Opportunities and challenges for the application of microfluidic technologies in point-of-care veterinary diagnostics

Valentina Busina,b,*, Beth Wellsa, Maïwenn Kersaudy-Kerhoasb, Wenmaio Shub,c and Stewart T. G. Burgessa

aMoredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh. EH26 0PZ. United Kingdom.
bSchool of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh. EH14 4AS. United Kingdom.
cDepartment of Biomedical Engineering, University of Strathclyde, Glasgow. G4 0NW. United Kingdom

*Corresponding author. Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh. EH26 0PZ. United Kingdom. Email: valentina.busin@moredun.ac.uk (V. Busin).

Email addresses:
VB: valentina.busin@moredun.ac.uk
BW: beth.wells@moredun.ac.uk
MKK: m.kersaudy-kerhoas@hw.ac.uk
WS: will.shu@strath.ac.uk
STGB: stewart.burgess@moredun.ac.uk
Abstract

There is a growing need for low-cost, rapid and reliable diagnostic results in veterinary medicine. Point-of-care (POC) tests have tremendous advantages over existing laboratory-based tests, due to their intrinsic low-cost and rapidity. A considerable number of POC tests are presently available, mostly in dipstick or lateral flow formats, allowing cost-effective and decentralised diagnosis of a wide range of infectious diseases and public health related threats. Although, extremely useful, these tests come with some limitations. Recent advances in the field of microfluidics have brought about new and exciting opportunities for human health diagnostics, and there is now great potential for these new technologies to be applied in the field of veterinary diagnostics. This review appraises currently available POC tests in veterinary medicine, taking into consideration their usefulness and limitations, whilst exploring possible applications for new and emerging technologies, in order to widen and improve the range of POC tests available.

Keywords

Point-of-care, veterinary diagnostics, microfluidics, lateral flow immunoassays, paper-based microfluidics, dipstick test.

1. Introduction
Point-of-care (POC) diagnostics is an area that has attracted considerable attention in the last decade. Testing at POC means that analytical procedures are carried out at the side of or near to the patient [1], for this reason, it is also sometimes referred to as “bed-side” testing [2]. The reasons for the considerable interest in the field of POC testing are numerous: the potential to decrease costs of diagnosis [3], increasing the accessibility of these types of test to disadvantaged populations [4], and reducing the time between sampling and a treatment decision [5].

Following the global trend towards more affordable and accessible diagnostic testing, the Sexually Transmitted Diseases Diagnostics Initiative (SDI) within the World Health Organization (WHO) recently established a set of benchmark criteria for the ideal rapid test, under the acronym “ASSURED” [6]: Affordable, Sensitive, Specific, User-friendly (simple to perform in a few steps, with minimal technical training), Robust and rapid (results available in less than 30 min), Equipment-free, Deliverable to those who need them. Ideally, POC tests should respect all or as many as possible of these characteristics [7].

2. **Point of care testing and its scope in veterinary medicine**

In the veterinary area, there is a similar need for low-cost, reliable and rapid diagnostic tests to be carried out at the POC [8]. So called on-site or animal-side tests will have considerable advantages over laboratory-based testing, which usually involves laborious and expensive laboratory techniques and dedicated technical personnel. All of the analytical processes involved in testing, from collection of the sample to communication of the results, could potentially be performed in a single step, considerably reducing the time between testing and treatment [9]. This can translate into more affordable veterinary care, reduced handling of animals, targeted treatments and rapid testing in more remote geographic areas.

The need for more affordable, rapid and accessible tests is a recurrent theme in the literature, in particular as an invaluable tool in dealing with diseases that either represent a threat to public health [10], have substantial impact on animal welfare [11] and/or are of economic importance [12], with particular
relevance to situations where laboratory facilities and funds are limited [13]. Furthermore, the general
globalisation of trade of animals and animal products has greatly increased the risk of rapid and wide-
ranging spread of emerging and exotic diseases, requiring timely and efficient ways of dealing with diseases
that could have catastrophic repercussions for the individual farmer, as well as economic implications for
the entire country and international trade [14]. In situations concerning disease outbreaks, where rapid
propagation of infectious agents and/or high mortality are salient features, as in the case of the highly
pathogenic H5N1 strain of avian influenza virus, a rapid “animal-side” test would represent a critical tool
for both collecting surveillance data and for assisting in the control of outbreaks [11, 15]. Currently
available veterinary POC tests offer a good opportunity for a truly “animal-side” diagnosis, but the
analytical performances of “on-site” testing are still considered limited compared with laboratory-based
testing [16], whilst the possibility offered by the support of a central laboratory in the interpretation of the
results is still perceived as critical [17]. Recent advances in microfluidic technologies for POC testing in the
human field could overcome these hurdles and might be applied in veterinary medicine. This review aims
to appraise the current status of POC testing in veterinary medicine, describing their advantages and
limitations, whilst also assessing the potential of microfluidic technologies to improve existing POC tests
and solve some of their intrinsic limitations.

3. Point-of-care devices currently available in veterinary diagnostics

At present, the most widely used technologies for POC testing in veterinary medicine are: dipstick tests
and lateral flow immunoassays.

3.1 Dipstick and strip test

These assays are based on the principle of immunoblotting and are made of paper strips with pads to
analyse specific fluids. After the sample is introduced, the results are compared with a colour-coded chart
to provide a semi-quantitative determination of the analyte(s). The most commonly used are test strips
developed for human urine analysis, allowing the simultaneous detection or monitoring of leukocytes, nitrite, urobilinogen, protein, pH, haemoglobin, specific gravity, ketones, bilirubin and/or glucose (Fig. 1) [18]. While it has been developed for human patients, there is a high correlation between the dipstick results and other routinely used methods for urine analysis, which has resulted in this test being widely used in small animal private practice for first-line diagnosis of chronic kidney disease, mainly through an assessment of proteinuria [19, 20]. However, care should be taken when interpreting positive test results with low levels of proteins (traces) due to the high rate of false positive results [21].

A smaller version of the urine dipstick, restricted to detection of glucose and ketone bodies, is also largely applied for at-home management of pets with diabetes. This test is also widely used in farmed ruminants for the diagnosis of ketosis in cattle [22] and pregnancy toxaemia in sheep. Due to some variation in results, a further advance in the diagnosis of these diseases is the use of appropriate strips combined with electronic hand-held meters to accurately measure both glucose and one of the main ketone bodies, β-hydroxybutyrate (BHB) in blood, making diagnosis more reliable as well as sampling potentially more successful and less stressful [23]. This POC test has shown great potential for the quantitative detection of BHB, with improved sensitivity and specificity when compared with dipstick tests for detection of ketones in urine or milk [24, 25]. Its use for glucose measurement, however, does not seem to be reliable [23]. Dipstick tests have also been used for the detection of antibiotics in serum, milk and/or meat samples [26]. These rapid tests allow the detection of antibiotics within the µg/ml range, permitting on-site monitoring of non-authorised uses of antimicrobials, which could be especially useful in slaughterhouses and food processing plants.

The main advantage of these POC tests is that they can be readily carried out by the owners, proving to be particularly useful for the long term management of chronic diseases [27]. The major limitation, however, can be the subjective interpretation of results, based on a personal evaluation of a colorimetric reaction [19].

3.2 Lateral flow immunoassays (LFIsAs)
These devices are based on the principle of capillary force: a liquid flowing on or through a strip of polymeric material, on or in which specific molecules (e.g., antigens, antibodies, DNA/RNA sequence) have been immobilized [28]. These strips usually consist of multiple pads: a sample application pad, a conjugate pad, a membrane for detection and an absorbent pad (Fig. 2), usually made of different materials (e.g., nitrocellulose, glass fibre paper and fused silica) encased in a plastic cage for protection of a fragile paper membrane [29]. The best known example of a lateral flow test is the pregnancy test [30], which is probably the most used POC test worldwide. The main advantages of lateral flow over traditional laboratory-based tests are their simplicity, rapidity and low cost. Compared with traditional laboratory-based tests, LFIs are considerably less expensive, but, due to the different materials required, they are still relatively costly (~$10 for a pregnancy test; [29]) for application in low-resource settings [31], and, due to the multi step processes involved, manufacturing time is extended, making them less suitable for high-throughput production.

They usually provide a qualitative or semi-quantitative result, and analytical performance is generally poorer than laboratory-based tests, mainly due to reduced sensitivity [32, 33] and the possibility of errors due to testing by untrained personnel [2]. When compared with reference laboratory tests, specificity tends to be comparable, while sensitivity can be as low as 16%, suggesting that a positive result might be trusted, whereas, in the case of negative results, further confirmatory laboratory testing may be advisable. Several studies have assessed quantitation, but such devices still require instrumentation [34, 35] and trained personnel, and are still limited to single analyte testing.

3.2.1 Companion animals

There is a significant market for the use of LFIs for a range of acute and chronic diseases or conditions in companion animals (Table 1). These assays are usually easy to perform and interpret [32], with the possibility to improve sensitivity by using a dedicated LFIA reader, which allows an objective and quantitative interpretation of the results [28]. Although the cost of the test is an important consideration, reduced waiting time and the possibility of starting a therapy within the first visit are amongst the main
advantages of tests that can be carried out “in-house”. It is also important to consider that some diseases have received considerably greater attention, notably viral infection diseases, such as FIV and FeLV in cats and parvovirus in dogs, with an extended range of assays being available.

3.2.2 Livestock

For livestock, LIAs have been focused mainly on illnesses that represent a substantial economic burden and/or serious zoonotic or epidemic diseases (Table 2). OIE-listed diseases of the World Organization for Animal Health, such as Foot-and-Mouth Disease (FMD) and Rinderpest have received considerable attention, due to the crucial importance of a rapid diagnosis and, consequently, prompt intervention from veterinary authorities. In the case of FMD, endemic areas are frequently in developing countries, and often diagnosis is not reached due to the prolonged time between collection of samples, arrival at the reference laboratory and subsequent testing [36]. In this case, both the economic constraints and accessibility to remote areas are the dominant issues.

3.2.3 Food safety

Lateral flow tests have been successfully applied in two main areas: the detection of food-borne pathogens and the detection of fraudulent substances in animal feed or in animal products (Table 3). In the first case, much emphasis is placed on the prevention of zoonotic diseases, which represent a significant and widespread public health threat. In the second case, recent feed-stuff scandals [37, 38] and increasing reports of antimicrobial resistance dominate the scene, both in terms of research and public attention. Here, and on-site test can be a powerful tool for rapid detection and subsequent surveillance, especially when dealing with highly perishable products.

4. Microfluidic technologies available for POC diagnostics
One of the most promising technologies that has been applied recently in diagnostics is microfluidics, which involves the analysis of extremely small amounts (microlitres or nanolitres) of fluid using interconnected networks of channels measuring tens to hundreds of micrometres [39]. Since the introduction of microfluidics from the early 1990s [40], there has been a constant evolution of these methods, mainly following critical advances in microfabrication technologies [41]. Fluid transport in these devices is achieved by either passive (usually capillary forces) or active (generally pumping) mechanisms [42, 43], with the fluid flow being typically laminar [44].

Among the main advantages of microfluidics technologies for diagnostic applications are their portability and their low consumption of reagents; these attributes have made these devices inexpensive, rapid and generally easier to use compared with conventional (macroscale) testing [45]. The use of very small volumes, associated with shorter diffusional distances, results in significantly reduced time for analysis, making microfluidic assays significantly more rapid to perform than their macroscale equivalents [46]. Furthermore, being able to perform all necessary steps within one device and potentially in a single reaction represent a considerable advantage, allowing sample pre-treatment, analysis, signal detection and amplification in the same device [47]. Automated control of all steps can reduce inherent human error, which in turn increases the quality, reproducibility and reliability of assay results. The higher degree of control of fluid flow and the timing of binding reactions can also result in significantly improved analytical performance [48], while the opportunity for tests to be carried out simultaneously offers considerable potential for multiplexing [47]. Examples of the successful applications of these new technologies are in the clinical analysis of blood [49-51], pathogen identification [52, 53], genetic testing [54, 55], detection of environmental contaminants [56] and for drug screening [57].

Currently, two main types of microfluidic systems are used in the diagnostic field: micro total analysis systems (μTAS) and microfluidic paper-based analytical devices (μPADs). However, to date, there has been very limited application of this technology in the veterinary field [58].

4.1 Micro total analysis systems (μTAS)
These systems are also commonly known as “lab on a chip” (LOC) devices (Fig. 3), which use fluid as a working medium and can integrate a number of different functionalities on a micro scale [41]. One of the main advantages of µTAS devices is that they allow for all steps (from sample pre-treatment to signal detection) to be carried out at once, on the same device, allowing complicated molecular techniques (i.e. polymerase chain reaction (PCR)) to be transferred on the chip for POC testing. These devices are fabricated using techniques from the microelectronics industry [59], mostly using materials, such as silicon, glass and/or polymers [60]. At present, the most common materials used are thermoplastic polymers. These devices have reduced production costs, and have suitable mechanical, chemical and thermal properties [61].

Their diagnostic use is well established, with companies already commercialising POC devices on plastic platforms [62]. In the last decade, there has been a considerable focus on immunodiagnostic tests for the detection of disease markers, specifically for cardiac and cancer markers [63-66] and for the diagnosis of infectious diseases, including HIV/AIDS [67, 68], influenza [69] and hepatitis [70]. Some limitations of these devices are inherent in physical effects, such as the need for pressure-driven liquid flow, with the possible consequence of heat generation and, therefore, detrimental effects on biomolecules, or low grade mass transfer and/or reduced mixing capacity [41].

4.2 Microfluidic paper-based analytical devices (µPADs)

These devices are commonly referred to as paper-based microfluidics (Fig. 4), a concept that was first introduced by the Whiteside group at Harvard University, following on from initial research performed on paper strips for the determination of pH [71]. These devices allow inexpensive multiplexed analyses to be carried out [72], while maintaining the advantages of conventional microfluidic technology, such as size, speed and reduced sample volumes [7]. Paper has considerable advantages over other materials in that it is cheap, easy to source, biodegradable and naturally abundant, but also simple to modify chemically [73]. POC devices made from paper also have the advantage of not requiring external power sources, whilst fabrication techniques and machinery for production are usually less expensive than those for other
materials, with minimal technical expertise required [74]. Paper represents an excellent medium for diagnostic testing, due to its high surface to volume ratio, which allows reagents to be concentrated, enabling more rapid reaction times [75]. Although µTAS are renowned for being less expensive than conventional laboratory-based testing, materials such as glass and silicon can still be considered expensive, either in terms of their environmental footprint or in their production costs [47]. Therefore, one of the main advantages of choosing µPADs over µTAS as a diagnostic platform is their reduced cost. Also µPADs are considered to be “easier” to produce, with no requirement for valves or pumps, as they use capillary force to move fluids within the device [74]; however, there can be issues with sample retention and evaporation, making them less suited to the analysis of small volumes [76].

5. Possible applications of microfluidic technologies in veterinary medicine

POC is already widely applied in veterinary medicine, and new and emerging technologies could bring substantial improvements to both the range of tests available and their inherent performance. The reduction in cost and time coupled to the possibility of multiplexing and one-step applications make these devices attractive for cost-effective and on-site testing of animals. Although microfluidics are, at the moment, predominantly applied to human diagnostics (Table 4), there have been examples of applications to areas of veterinary interest [77-81]. Microfluidic platforms have been successfully used for detection of food-borne pathogens, such as *Escherichia coli* O157:H7, *Listeria monocytogenes* and *Salmonella typhimurium* [82] as well as for detection of progesterone in serum samples [83]. The use of microfluidics has also been applied to improve the range of existing POC tests available for the detection of subclinical ketosis in cattle [84], in particular, by allowing on farm testing of samples such as milk.

5.1 Nucleic acid amplification

Combining nucleic acid amplification techniques with microfluidic technologies to detect low concentrations of molecules in a rapid, reliable and economical way represents an opportunity for new POC
technologies. The most widely used amplification technique is PCR [85], which is often used for infectious disease diagnosis, especially for the detection of small amounts of pathogen DNA. A possible limitation of laboratory-based PCR techniques is their cost, and the time and expertise required for testing. A promising application of microfluidics is DNA amplification on silicon chips [86], although the need for a thermocycler limits its application in the field. For this reason, new amplification technologies, based on isothermal nucleic acid amplification have received considerable attention, and appear to allow for improvement of assay sensitivity, while providing a rapid and cost-effective approach [87]. Examples of the integration of this method into µTAS devices are growing [88-91], with existing applications to the detection of pathogens of veterinary importance, such as Cryptosporidium parvum [92, 93], E. coli [94], Salmonella typhimurium [77, 95] and Suid herpesvirus 1 [96].

5.2 Multiplexing

A significant benefit of microfluidic technologies is the possibility to perform different tests in or on the same device [97]. Multiplexing has particular relevance in situations where multiple agents are involved [98] or where clinical signs are similar between/among distinct diseases [99, 100]. In this case, a POC “package” could be offered, in order to screen a single sample for all key pathogens involved in a particular disease scenario or complex [101, 102]. Other advantages could be the parallel interpretation of different tests for the same condition, in order to significantly increase test sensitivity [103] and the analysis of multiple markers to specifically diagnose a disease or condition, especially in the case of a progressive disease; or for monitoring therapeutic effectiveness. Finally, performing multiple tests at once, can also result in a reduction in cost, time and sample use [104].

5.3 Telemedicine and surveillance

Perhaps the most important advance in diagnostics is the possibility of combining microfluidics technologies with mobile read outs and electronic data storage. Since mobile phones have become
household items across the world and smart-phone cameras are of a high quality [105], the combination of these technologies could truly represent the future for POC. Examples of mobile read out and telemedicine applied to microfluidics are increasing [106-109], and show great promise. They allow for remote and cost efficient diagnosis, and also for information to be stored and shared automatically, making the process time-efficient and reducing human error [110]. At the same time, animal tracking systems are becoming automated, with widespread use of electronic identification, in the format of microchips and electronic ear tags/boluses. From the veterinary perspective, exploiting the opportunities of “distance-diagnosis” with efficient animal tracking could have a tremendous impact on disease control and surveillance, with considerable advantages for the monitoring of notifiable and zoonotic diseases, as in the case of bovine spongiform encephalopathy (BSE) [111] and in screening for changes in disease patterns [112]. Surveillance schemes are mostly carried out by official laboratories at considerable cost [113]. Recent restructuring of some diagnostic services will inevitably have a significant impact on diagnostic capability [114], which means that the present scanning surveillance systems may not be sustainable in the long term, such that alternative options might be required.

5.4 Disposal and handling of biological material

One of the main advantages of microfluidic devices is the possibility for the safe disposal of biological material [115]. This is of particular relevance for paper, where disposal of bio-hazardous waste could be safely and quickly achieved by incineration [116]. The advantages are in the further reduction of waste management costs, but, more importantly in the reduced risks of handling biological samples that might represent a health and safety risk [117]. It has been shown that veterinary surgeons are often concerned about the health and safety of packaging samples entering the postal system, as they are responsible for proper packaging and the safety of the recipient [17]. Therefore, safe and low-cost disposal of potentially bio-hazardous material represents a substantial added benefit for these new technologies.

6. Challenges
One of the biggest challenges in the field of microfluidics is the translation from academic research to end-user products [118]. While the field of microfluidics has seen an exponential development in recent years, the launch of a commercialised platform that would revolutionise the concept of microfluidic technologies is still lacking [119]. Something similar to the breakthrough achieved by the pregnancy test may be required to enable microfluidics-based testing to be more widely accepted. Unfortunately, the fact that the diagnostic field is already quite mature, makes it harder to find companies willing to invest in new areas [116], and the difficulties in changing people’s attitudes toward testing can represent an additional hurdle, especially when methods have been in place for many years. In this respect, the perception that analytical performances are still inferior to traditional laboratory-based tests remains a considerable constraint to the uptake of these technologies [2]. However, there is evidence that when a rapid result can achieve a better treatment rate, the sensitivity of a test can play a less important role [120]. This situation is extremely applicable in the veterinary field, where owners may struggle to find time for follow up visits after a test has been performed, or it may be problematic for farmers to re-gather animals days after testing [121]. Furthermore, as already in place for instrumental veterinary POC testing [122], specific guidelines should be put in place for the quality assurance of newly developed POCs, in order to provide a consistent and practical approach to evaluating their performance and increasing veterinarians’ confidence in test results [123].

While some of the challenges faced in human healthcare have been addressed by the use of microfluidic technologies, this is not the case for animal health-related areas. For example, although the use of microfluidic technologies is suited for telemedicine, the handling or recording of data needs to be carefully organised. Data management systems are available for POC [124], which allow for valuable information to be stored and made available in real time. However, in the case of notifiable diseases, specific rules and strict controls will be required to ensure that legislation is followed. Another significant challenge will be the need for targeted solutions according to the specific situation, remembering that a beloved sick companion animal will require a different approach from livestock displaying signs of a potentially zoonotic disease.
Finally, in order to fully exploit the potential of the new technologies at the POC, a higher degree of collaboration between engineers and biologists is required. Whilst, at the moment, the majority of the publications regarding microfluidics are in engineering journals [125], increasing publication of these topics in biological journals would help overcome some of the existing barriers. From an engineering point of view, research may focus predominantly on resolving the physical and chemical barriers posed by microfluidic technologies, while, from a veterinary diagnostics perspective, practical solutions are the main focus. By facilitating better communication between technology designers and end-users, a truly interdisciplinary approach could be achieved, which will help to solve the issue of translation of these technologies to the veterinary field.

7. Conclusions

Considering the wide array of veterinary conditions and the nature of veterinary diagnostics, POC testing offers distinct advantages over traditional laboratory-based testing. The advent of microfluidic technologies has further increased the opportunities for wider and more valuable use of POC testing. Although these technologies have not yet been applied as widely to veterinary medicine as they have in human medicine, they still offer great potential. Many of the hurdles encountered in diagnostics are commonly shared in human and animal medicine; advances in one field will therefore provide benefits to both sides, as long as specific needs faced from an animal health point of view are kept in mind. Importantly, a close collaboration between engineers, developing new and existing technologies and those at the end point in need of improved solutions will be of paramount importance.
Acknowledgements

The authors would like to thank Moredun Scientific Ltd. and Heriot-Watt University for generously funding this research.

References

Figure Legends

Fig. 1. Urine analysis performed using a dipstick test. The test strip is immersed in the urine sample for a few seconds, and, after a few minutes, the colour resulting from the reaction can be visually compared against the chromatic scale provided.

Fig. 2. Schematic representation of a lateral flow strip. A liquid sample is deposited on to the sample pad, migrating through a conjugate pad and a porous membrane for detection in a final absorbent pad. In most strip tests, the appearance of the control line indicates a valid test, while the appearance of a second test line indicates a positive test result.

Fig. 3. Stand-alone, self-powered integrated microfluidic blood analysis system (SIMBAS) [51]. The microfluidic platform integrates plasma separation from whole-blood with multiple immunoassays (A). Cross section of the device (B): fabrication materials (1); storage of the device in a vacuum package (2); addition of 5 ml of whole-blood sample on the inlet, degas-driven flow propels the sample into the device (3); blood cells sediment gravitationally and are filtered, while plasma flows into the channel (4); detection of multiple biomarkers (5); the flow is stopped by the suction chamber (6).

Fig. 4. 3D Origami-based microfluidic paper based analytical device [126]. Schematic representation, size and shape of the 3D origami-based device (A); the front and back surface of the device (B); binding of a
baked thin wax-patterned blotting paper on each waste tab, front (C) and back (D); binding of an unbaked thick wax-patterned blotting paper on each waste tab (E, F). The assay procedure is carried out by folding the different tabs above the test pad and adding the reagents sequentially, with the aid of a customised device folder.
Table 1. Examples of lateral flow immunoassays for POC diagnosis currently available for companion animals.

<table>
<thead>
<tr>
<th>Disease/condition</th>
<th>Sample</th>
<th>Target analyte/pathogen</th>
<th>Target species</th>
<th>Commercial name</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addison’s and Cushing disease</td>
<td>Serum</td>
<td>Cortisol</td>
<td>Dogs</td>
<td>SNAP® Cortisol Test</td>
<td>http://www.idexx.co.uk</td>
</tr>
<tr>
<td>Arthropod-borne diseases</td>
<td>Blood, serum or plasma</td>
<td>Anaplasma phagocytophilum and platys, Ehrlichia canis and ewingii, Borrelia burgdorferi, Leishmania infantum, Dirofilaria immitis</td>
<td>Cats and dogs</td>
<td>SNAP® 4Dx® Plus Test; SNAP® 3Dx® Test; SNAP Leishmania</td>
<td>[127, 128]</td>
</tr>
<tr>
<td>Cardiomyopathies</td>
<td>Serum or plasma</td>
<td>N-terminal pro-brain natriuretic peptide (NTproBNP)</td>
<td>Cats</td>
<td>SNAP® Feline proBNP Test</td>
<td>[129]</td>
</tr>
<tr>
<td>FIV and FeLV</td>
<td>Blood, serum or plasma</td>
<td>FIV and FeLV</td>
<td>Cats</td>
<td>BioSign® FeLV; BioSign® FIV; BioSign® FeLV/FIV; EVL One-step test; FASTest FeLV-FIV; SNAP® FIV/FeLV Combo Test; SNAP® Feline Triplet® Test Speed Duo FELV/FIV; Witness FeLV-FIV</td>
<td>[130]</td>
</tr>
<tr>
<td>Giardiasis</td>
<td>Faeces</td>
<td>Giardia</td>
<td>Cats and dogs</td>
<td>SNAP® Giardia Test; VetScan® Giardia Rapid Test</td>
<td>http://www.idexx.co.uk</td>
</tr>
<tr>
<td>Heartworm</td>
<td>Blood, serum or plasma</td>
<td>Dirofilaria immitis</td>
<td>Cats and dogs</td>
<td>BioSign® CHW; SNAP Feline Heartworm SNAP® Feline Triplet® Test; WITNESS® DIROFILARIA</td>
<td>[131]</td>
</tr>
<tr>
<td>Liver disease</td>
<td>Serum</td>
<td>Bile acid</td>
<td>Cats and dogs</td>
<td>SNAP® Bile Acids Test</td>
<td>[132]</td>
</tr>
<tr>
<td>Lungworm</td>
<td>Serum or plasma</td>
<td>Angiostrongylus vasorum</td>
<td>Dogs</td>
<td>Angio Detect™ Test</td>
<td>http://www.idexx.co.uk</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>Serum</td>
<td>Pancreas-specific lipase</td>
<td>Cats and dogs</td>
<td>SNAP® fPL™ Test; SNAP® cPL™ Test; FASTest parvo strip; Witness parvo card; SAS™ Parvo; SNAP® Parvo Test; VetScan Canine Parvovirus Rapid Test; Speed® Parvo Parvo</td>
<td>[32]</td>
</tr>
<tr>
<td>Parvovirus</td>
<td>Faeces</td>
<td>Parvovirus</td>
<td>Dogs</td>
<td>SNAP® Foal IgG Test</td>
<td>http://www.idexx.co.uk</td>
</tr>
<tr>
<td>Passive transfer of immunity</td>
<td>Blood, serum or plasma</td>
<td>IgG</td>
<td>Foals</td>
<td>SNAP® Foal IgG Test</td>
<td>http://www.idexx.co.uk</td>
</tr>
<tr>
<td>Thyroid disease</td>
<td>Serum or plasma</td>
<td>T4</td>
<td>Cats, dogs and horses</td>
<td>SNAP® Total T4 Test; SNAP® T4 Test</td>
<td>http://www.idexx.co.uk</td>
</tr>
<tr>
<td>Thromboembolic disease</td>
<td>Citrated plasma</td>
<td>D-dimer</td>
<td>Dogs</td>
<td>NycoCard D-dimer test</td>
<td>[134]</td>
</tr>
<tr>
<td>Toxoplasmosis</td>
<td>Serum</td>
<td>Toxoplasma gondii</td>
<td>Cats</td>
<td>N/A</td>
<td>[135]</td>
</tr>
</tbody>
</table>
Table 2. Examples of lateral flow immunoassays for POC diagnosis currently available for livestock.

<table>
<thead>
<tr>
<th>Disease/condition</th>
<th>Sample</th>
<th>Target analyte/pathogen</th>
<th>Target species</th>
<th>Commercial name</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaplasmosis</td>
<td>Serum</td>
<td>Anaplasma marginale</td>
<td>Cattle</td>
<td>N/A</td>
<td>[136]</td>
</tr>
<tr>
<td>Aujeszky’s Disease (Pseudorabies)</td>
<td>Serum</td>
<td>Suid herpesvirus type 1</td>
<td>Pigs</td>
<td>N/A</td>
<td>[137]</td>
</tr>
<tr>
<td>Bovine viral diarrhoea (BVD)</td>
<td>Serum and ear notch</td>
<td>Bovine viral diarrhoea virus (BVD)</td>
<td>Cattle</td>
<td>SNAP® BVDV Test</td>
<td>[36, 138-140]</td>
</tr>
<tr>
<td>Classical Swine Fever</td>
<td>Blood</td>
<td>Classical swine fever virus</td>
<td>Pigs</td>
<td>CSFV Ab Test</td>
<td>[36, 138-140]</td>
</tr>
<tr>
<td>Foot and mouth disease (FMD)</td>
<td>Vesicular epithelium and fluid, blood</td>
<td>Foot and mouth disease virus</td>
<td>Ruminants and pigs</td>
<td>BioSign™ FMDV, BioSign™ FMDV-Ag</td>
<td>[36, 138-140]</td>
</tr>
<tr>
<td>Infectious bursal disease</td>
<td>Bursa</td>
<td>Infectious bursal disease virus</td>
<td>Chickens</td>
<td>N/A</td>
<td>[141]</td>
</tr>
<tr>
<td>Neonatal diarrhoea</td>
<td>Faeces</td>
<td>Bovine rotavirus</td>
<td>Cattle</td>
<td>Rainbow Calf Scour Diagnostic Test</td>
<td>[33]</td>
</tr>
<tr>
<td>Passive transfer of immunity</td>
<td>Serum or plasma</td>
<td>IgG</td>
<td>Cattle</td>
<td>Midland quick test kit-calf IgG</td>
<td>[142]</td>
</tr>
<tr>
<td>Peste des petit ruminant</td>
<td>Lachrymal fluids</td>
<td>Peste des petit ruminant virus</td>
<td>Sheep and goats</td>
<td>N/A</td>
<td>[143]</td>
</tr>
<tr>
<td>Porcine reproductive and respiratory syndrome</td>
<td>Serum</td>
<td>Porcine reproductive and respiratory syndrome virus (PRRSV)</td>
<td>Pigs</td>
<td>BioSign® PRRSV</td>
<td>[12, 144]</td>
</tr>
<tr>
<td>Reproductive status</td>
<td>Milk</td>
<td>Progesterone</td>
<td>Cattle</td>
<td>N/A</td>
<td>[145]</td>
</tr>
<tr>
<td>Rinderpest</td>
<td>Lachrymal fluids</td>
<td>Rinderpest virus</td>
<td>Cattle</td>
<td>N/A</td>
<td>[146]</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Blood, serum or plasma</td>
<td>Mycobacterium bovis</td>
<td>Red deer, wild boar, elephants, cattle and non-human primates</td>
<td>CervidTB STAT-PAK; VetTB STAT-PAK test; DPP® CervidTB; DPP® VetTB Assay for Elephants; PrimaTB STAT-PAK</td>
<td>[147-152]</td>
</tr>
</tbody>
</table>

References:
[136], [137], [36], [138-140], [141], [33], [142], [143], [12, 144], [145], [146], [147-152]
Table 3. Examples of lateral flow immunoassays for POC diagnosis currently available for food safety.

<table>
<thead>
<tr>
<th>Disease/condition</th>
<th>Sample</th>
<th>Target analyte/pathogen</th>
<th>Target species</th>
<th>Commercial name</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute bloody diarrhoea</td>
<td>Milk</td>
<td>Escherichia coli O157:H7</td>
<td>Cattle</td>
<td>N/A</td>
<td>[153]</td>
</tr>
<tr>
<td>Anabolic steroid residues</td>
<td>Urine and liver</td>
<td>Medroxyprogesterone acetate (MPA)</td>
<td>Pigs</td>
<td>N/A</td>
<td>[154]</td>
</tr>
<tr>
<td>Antibiotic contamination</td>
<td>Milk, eggs, meat and</td>
<td>Beta-lactam, oxytetracycline, (dihydro)streptomycin gentamicin and sulfamethazine</td>
<td>Cattle, pigs, poultry, sheep and goats</td>
<td>Betastar® Combo Rapid Test; BioSign™ Sulfamethazine; Charm SL6™ Beta-lactam Test; SNAP® Beta-Lactam ST Test; SNAPduo™ Beta-Tetra Test; SNAPduo™ Beta-Tetra Test ST; SNAP® Gentamicin Test; SNAP® MRL Test; SNAP® NBL Test; SNAP® Tetracycline Test; SNAP® Sulphamethazine Test</td>
<td>[155-160]</td>
</tr>
<tr>
<td>BSE</td>
<td>Brain</td>
<td>PrPBSE</td>
<td>Cattle</td>
<td>Prionics-Check PrioSTRIP</td>
<td>[161]</td>
</tr>
<tr>
<td>Clenbuterol contamination</td>
<td>Urine</td>
<td>Clenbuterol</td>
<td>Pigs</td>
<td>N/A</td>
<td>[162]</td>
</tr>
<tr>
<td>Mammalian proteins contamination of feed stuff</td>
<td>Plasma</td>
<td>Bovine IgG</td>
<td>Cattle</td>
<td>N/A</td>
<td>[163]</td>
</tr>
<tr>
<td>Melamine</td>
<td>Milk</td>
<td>Melamine</td>
<td>Cattle and pigs</td>
<td>SNAP® Melamine Test; SNAP® AFM1 Test; ROSA Mycotoxin Strips</td>
<td>[164]</td>
</tr>
<tr>
<td>Mycotoxins contamination</td>
<td>Feed matrix and milk</td>
<td>Aflatoxin B1 and M1, deoxynivalenol and zearalenone</td>
<td>Cattle</td>
<td>N/A</td>
<td>[165, 166]</td>
</tr>
<tr>
<td>Nicarbazin residues</td>
<td>Feed matrix</td>
<td>Nicarbazin</td>
<td>Poultry</td>
<td>N/A</td>
<td>[167]</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>Meat</td>
<td>Salmonella typhimurium and enteritidis</td>
<td>Poultry</td>
<td>N/A</td>
<td>[168]</td>
</tr>
<tr>
<td>Trichinellosis</td>
<td>Blood, serum and meat</td>
<td>Trichinella spiralis</td>
<td>Pigs</td>
<td>N/A</td>
<td>[169, 170]</td>
</tr>
</tbody>
</table>

Table 4. Examples of commercially available microfluidic-based POC technologies for human diagnostic applications.

<table>
<thead>
<tr>
<th>Diagnostic application</th>
<th>Time to results</th>
<th>Sample type</th>
<th>Technology</th>
<th>Commercial name</th>
<th>Company homepage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood analysis (blood gas, electrolyte, haematology and metabolite panel)</td>
<td>30 seconds</td>
<td>Whole blood (100µl)</td>
<td>Test-card with card reader</td>
<td>epoc BGEM™ i-STAT</td>
<td>http://epocal.com</td>
</tr>
<tr>
<td></td>
<td>2 minutes</td>
<td>Whole blood (2-3 drops)</td>
<td>Test cartridge with handheld analyser</td>
<td></td>
<td>https://www.abbottpointofcare.com</td>
</tr>
<tr>
<td>Blood typing</td>
<td>Few minutes</td>
<td>Fingerprick blood sample</td>
<td>Disposable, credit card sized microfluidic device</td>
<td>ABORhCard®</td>
<td>http://www.micronics.net</td>
</tr>
<tr>
<td>Cardiac Troponin-I assay</td>
<td>10 minutes</td>
<td>Fingerprick blood sample</td>
<td>Test cartridge with platform</td>
<td>Idylla™ ctBRAF Mutation assay</td>
<td>http://www.nanosphere.us</td>
</tr>
<tr>
<td>Cancer diagnosis</td>
<td>100 minutes</td>
<td>Plasma (1ml)</td>
<td>Test cartridge with platform</td>
<td>CoagMax®</td>
<td>http://www.microvisk.com</td>
</tr>
<tr>
<td>Coagulation monitoring (Prothrombin Time test)</td>
<td>3 minutes</td>
<td>Whole blood (5µl)</td>
<td>Memory microchip with a meter</td>
<td></td>
<td>http://www.nanosphere.us</td>
</tr>
<tr>
<td>Fertility (FSH, LH, PL)</td>
<td>30 minutes</td>
<td>Serum (20µl)</td>
<td>Test cartridge with reader</td>
<td>Acix 100</td>
<td>http://www.achiralabs.com</td>
</tr>
<tr>
<td>Gastrointestinal infection (Clostridium)</td>
<td>Less than 2 hours</td>
<td>Stool</td>
<td>Test cartridge with reader</td>
<td>Verigene® C.</td>
<td>http://www.nanosphere.us</td>
</tr>
<tr>
<td>Test</td>
<td>Time</td>
<td>Sample Type</td>
<td>Equipment</td>
<td>Test Name</td>
<td>Website</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
<td>------------------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>C. difficile Test (CDF)</td>
<td>50 min</td>
<td>Whole blood or plasma (100µl)</td>
<td>Test cartridge with analyzer unit</td>
<td>EOSCAPE-HIV</td>
<td>http://www.wave80.com</td>
</tr>
<tr>
<td>HIV</td>
<td>Few min</td>
<td>Whole blood, serum or plasma (5µl)</td>
<td>DVD-like disc with reading instrument</td>
<td>spinit^® CRP</td>
<td>http://biosurfit.com</td>
</tr>
<tr>
<td>Inflammation (C-reactive protein)</td>
<td>Few min</td>
<td>Whole blood, serum or plasma (5µl)</td>
<td>Disposable lab-chip with a meter</td>
<td>Medimate MiniLab</td>
<td>https://www.medimate.com</td>
</tr>
<tr>
<td>Lithium levels (bipolar disorder)</td>
<td>Few min</td>
<td>Fingerprick blood sample</td>
<td>Disposable cartridge with analyzing instrument</td>
<td>FREN™ PSA plus</td>
<td>http://nanoentek.com</td>
</tr>
<tr>
<td>Prostate Specific Antigen (PSA)</td>
<td>3 min</td>
<td>Serum or plasma (30µl)</td>
<td>USB size chip with purpose-designed platform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septicaemia</td>
<td>2-3 hrs</td>
<td>Whole blood (10ml)</td>
<td>USB size chip with purpose-designed platform</td>
<td>Genalysis</td>
<td>http://www.dnae.com/index.html</td>
</tr>
</tbody>
</table>