Microstructure evolution in aluminium 6060 during Incremental ECAP

M. Lipińska*, L. Olejkí, W. Chromiński†, A. Rosochowski‡, J. Goliński‡, M. Lewandowska‡

* Faculty of Materials Science and Engineering, Warsaw University of Technology, Wólczańska 141, 02 507 Warsaw, Poland
† Institute of Manufacturing Processes, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
‡ Design, Manufacture and Engineering Management, University of Strathclyde, Glasgow G1 1XJ, United Kingdom

E-mail: martina@ipmat.pw.edu.pl

Introduction

An AA6060 Al-Mg-Si alloy was used to investigate the microstructure evolution on X, Y and Z planes after processing by Incremental Equal Channel Angular Pressing (IECAP) at room temperature after 1 and 4 passes. The basic microstructural parameters (mean grain size, grain boundary statistics) were evaluated. Noticeable changes in microstructural parameters were acquired by Electron Backscatter Diffraction (EBSD). Grain size was estimated for high angle grain boundaries (HAGBs), which means that grains with boundaries misorientation angle at least 15° were considered. Additionally, the misorientation angle distribution is presented in order to determine the changes caused with further material deformation.

Material & Processing

Chemical composition of investigated material AA 6060

<table>
<thead>
<tr>
<th>Element</th>
<th>Fe</th>
<th>Si</th>
<th>Cu</th>
<th>Zn</th>
<th>Ti</th>
<th>Mn</th>
<th>Mg</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content (wt.%)</td>
<td>0.19</td>
<td>0.43</td>
<td>0.006</td>
<td>0.005</td>
<td>0.004</td>
<td>0.57</td>
<td>0.004</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Annealed material was put into Severe Plastic Deformation (SPD) process, named Incremental Equal Channel Angular Pressing. The main idea of IECAP is to apply plastic strain in a series of small deformation increments, which are based on simple shear. As in conventional ECAP, this method has the ability to pass the ingot via different routes. In present experiment, square plates (62 mm x 62 mm x 3 mm) were used, which gave a possibility of employing deformation route based on rotation around the normal to the plate (Z axis). Materials after 1 pass and 4 passes were investigated, which equals total equivalent strain 1.15 and 4.6, respectively.

Results

Grain size distribution (<15°) on different planes from EBSD measurements for samples after 1 and 4 passes of IECAP

Misorientation angle distribution on different planes from EBSD measurements for samples after 1 and 4 passes of IECAP

Mechanical properties of samples cut from direction longitudinal (LD) and transverse (TD) to the direction of last pass of IECAP

Conclusions

Incremental Equal Channel Angular Pressing brought a significant grain refinement. Average grain size after 1 pass equals from 1.45 to about 1.72 μm in dependence on the plane. After 4 passes, the average grain size was in the range of 586 to about 720 μm. Together with decreasing the average grain size, the diversity of the grain size has been reduced too. Grains became less elongated, with less developed boundaries line. The character of grain boundaries has changed – more HAGBs can be seen after 4 passes of IECAP. Mechanical properties such as yield strength and tensile strength are increasing with further deformation. Nevertheless, the relative high value of total elongation is preserved after 4 passes of IECAP. The uniform elongation is even higher after larger plastic deformation. It can be caused by the changes in the microstructure and reduced number of free dislocation observed in grain interiors.

Acknowledgements

This work was carried out within a DJ AMSE project financed by NCBiR (WPN/6/2013).