiled software code, the code in question must ul-
timately be executed on the GPU, meaning that attempts
to make reverse engineering and disassembly more difficult
are ultimately a form of security through obscurity. It is



Standard Compilation  (Part A)

$ nvcc vector.cu -arch=compute_20 -code=compute_20,sm_20
$ /usr/local/cuda-6.5/bin/cuobjdump -ptx ~/ReverseEngineering/ReverseEngineering/a.out

Fatbin elf code:
================
arch = sm_20
code version = [1,7]
producer = <unknown>
host = linux
compile_size = 64bit
identifier = vector.cu 

Fatbin elf code:
================
arch = sm_20
code version = [1,7]
producer = cuda
host = linux
compile_size = 64bit
identifier = vector.cu

Fatbin ptx code:
================
arch = sm_20
code version = [3,2]
producer = cuda
host = linux
compile_size = 64bit
compressed
identifier = vector.cu

.version 3.2

.target sm_20

.address_size 64

.visible .entry _Z10vector_addPiS_S_(

.param .u64 _Z10vector_addPiS_S__param_0,

.param .u64 _Z10vector_addPiS_S__param_1,

.param .u64 _Z10vector_addPiS_S__param_2,
[...]

Fat Binary Compilation (Part B)

$ nvcc vector.cu -gencode arch=compute_20,\"code=sm_20\" -gencode arch=compute_30,\"code=sm_30\"
$ /usr/local/cuda-6.5/bin/cuobjdump -ptx ~/ReverseEngineering/ReverseEngineering/a.out 

Fatbin elf code:
================
arch = sm_20
code version = [1,7]
producer = <unknown>
host = linux
compile_size = 64bit
identifier = vector.cu 

Fatbin elf code:
================
arch = sm_30
code version = [1,7]
producer = <unknown>
host = linux
compile_size = 64bit
identifier = vector.cu 

Fatbin elf code:
================
arch = sm_20
code version = [1,7]
producer = cuda
host = linux
compile_size = 64bit
identifier = vector.cu

Fatbin elf code:
================
arch = sm_30
code version = [1,7]
producer = cuda
host = linux
compile_size = 64bit
identifier = vector.cu

Figure 11: Comparison of Standard and Fat Compilation Process.

clear, however, that it is possible to produce binaries which
are less easily reverse engineered, thus increasing the time
and expertise needed to carry out analysis and gain an un-
derstanding of the binary in question.

In the field of CPU-executed code, on standard operating
system platforms, obfuscated compilers exist [13], which are
designed to produce unintuitive and difficult to reverse engi-
neer binaries, which feature extraneous complexity in their
compiled code. These complexities may have an impact on
performance, if there is an increase in the number of in-
structions executed by the processor. For massively parallel
processing (such as that carried out by GPU), performance
of the code in question is significant, with the same code
being executed in parallel across many hundreds of cores si-
multaneously. Any increase in the number of instructions
carried out by the streaming multiprocessor would result in
a significant reduction in performance across all cores. For
a higher number of simultaneous threads being executed,
the number of wasted clock cycles added by the obfuscation
would increase, since each stream processor runs the same
code and it would ultimately lead to more divergence of the
threads.

While it would be possible to wrap the CUDA host ELF
binary to make it more difficult to carry out static analysis,
it is worth considering that ultimately the GPU must have
the full Cubin binary uploaded to it. Such obfuscation, while
not impacting on performance of the calculations, would be
relatively easily overcome by using dynamic analysis to ex-
tract and store the code sent to the GPU driver. By using
the cuda-gdb debugger to carry out dynamic analysis, it
would be possible to step through execution of the host bi-
nary until it had suitably decrypted or de-obfuscated the
Cubin or PTX code, and then extract it for direct analysis.

We therefore recommend that, as per our demonstration
of the reverse engineering process of a CUDA binary, a de-
veloper may attempt to hinder reverse engineering through

__cudaparm__Z53456789_234_a

__cudaparm__Z53456789_236_b

Figure 12: Obfuscated Functions and Arguments
Names

the translation of variable and function names into place-
holder ones, thus giving less side information to a reverse
engineer. This strategy is similar to that used in Java by
tools such as dexguard and proguard [14], yet proves ef-
fective in slowing down static analysis of the code in ques-
tion. Using this technique would offer some protection of
both the Cubin and PTX code from simple static analy-
sis, by posing a stumbling block to easy visual inspection of
the code. Alternatively, a tool like strip could potentially
be modified to support CUDA, allowing for the removal of
readable strings from compiled code as demonstrated in Fig-
ure 12, Z53456789 represents the obfuscated function name,
and 234 represents the first argument name of the function.

Additionally, if the CUDA code is able to be targeted
to a single GPU architecture, and does not need forward
compatibility the PTX code present in the CUDA binary
can be removed when the binary code for the architecture
is present and we found that the resulting modified binary
still executed correctly on the target platform, despite the
PTX listing being removed. If it is necessary for code to
be executable on many different GPUs, a “fat” binary can
be created for each GPU architecture and platform such
as shown in Figure 11. The first command executed in Fig-
ure 11 (Part A) shows the process to compile a simple CUDA
code file, using the default compiler settings. The second
command shows the retrieval of the PTX code from the bi-
nary file resulting of the compilation, using cuobjdump. As
expected, it is possible to retrieve the PTX code from the



binary (Bottom of Part A). During the “fat” binary compi-
lation, as shown in Figure 11 (Part B), the first line shows
the command required to compile a “fat” binary using nvcc.
The second line shows that, upon inspection by cuobjdump,
the ELF binary no longer contains a PTX section. While
this dramatically increases the size of the ELF binary, as
it contains the SASSM code for each target architecture,
it hinders reverse engineering by preventing the use of the
Just-In-Time technique described in Section 6.

8. CONCLUSION
The process of reverse engineering CUDA executables is

less popular in the research and scientific community com-
pared to their CPU counterparts. In this work we have
demonstrated that CUDA compiler lacks maturity, and that
generated ELF binaries include high-level assembly PTX
code, which can be exploited for reverse engineering or ma-
licious purposes. We have shown that PTX code can be
modified and compiled in a Just-In-Time fashion, allow-
ing for relatively straightforward dynamic analysis. Com-
bined with readily available Nvidia CUDA debugging tools,
we have highlighted that both static and dynamic analy-
sis of CUDA binaries can be carried out. To attempt to
protect intellectual property and hinder reverse engineering
of CUDA code, we recommend that developers do not dis-
tribute platform-independent binaries and instead distribute
a set of GPU-architecture specific binaries with the PTX sec-
tion stripped, considering the ease with which it can be used
for reverse engineering. We have identified that the current
default settings of the nvcc compiler produce binaries which
yield significant side-information as to function definitions
and parameters, which may prove useful to those attempting
to reverse-engineer the code. We have highlighted the impli-
cations of these findings and shown that considerably more
information can be extracted from binaries than is made
available via the Nvidia debugging tools. We finally pro-
posed and demonstrated two potential counter-measures to
attempt to hinder analysis of CUDA binaries.
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