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Swarm Shape Manipulation through Connection Control
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Abstract—The control of a large swarm of distributed large groups, individuals do not have complete knowledge
agents is a well known challenge within the study of unmanned of group dynamics yet they can clearly sense local creatures
autonomous systems. However, it also presents many New 5nq jnteract with them [4]. In this sense many aggregates
opportunities. The advantages of operating a swarm through g . .
distributed means has been assessed in the literature for show a “m_'ted topological knOWI,edge', for example, their
efficiency from both operational and economical aspects; Swarm environment knowledge is limited to the nearest

practically as the number of agents increases, distributed neighbours.
control is favoured over centralised control, as it can redee

agent computational costs and increase robustness on the  \iany authors have succeeded in reproducing observable
swarm. Distributed architectures, however, can present tk

drawback of requiring knowledge of the whole swarm state, natural behavilo_u_rs and dgsirable _swarm fprmation ”_"O!Jgh
therefore limiting the scalability of the swarm. the use of artificial potential functions defined as pairwise
interactions presenting a single minimum that represdras t
In this paper a strategy is presented to address the challerg  equilibrium state [5], [6], [7], [8], [9]. The use of artifial
of distributed architectures, changing the way in which the potential methods in swarm engineering is useful due to

swarm shape is controlled and providing a step towards o L .
verifiable swarm behaviour, achieving new configurations, wile the possibility of describing the system dynamics from

saving communication and computation resources. Instead @n analytic point of view, obtaining the highest level of
of applying change at agent level (e.g. modify its guidance predictability possible through proof of the swarm system
law), the sensing of the agents is addressed to a portion of stapility. By this approach an agent senses its neighbours
agents, differentially driving their behaviour. This strategy is and moves as if pushed by the potential field generated

applied for swarms controlled by artificial potential functions . . .

which would ordinarily require global knowledge and all-to-all by mtere_lctlr_]g with them. I|_"| many of these cases the
interactions. Limiting the agents’ knowledge is proposeddr the ~ COmmunication graph established among swarm members
first time in this work as a methodology rather than obstacle is complete (i.e. every agent has global knowledge of the
to obtain desired swarm behaviour. swarm state). On the other hand, some previous works
I. INTRODUCTION proved that partial_ly connec_ted swarm memk_Jers can achieve

. . ] a common velocity, organise themselves in clusters and

Increased interest in multl-agen_t systems h_as leagd, oig dispersion [10], [11], [12]. In this sense the only

to the development of several techniques to provide 'ar%vantage of limited connectivity is the reduction of
ensembles of agents with reliable autonomous control meany mmunications within the swarm. Indeed the problem of

Robotics is the most promising field of application forjnitaq knowledge was also addressed in pioneering work
swarm engineering where large groups of agents are driv Reynolds[13] where, in a context of computer graphics,

toward the accomplishment of a task through decentralis¢fle mqtion of flocks of birds was simulated constructing an
control. Swarms are appealing as robotic systems sincqqqrithm on three simple rules: cohesion, separation and
compared to centralised systems designed for the same t nment. Such rules operate, typically in explicit form,

they can have much simpler components [1]. In particulal, "y imost all the algorithms used to simulate swarming
in fields where robotic systems must provide high levels of stams. Furthermore, it is found that these rules are often

reliability and fault tolerance, the redundancy charaster applied by a means based on the concepts of artificial
by swarming systems is a key factor. The problem Oﬁotential functions.

distributed control has been addressed in several ways) oft
taking inspiration from nature and trying to reproduce @rou |+ \vas shown in [14] that when interactions among the

behaviour by applying heuristic control rules [2], [3]. Inet o agents are activated by closeness (agents closer
bio-inspired approach for group behaviour modeling it hag,a; 5 certain threshold distance interact), dispersiot an
been pointed out how, for many species that aggregate i iple clustering are very likely to happen. Nevertheles
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the communication graphs. Using a Morse-like artificial of edges entering (exiting from). A graph is said to
potential in conjunction with two different dissipation dan be regular if all the vertices have the same degree.

steering functions, the swarm shape is changed from anThe adjacency matrix of a graggh on N vertices denoted
initial round cluster to a dumbbell, from random initial A(G) is an N x N matrix (square matrix of sizév2),

conditions. Arguments are presented to illustrate stgbili having rows and columns labeled by the verticeszofand
characteristics and robustness of the method presented. ;/M: gntry, a;;, defined as follows;

the same time a threshold on agent minimum connectivity

to ensure cohesion is spotted. The connection rule used will

make the swarm correctly achieve the new shape without {
dispersing provided that the number of connections per

agent does not drop below the half of the total number of where,u;,
agents. The approach presented within this paper uses the

limited connectivity to achieve a stable swarm configuratio £ thermore. the notion afomponenof a graph is used

which would otherwise not be achievable when thgynich is the pair composed by a subset of nodes and the
swarm benefits from global knowledge without changes alyrespondent subset of ordered edges contained in the

agent level. Indeed complete connectivity drives th_e agenéraph and which does not connect by any edge to the rest
to a homogeneous behaviour such as fully symmetric shapgs. i graph’'s nodes. In particular thmponents said

giant componenthen the subsets correspond to the whole

This paper is structured as follows: section Il recalls ©asiggtg they they are contained into, i.e. there are no isolated
definitions of graph theory and describes the kind of network, jes in the graph.

structure used; section Il provides a description of thelelo
used for driving the swarm and amore detailed descrlpthn For all other definitions concerning graph theory refer to
of the methodology used to manipulate swarm shape; secti 1, [17], [18].

IV illustrate the effects of the methodology used on th

swarm shaping; section V reports simulation results about 88 Network Structure:

ensemble of 60 agents that change their spatial arrangeme
on a plane from a tight cluster to a wider dumbbell shapef
Conclusions and future works are finally presented in sectid
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n . .
+he network is constructed on the nearest neighbors base:
N is the total number of nodes (agents), each of them

VI, Is connected to its: nearest neighbors in a directed graph
whatever their actual distance is where< n < N. The
I[I. GRAPH THEORY DEFINITIONS AND connections are not exclusive: if an agenis connected
NETWORK STRUCTURE to an agenth (i.e. a is influenced by the potential of)

Before going into the description of the model used anf!€N? is not prevented brom being connectedatdi.e. an
the method adopted to change swarm behaviour, a sh@fiented edge, a is still in the set of the possible edges
overview of the concepts used to describe the swarm systdfhthe graph). The adjacency matrix that characterises this
are derived, first at lower level, as graph theory, then didrig 9r@Ph is not symmetric. The graph is regular with respect

level considering the network layout originated from simpl [0 the in-degree that is while the out-degree changes from
connection rules. node to node, but its average is stll It turns out that the

adjacency matrix presenf§ x n nonzero entries.
A. Graph Theory:

A graphG is defined in mathematics as a pair composed I1l. MODEL AND NETWORK
by a set of nodes and a set of ordered pairs of vertices  In this section the artificial potential functions used are
which are called edges. illustrated together with the way the nearest neighboies igul

implemented within the swarm together with the implicasion
In the following we make use of some concepts from grapbf this.
theory that are worth defining here:

« Agraph is said to be directed if all the edges are orderey Dynamic models
pairs of vertices. A graph is said to be undirected if all A swarm of agents is considered which are connected
the edges are unordered pairs of vertices. A graph witlirough the use of pairwise artificial potential functions.
ordered and unordered pairs of vertices is said t0 behese potentials provide long range attraction to avoid dis
mixed. persion and short range repulsion to avoid collisions. teor

« A graph is said to be complete if and only if any twoto develop a control methodology based on connections,
distinct vertices of the graph are the end-points of agrtificial potential functionsl/¢;, U7;, defined in [5] are used.
edge of the graph. These are

« The degree of a vertex in an undirected graph is the
number of edges which include The in-degree (out- Ul — —C ex (_M) @
degree) of a vertex in a directed graph is the number ij = T YaXP I,
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B. Network structure

Xij . .
Uj; = Crexp ('l—j|> 3 The nearest neighbors rule network is implemented by
" _ _ connecting every agent in a directed graph to a number of
whereC,, C, andl, are constants with unitary valuk,=  agents equal to the half of the whole ensemble rounded

0.2 andx;; is the relative position vector of agentespect toward zero if this number is odd. IV is the number of
to agentj. The model can be completed by the orientatioBwarm agentsN — 1 is the number of possible available

function u(t) resulting in a final form as connections for every agent. Connecting any agent this
dx way means connecting it to just more than the half of its
d; =V; (4) potential mates. This has non-trivial implications. Altigt
each agent can sense just/2) mates (wherg-) rounds
dv; “ . down the argument) there are some agents (oRé i odd,
m—- = =VU = VU] —u(t) ®) 2itNis even) that are sensed by all the others although still
dt \ .
where, sensing each of them jusiv/2) mates.(N/2> represents
in this sense a threshold to ensure cohesion of the swarm
a a r r ndr n lined in the nex ion. If h n
Us = Z(‘“J'Uij) Ur = Z(‘“J'Uij) and robustness as outlined in the next sectio each agent

was supposed to link to less thdiv/2) agents, isolated
) ) ) . cClusters can emerge. It is easy to understand how the graph
wherea;; is the entry of the adjacency matrix as defined, 14 spiit into two isolated components each node of
in section Il. In particulaiC, andC;. represent the strength |\ hich would satisfy the minimum number of connections
of the potentials whilé, andl. govern the range over which ithin the component and without the need to establish a
the the potentials are mainly effective. _ connection with any node in the other. This would make
The form thatu(t) takes changes the behaviour of thpe gynamics of each subgroup independent from the other.
swarm. Two alternatives are considered fdr). These are 1is connection rule leads to satisfy the condition outline
firstly the steering function, in [15] for a discrete-time model to achieve a coherent
behaviour that can be summarised as at least one agent

J J

u(t) = Z(% Aij) = always connected to all the others as time progresses.
J
~ Yay (Co(vij %7) exp <|>;_]|>> ©) IV. SWARM SHAPING
J 0 The connection scheme previously outlined leads to the
and secondly a viscous function, splitting of the swarm into two subgroups that do not drift
apart as their communication graph is still connected in
u(t) = oV, (7) one giant componentThis happens regardless to the kind

) ) ) ' ~of model used. Referring to the agents sensed by all the
wherev;; is the relatlive velocity vector of agem_tand J» swarm mates as thenost connected agehtby symmetry

Co, lo, are constants with valugs of1, 0.5 respectlvely, 8S of the formation they will find their position at the centre
defined in [5]. As with attraction and repulsion potentialsyf the swarm that splits into two subgroups (a dumbbell as
Cop is the strength of the orientation function ag IS shown in Fig.1) joined by the first ones. In particular the
the range over yvh|ch the or|Aentat|on |nteract_|on OCCuUrgypset given by the edges belonging to the first subgroup
for u(t) defined in Eq. 6 and:) denotes a unit Vector. anq the subset given by the edges belonging to the second
By using this, motion towards or away from neighbors igne will intersect by mean of the edges belonging to the
weakly damped, proportional to the component of relativg,qst connected agents
velocity along the vector connecting neighboring particle _ This arrangement provides the network graph with an

This happens by means of the dot product in Eq. 6 as ifyiform in-degree of N/2), which is equal to the average

is intuitive to understand. This results in a local alignme“out-degree. It thus follows that the number of total links in
of particle velocity vectors, driving the swarm towards ane swarm is

global rotational motion.
On the other hand Eqg. 7 damps agent velocity however N2
oriented by means of a velocity-proportional damping K:ZZ“U T (8)
coefficient o controlling the amplitude of dissipation and v
driving the swarm towards a static configuration. Throughou The model implemented also has robustness
this work o is equal t00.7 as defined in [7]. characteristics. Any agent in one subgroup does not
The swarm behaviours described were observed whewcessarily sense any agent in the other as each subgroup
communication graphs are completely connected in [6], [8has exactly(N/2) mates to sense which includes the two
where, within the same hypothesis, stability characiesst most connected ones. Consider if an agent from one side of
of the models were proven as well. the dumbbell fails. If the initial number of agents was even,
one of the two in the middle would replace it. If the initial
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be bound. Furthermore, as the total mass is constant and the
energy stabalises to a constant minimum state, due to the
potential functions, it logically must follow that the liaeand
angular velocities cannot windup and must remain confined.
Variation of physical quantities of the swarm in general can

s o o o0 o ;’ e be better understood looking at the examples provided in the
w2 5 000 ©° T ° next section.
oal o o © ° o o ° o
o o © V. SIMULATION RESULTS
:: To illustrate the effect of the new network arrangement
' ‘ ‘ ‘ a swarm of 60 autonomous robots moving on a plane was
’ o x e ? simulated.

Fig. 1. Dumbbell formation obtained by connecting agentsnearest
neighbours rule base. The picture is obtained by using EgS.with the
steering functionu(¢) defined in Eqg. 6 but the final shape would be the
same also using the dissipation functiof¥) as defined in Eq. 7

Robots are first asked to stabilise by using dynamic
models presented with an all-to-all communication scheme
(complete graph), subsequently their communication gieiph

changed as illustrated in the previous sections: each sigent

links to its 30 nearest neighbours to change formation from a
number of agents was odd the closest agent to the madngle cluster to two clusters in a dumbbell shape. Intégmat
connected agent from the opposite side of the dumbbélf the equations of motion is performed using a simple
to where the failure happened would become one of trexplicit Euler scheme with integration step of 0.005s. Test
most connected ones. If one of the most connected agefigration is 50 seconds. No external perturbation is intcedu
fails in a swarm with an even number of agents, the swar@nd no saturation of actuators is considered. As expeceed th

falls automatically into the equilibrium condition for ama

swarm first relaxes to the minimum energy state defined in

number of agents (one most connected agent in the middi#)e original global knowledge model, then, when applying
On the other hand, if the number was originally odd an#he new connection protocol, agents first tend to increase
the only agent in the middle fails each side of the swarntheir relative distances and finally relax into a new dumbbel

in order to be connected to at legsy/2) mates will link
to one agent from the other side, the closest one. The two
agents so selected will form again the central couple of
most connected agents in the swarm.

The splitting of the swarm does not depend on the kind -
of guidance law as long as this guarantees clustering an
spacing between agents. As for dissipation and steerirg fun
tions, they have no influence on the formation, but do have
so on the motion of the ensemble because of the presence
of asymmetric interactions making the swarm achieve non-
zero values of angular and linear momentum. Nevertheles
momentum is prevented from accumulating because of thi
fact that the potential energy functions, and their derreat
are bounded. Thus the swarm remains cohesive, with a
absence of fragmentation bounding the moment of inertia
Considering the real energy of the swarm as,

E = Z(mivf) + IZ:QZ2 9)

Fig.

defined as,

-0

configuration (see Fig. 2).

o
o

o o

04| o

-1 08 -06 -04 02 0 02 04 06 08
x

(iii)

2. Relaxation of the swarm into a cluster when provideith w
where, I is the total moment of inertia of the ensembledlobal knowledge and passage to dumbbell by connectingtegennearest

neighbours rule base. Switching occurg at 16.67s. (i) initial conditions
at ¢ = Os (ii) minimum energy cluster state at= 15s (iii) increase of

relative distance at = 21s (iv) dumbbell configuration at = 50s. The

I = 2 1 picture is obtained by using Eg. 4 and 5, with the steeringtion w(¢)
Z(m’r‘ ) ( O) defined in Eq. 7 but the final shape would be the same also Usengtéering
? function u(t) as defined in Eq. 6

where,r; is defined as the distance of each agent from the
ensemble centre-of-mass, afids the total angular velocity

According to the steering or damping function imple-

of the ensemble rotating about its centre of mass. As thmented the dumbbell shape results static or drifting. The tw
swarm remains cohesive the swarms moment of inertia mustses are explained in the following subsections.
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A. Viscous-like dissipation

When viscous-like dissipation is used, Eq 7, relative
positions stabilize into a crystalline configuration. Then
be noted by looking at the moment of inertia of the whole
ensemble in Fig. 3. On the other hand rigid drifting and
rotation of the ensemble persist because of the asymmetric
interactions between agents. In more details some agents
can pull other agents without being themselves pulled: this
results in the pulled agent achieving the same momentum
of the pulling agent. Absence of relative motion between
agents drives the moment of inertia of the formation towards

ANGULAR MOMENTUM

Angular Momentum

t

a ConStan_t' as well as Ilne_ar_ and angulgr momenta th?’-‘g. 5. Angular momentum fa30 nearest neighbours network swarm and
although viscously damped, is in general different fronozerviscous-like dissipation

due to the presence of asymmetric interactions generating a
continuous non balanced pulling force.

Viscous-like damping make the linear and angular momen-
tum stabilize at a constant level (see Fig 4, 5 by balancing
the action of asymmetric forces. Indeed when the system is
completely relaxed the net force on each agent is the instan-
taneous artificial potential field force balanced by the aisc
dissipation. The new configuration is also characterised by
new value of effective energy which stabilizes about a new
steady state (see Fig. 6).

MOMENT OF INERTIA

50

Fig. 6.
viscous-like dissipation
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B. Steering function

Moment of Inertia

10
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When a steering function is used instead of viscous damp-
ing the swarm achieves a more dynamic behaviour, while
still converging towards the dumbbell shape. In particular
effective energy and moment of inertia oscillate about a
new average value (see Fig. 10, 7). Momentum also has
an oscillating trend (see Fig. 8, 9), however the behaviour

Fig. 3. Moment of inertia foi30 nearest neighbours network swarm andis not that regular. Nevertheless an exponential wind up,

viscous-like dissipation

LINEAR MOMENTUM

—component|
~component
magnitude |1

Linear Momentum

Fig. 4. Linear momentum foB0 nearest neighbours network swarm and

viscous-like dissipation

5

as expected if the system were unstable, is not observable.
This just confirm arguments developed in section IV. It
is therefore clear how asymmetric interactions generate an
asynchronous rotation of the ensemble and chaotic trend on
momenta time histories.

MOMENT OF INERTIA

Moment of Inertia

0 10 20 30 40 50

Fig. 7. Moment of inertia for30 nearest neighbours network swarm and
pairwise interaction based steering
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LINEAR MOMENTUM
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VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

A methodology to shape swarms of agents without insert-
ing any change at agent level was presented. The method
ology employs the asymmetry of a directed graph to reduce
the number of communication links active while preserving
the coherent behaviour of the formation. Arguments were
given to show that the methodology does not lead to dis-
persion or fragmentation of the ensemble while halving the
number of communication channels with clear advantages

Fig. 8. Linear momentum fo80 nearest neighbours network swarm andON Communication and computation resources saving. The

pairwise interaction based steering

ANGULAR MOMENTUM

Angular Momentum

threshold of (N/2) links per agent was spotted to ensure
cohesiveness and the emergence of one only giant component
in the communication graph. Robustness characteristics of
the methodology were discussed although not mathemati-
cally or rigorously proven and examples were given using
two different guidance laws, verifying that the methodglog
performs in both cases as expected.

B. Future Work

Application of the nearest neighbors rule with directed
graph leads the swarm to the achievement of a stable, reliabl
and fault tolerant dumbbell shape. The concept of employing
particular structures in designing the communication grap
can be extended in order to achieve even more possible con-

Fig. 9. Angular momentum fo0 nearest neighbours network swarm andfigurations without changing the guidance laws. Preliminar

pairwise interaction based steering
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investigations over different kind of communication netis
among the agents suggest that partially connected forngtio
share common features. Over all the tests performed it was
noted that total effective energy of the formation (artéici
potential plus kinetic energy) in the global knowledd&:(v)

and partially connectedi{p¢) cases, are in the same ratio
of the number of links active in the two cases. Indeed they
satisfy the relation

Epc > Zj Qij
Egn ~ N(N —1)

(11)

regardless to the fact that connections are oriented or not.
Future investigation will seek analytical definition foreth

Fig. 10. Effective energy foBO nearest neighbours network swarm andifénd of swarm physical quantities and further exploiting

pairwise interaction based steering

6

of the connection network to shape and maneuver large
formation of autonomous agents with particular interest in
robotics applications.

Another important issue to consider is the performance
reliability of the techniques developed when applieddal
world. In order to assess this, the algorithms developed
should consider real hardware implications such as environ
mental disturbances, limited sensor ranges and fields of vie
time delay of knowledge as it passes through the swarm and
actuators saturation.
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