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Effective Denoising and Classification of
Hyperspectral Images using Curvelet Transfc
and Singular Spectrum Analysis
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Abstrac® Hyperspectral imaging (HSI) classification has |. INTRODUCTION

become a popular research topic in recent years, and effective . . .
feature extraction is an important step before the classification HYPERSPEC-I-R'A‘L'malglng (HSI) sensors, which capture

task. Traditionally, spectral feature extraction techniques & hundreds of continuous bands in a broad spectral range
applied to the HSI data cube directly. This paper presents a novel covering visible, neainfrared, and beyond, play an important
algorithm for HSI feature extraction by exploiting the curvelet role in many research aredsgcluding applications in food
transformed domain via a relatively new spectral feature quality control and analysis [1], pharmaceuticals [2],
processing technique i singular spectrum analysis (SSA).  computetbased forensics and security [3], as well as planet

Although the wavelet transform has been widely applied for HSI . o o
data analysis, the curvelet transform is employed in this paper surface investigation such as Mars [4]. In addition to these

since it is able to separate image geometric details and background @PPlications, one of the most active areas of KBSremote
noise effectively. Using the support vector machine (SVM) Sensing, where researchers develop diverse algorithms based on

classifier, experimental results have shown that features extracted it, e.g. target detection for military surveillance [5], data
by SSA on curvelet coefficients have better performance in terms compression for faster transmission [6, 7], surface and data

of classification accuracies over features extracted on wavelet classification for lanetover analysis [812]. However, da to

coefficients. Since the proposed approach mainly relies on SSA for - L
feature extraction on the spectral dimension, it actually belongs to the characteristics of HSI, _data redundancy IS mt_awtable.
the spectral feature extraction category. Therefore, the proposed Furthermore, for remote sensing HSI, noise could be involved

method has also been compared with some statéthe-art spectral ~ during the process of data acquisition and transmission.
feature extraction techniques to show its efficacy. In addon, it ~ Therefore, effective feature extraction and denoising of HSI
has been proven that the proposed method is able to remove theqata is necesary for remote sensing applications, in particular

undesirable artefacts introduced during the data acquisition for supervised classification prgns as discussed in this
process as well. By adding an extra spatial pogtrocessing step to

the classified map achieved using the proposed apprdaove have paper . . .
shown that the classification performance is comparable with ~ Feature extraction could be considered as a linear or

several recent spectrakpatial classification methods nonlinear data transformation. Several unsupervised and
supervised feature extitzmn methods have been proposed by
Index Terms) Hyperspectral imaging (HSI), the curvelet researchers, including the most widely used principal
transform, singular_ spectrum anfilysis (SSA), _ classification, component analysis (PCA) [8, 12], along with other approaches
support vecbor machine (SVM), spatial postprocessing such as independent component analysis (ICA) [13], linear
discriminant analysis (LDA) [14], minimum noiskaction
(MNF) [15], nonrnegative matrix factorisation (NMF) [16] and
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It is assumed that directly applying denoising techniques alenoised image is unknown. We therefore adopt the curvelet
the original image could probably remove fine feaduamd transform instead dhe wavelet transform in our approach and
noise at the same time, which is undesirable for followingombine SSA to extract effective spectral features in the
applications. To avoid this problem, the mugitiale wavelet curvelet domain in order to improve classification accuracies
transform based approaches are widely used for imafgr remote sensing hyperspectral images.
denoising, where the transform decomposes the image into a séthe paper is organized as follows: the theory ofcilmeelet
of wavelet cofficients at different decomposition levels, andtransform and SSA is introduced in Section Il. The proposed
noise in the lowenergy channels of the transformed domain catienoising and feature extraction approach applied on HSI data
be removed. A famous algorithm called soft thresholding in the given in Section Ill. Section IV introduces the experimental
wavelet domain was proposed by Donoho in [19]. By removirggtup, including data sets, the classifier and tuning ofmapt
small coefficients urer a certain threshold and shrinking larggparameters. Results and analysis are presented in Section V.
coefficients, most unwanted noise can be discarded easily. Adére papeends with a conclusion section
HSI data, Othman and Qian proposed a hybrid spspiattral
derivativedomain wavelet shrinkage approach based on the soft Il. BACKGROUND PRINCIPLES
thresholding [20]. This gbrithm works in the spectral |n this section, the theory of the curvelet transform and SSA
derivative domain, in which the noise level is elevated and thg 26 3G 33], which will be used in following séons, is
signal regularity is dissimilar in the spatial and spectral domaipsjiewed
of HSI data. Recently, Chen and Qian combined feature
extraction and denoising, leading to anm effective denoising A-TheCurvelet Transform
method for HSI data using PCA and wavelet shrinkage [21]. In Similar to the wavelet transform, the curvelet transform could
this approach, first PCA transform is performed on the HSI dagso provide multscale analysis on images. It was first
and then a 2D bivariate wavelet thresholding method is usedpwposed by Candes and Donoho in 1999, and their version is
remove ngse for lowenergy PCA channels also called the firspeneration curvelet trsform [34].

In this paper, we are also aiming at combining ideas of featur®wever, this transform is rather complicated and needs at least
extraction and denoising together for improving classificatiofpur steps to complete, including a sbdénd decomposition,
accuracies of remote sensing hyperspectral images. This workfigooth partitioning, renormalization and ridgelet analysis [34].
inspired by [22] where the curvelet transform is applied to H$} few years later, a simpler and faster version efchrvelet
dat and the representation of noise free signals in the curvéiénsform was developed, which is the secgederation
domain is predicted using multiple line@gression (MLR), a transform also called the fast discrete curvelet transform
regression that has been previously used for noise analydi®CT) [31]. Two forms of FDCT with the same computational
[23-24]. Although the wavelet transform has beeidely complexity were proposed by Candes et al., based on the
applied for imge denoising, many studies have concluded thenequallyspace fast Fourier transforms (USFFT) and the
the wavelet transform cannot provide a good representationveiapping of specially selected Fourier samples, respectively.
an anisotropic singularity, such as curves or edges in the imagee curvelet transform uséreis the one based on USFFT
[25i 27]. For this reason, settiresholding directional curvelet Let us assume there is a pair of smooth,-negative and
coefficients thatatch image edges could achieve better noisealvalued windows called the rad window W(r)and the
reduc_tion effect than the coefficients obtained in the Wavelﬁhgular window V/(t)
domain. It has been proven that the curvelet transform could, B
represent piecewise linear contours on multiple scales througﬁé (]/2,2) and V is supported ontl [-11] . These
few significant coeftients, leading to a better separatiorwindows will always satfy the admissibility conditions:
between geometric details and background noise [28]. B ;

Therefore, the curvelet transform is a good candidate for image aw (2'r)=1,r1 (3/4,3/2); 1)
denoising and enhancement. After the curvelet transform, the )= ="

coefficients of two adjacent banddlistiaintain the correlation S\ y2 _ :

similarity of the original HSI data [29], which means spectral .9Y (t-N=%tl (-12,32). )
processing techniques could then be applied in the curvelet . , ) o
domain. Feature extraction by MLR in [22] is achieved by FOreachscale], thefrequencywindow U ;is definedin
estimating the noise free band by using all jsixa adjacent the Fourierdomainby

bands at the same time, while more accurate spectral feature _ _ 30li/2] C/5
extraction is proposed to be achieved by applying the above U,(r.q) =2'3J/4W(2' J r)V%S, (3)
mentioned SSA to each pixel. The denoising performance in o 20 =

[22] is then gssessed by adding noise to the original HSI d%ere{j/Z] is the integer part of /2_ Consequently the
and comparing the mean squared errors (MSE) and the mean

structural similarity (MSSIM) between the original data angupport ofU ; is defined by the support 8/ andV ,
denoised data, where the classification performance on #@ich will be a polar wedge.

such thatW is supported on
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A mother curvelet waveform i (X)is defined related to where Sq is the shear matrix defined as below:

U; (W) (U (r,qg) will be abbreviated abJ ; (W) ), where S ::% 1 Og 10)
the Fourier transform of ; is equal toU ;. Thus, all 7 ¢ tang 1x

curvelets ofscale?” ) can be acquired by rotations and Similarly, curvelets should be-dgefined in Cartesian fo:

. =~ _3j/a (T T
translations of/ ; , where the equispaced sequence of J k(X =2 14 j(Sq (X' SH b)) (11)

rotation angles are) = 2p@UAD, with 1 =01... with b= (kl @k, & 1/2), where the superscript

such thatO ¢ g <2p, and the squence of translation represents the transpose of the matrix. Accordingly, the curvelet

. coefficient will be
parametersk = (k;,K,) I Z?. Then, we can have the

c(i.1k) = (S, WU e ™ dw.  12)
Assume the input Cartesiamrays for ann by Nnimage are
_ in the form of f[t;,t,],0¢t,t, <n , a fourstep
J k(¥ =/'j(Rq (X- Xi((”'))), (4) implementation of FDCT via USFFT can be obtained as
follows:

WhereRq is the rotation byg radians anoRq'lis its inverse 1) 2D FFT: Apply two-dimensional (2D) fast Fourier
o L transform (FFT) to iput arrays and obtain Fourier samples as:
dcosg singd

= : 1 -1 +otp) /n
Rq_gsinq cosg? ®) ﬁnl'nz]:tlg:g[tl’tZ]e PN (13)

curvelets at scale 27! , orientation g, and

positionxl(<j D= R;nl(k1 @ k& j/z), defined as

A curvelet coefficient of an elemerft | A? is the inner with - n/2 ¢ n,n, < n/2_

product of f ard a curveley 2) Interpolation: For each pair of scale and andlg,|),
c(j,l,k) ::<f J i k> =Rz F(Q/ ; x()dx. (6) Fourier samplesF[nl, n,] are interpolated to get new values,

Our discussion of the digital curvelet transforms willﬁnrnz - mtang ], for n,ny I Pj. P is defined as a
always be in the frequency domain. Therefore, the curvelkgdt below:
coefficient could be rexpressed in the frequency domain Pj :{(nl,nz) g ¢n <ng+ Ll,j

usi ng Péttheorenner el 6 (14)

. 1 g .= n20¢n2<n20+|-2,j},
(il k)= = AR/ () dw
(2p) @) where L ; and L, ; are the length and width of a rectangle
- ; jl '
- 1 ﬁ]E(W)U j (Rq‘ w) e' <X1(<J )'W>dW and (N, Nyp) is the index of the pixel at the botteleft of the

(2p)? rectangle.

In practice, instead of using the polar window defined in 8) Multiplication: I\fultmly the interpolated samples with

(3), it is more common to use Cartesian equivalents. Tt frequency winde UJ- and obtain
Cartesian frequency window is shown as follows: F [N, n,] = F[nl n, - N tang] J (nn,]. (15)
T — FRLLELL-] R 1= MR SILLTLL 2
U;W) =y ;(m)V;(n), (8) J :
4) Inverse 2D FFTThe last step is to apply the invegda
where we definey (1]) = \/f(Wl/z)z - f(M)? as a FFTto f, in order to get the discrete curvelet coefficients:
; i - - . . B
bandpass  profle in ) ;(K)=y(2'1) and cP(j,1,k) = a f:_[nl,n2 - n,tang; ]
- ol Py
V. (W) =V (212w, /) with V still obeying (2). By i . (18)
J . . J [nl n ]ein(klnl/LLj+k2n2/L2’j)
introducing the set of equispaced slojiefig; = | & /A Tt

with| :_2[1'/2]’2 ’2[1'/2] - 1, for eachy, i [- p/4,p/4), With all four stepsz, the discrete curvelet transform via
USFFT requiresO(n“logn) flops for computation and

the Cartesian window can be rewritten as:
~ 2
U W)=y (n)V,;(Sn), 9 O(n?) for storage.
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B.Singular Spectrum Analysis 2) Reconstruction: The first step of reconstruction is

As a wellestablished approach, SSA has been applied fgrouping, where the set of indic§d,2,2 ,d} is divided
time series analysis and forecasting and is widely used H}o m disjoint subsets {|1’|2’2 |m}  Each
different areas, including mathematics, economics and even
biomedical engineering [35]. SSAafes the same theoretical | ; (j =122 ,m) contains one or several elementary
foundations as PCA. Both of them are able to decompose the
original time series into a linear combination of a neW'@
orthogonal basis, which includes eigenvectors generated froasultant trajectory matrices can be conagufor each group
the diagonalization of the data correlation matri[3®ie main and consequently (18) is expanded as follows:

trices T; which are summed within each group. Then, the

capability of SSA is that it can decompose the original series *) ) s'y[) )
into some interpretable components, such as the trend, T=T.+T.+3 +T
oscillations and unstructured noise [9]. The SSA algorithm ro2e d (20)
consists of two stages including the decomposition and the *) )?VQ‘UFTQ) )
reconstuction, and it is briefly explained as follows. = T|l + T|2 +3 +T,
1) Decomposition: Assume that X is a nonrzero m
onedimensional (lD) series vector with |engtN , The last Step is diagonal averaging, which transforms each
e, X=(X,%,2 ,Xy) . Given a window grouped matrixTIj into a new series with lengtMN . This

sizeL (1<L < N), the original seriesX is mapped toK  process is also known as Hankelisation of the méfﬁif :

- T
lagged  vectors,  X; =(%,%41,2 1 X4L.1) for  AssumeY; =(Vy,¥,,2 ,Yy) is the transformed 1D series

1=123 ,K, where K =N- L+1. The window size T, , elements inY; can be calculated using (21) by
. . . 1

should be choseproperly depending on the application. Tihe

the trajectory matrix is formed as:

T=(X, X, 3 X)

averaging the corsponding diagonals oT,1 ,

el ) 1¢k<L
o ~ a Yik j+10 <
aX, X, 3 X, 0 Tk
et K0 l
_a X3 3 Xeno (17) f N . .
_694 4 6 40 yk:l a-yjkj+1’ L ¢ke¢K )
8 ==
(%(L X 3 Xy = [ N-K'+1 i
. . b a VYjkju K <k¢N
It should be noted that the matrik in (17) is a Hankel | N - k+1j:k_ Kel
matrix of size L3 K, which means its entries along the 21)
antidiagonals are equal.
The nexistep is to compute the SVD of the trajectory matrisvhere L = min(L, K), K" = max(L,K) y} o j41

T . First, eigenvalues of TT are calculated and sorted in a

descending order, i.e/;2/,23 2/ 20. Let the

corresponding eigenvectors l(Ul,U2,3 ,UL), and the

resulting trajeatry matrix after the SVD is shown in (18), series X = (xl, x2,2 ,xN) is decomposed intdn series,
T=T,+T,+3 +Tjy, (18)  like shown in (22),

refers to the elements iﬂ'|1 , y} k-j+1 = Yjk-ju If

L<KandYjy js1 = Vi jsz; if L2 K. Then, the initial

X=Y,+Y,+3 +Y . (22)
where d is the rank of T , T; = \/ﬁUiViT L )

. ) o Therefore, the original series vector could be reconstructed
(1=122 ,d)is called the elementary mit with rank 1, py only usng the first or the first a few groups generated from its

and V, =77 Ui/x/ﬁ are often referred to the principal eigenvalues and the rest could be discarded as noise. For
example, if the window sizd is set as ten, reconstruction

components (PCs) of the matrix . Generally, the contribution using the first three to five components should usuadly b
of the elementary matrixl; to the trajectory matrixI is  enough to achieve a good denoising performance. However,

determined by the ratio of each eigenvalue and the sum of #¢re is no general rule for the grouping. Like the window

eigenvalues, as shown in (19), sizeL, one can choose the eigenvalue grouping (EVG) value
d depending on the application. If all decomposed components
h=/ /a /;. (19) are involved in the EVG, the reconstructed series will be the

i=1 same as the original series.
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I1l.  THE PROPOSEDAPPROACH APPLYING SSAIN THE p|' [:L P], q|' [:L Q] and P3 Q is the spatial dimensh

CURVELET DOMAIN of the hyperspectral image arl is the number of bandé\

'3‘5]: brtlefly mtentltoned in Secr:'or‘”L the pF::OCFiJ]OSGd de”to'sl'”ﬂapresents the set of real numbers with the pixel intensity
and feature extraction approach will be appbtiedyperspectral
images and the flowchart is shown in Fig. 1 for reference.b(p’ g) at all sensor channelsith el [L.B]. The 2D

Hyperspectral sensors have a relatively high spectral resolutf#vekt transform via USFFT employed in this paper is
and can generate hundreds of observation channels [37]. Bgénpleted using the toolbox CurvelLab (version 2.1.3}.[3
obtained threelimensional (3D) HSI data cube can bgarded Similar to the wavelet transform, the curvelet transform can also
as a stack of 2D images of the same scene correspondingl€é§ompose the image into a coarse image and several detail
different wavelengths [22], and the correlation between ealRages. Just like moshage processing algorithms, the curvelet
two adjacent bands is fairly high. The first step of the proposé@nsform requires the processed image to be a square whose
method is to perform the curvelet transform on each banaof thimension is a power of two. If the size of the original image is
hyperspectral image and a few image stacks are generated dfedr@ power of two, pixels with a value of zero are padded to the
the transform as shown in Fig. 1. By applying the curvel&ext larger power ofio.
transform on each band, the band correlation property can bé&3iven the zergpadded HSI data  set,
preserved so that SSA is able to exploit the spectral signatute. pad(m,n) = (I _ pad,(m,n),| _ pad,(mn),2 ,
The net step is to apply SSA in the spectral dimension for eac T .
detail image stack for feature extraction and denoising. After— pads (mn)) where mnl [1,N] . consisting of B
that, the denoised detail images at each band are gathdsadds where each band hbE pixels, the curvelet transform
according to their original location, followed by the inverseg performed on hand imagd _ paoL to obtain the curvelet
curvelet trasform to get the denoised hyperspectral image

coefficients corresponding to that balg?i:

" Original HSI cube CbD = CT(I _ paq)) ’ (23)

Curvelet transform where CT stands for the discrete curvelet transform operation
v explained in Sectiorll. The decomposition results of the
Detail image stacks transform can be regarded as a superposition in the form as
Coarse i lmage stack follows:
: J-1
Cb CbJ+aWbJ, (24)

25, SSA SSA

Orlgma]
== 55A

where C,, ; is the coarse version of the original band image

with low frequency contents aer, j stands for the detail band

image at scalg" J containing high frequency contents. With an
N by N image, the default number of decomposition scales
s m is J =log,(N) - 3as setin the CurvelLab toolbox. Take a
band image with size of 128 by 128 for instance, the number of
decomposition scaled will be four. According to the settings

in the toolbox, there are eight orientations of the curvelet in the
second Bad third scales, starting from the ttgit wedge and

Dhesichsevlebii nassiniia increasing in a clockwise fashion, but for the coarsest and finest
scales, there is only one direction. Thus, (24) is rewritten as
Inverse curvelet transform ¢ belOW,
o J-18
SVM Y _CbJ1+Wbl,l+a aijl y (25)
j=21=1
Classification result De-noised HSI cube

where W, ; ; representshe finest scalewith oneorientation.

Fig. 1. Flowchart of the proposed methodology The schematic diagram of four decomposition scales

_ ) _ correspondingo a128by 128imageis shownin Fig. 2. Then,
In this paper, a hyperspectral image is denoted ggerapplyingthecurvelettransformto all bandstherewill be
1(p,a) =(,(p,q),1,(p,a),2 ,15(p,q))| A®, where acoarsemagestackand17 detail imagestacks.
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4.
L |
6:
= 7
(a) (b) () (d)

8:

Fig. 2. lllustrationof a 128 by 128imagewith 4 decompositiorscaleswhere
(a) is thefirst (finest) scalewith 1 orientation,(b) is the secondscalewith 8 9
orientations,(c) is the third scalewith 8 orientations,and (d) is the fourth ’
(coarsestpcalewith 1 orientation 10:

As suggested by the commonly adopted wavelet denoising 11
rule, noise is removed by thresholding only the wavelet 15.

coefficients of the detail sdibands, while keeping the low

frequency coefficients unchanged [39]hefefore, in our 13:
approach, the coarse image stack stays unaltered as well. Fon4:

each detail image stack, SSA is applied to the spectral
dimension for smoothing the spectral profile, followed by the
inverse curvelet transform to get the denoised HSI data. cub

Given a detail image stack at scalé! and orientationl 17:
[ denoted as 18:

which is

W, (%Y) (bi [1,B], xi [1 X], yi [LY]) containing

X 3Y coefficients in each band, the spectral series vector for 19:
comsicted as 20:

Wi (6Y) =W (Y)W 5 (X Y),2 W ) (%, Y)) 2L

. Then, the smoothing process on the spectral dimension by SSAZZ'
could be achieved, denoted as below, 23:

one pixel can be

Y (%Y) =SSAevc(Wj, (X Y)), (26)

in which SS/ is the operation of the singular spectrum
analysis listed i118)-(22), L, EVG are SSAparametersand

Y (6y) =Y (6 Y)Y i (6 ¥),2 ,Yg 1 (X% Y)) is 26:
the smoothed spectral feature in the curvelemain. After 27:

collecting all smoothed spectra for each detail stack, the inverse

discrete curvelet tresform is performed on the smoothed 28:

curvelet coefficients band by band using the same toolbox og

anewdatacube | _ padwith sizeof
N3 N3 B

else
| _ pad« |

end if

for b« 1,B do
apply curvelettransformto | paq3 to get
coarseCy, ; anddetail W, ;| images

end for

for all detailimagestacksdo
for X« 1, X do

for y« 1Y do

Wi (X y) « (W, (%Y),2,

Wi, (X, ¥))

Y (xy) « SSAW;, (% Y),L,EVG)

end for
end for
end for

substituteoriginal detail curveletcoeficients
with SSA-processedietail coeficients

for b« 1, Bdo
apply inversecurvelettransformto Cb’ 5 and

Yy, j, to getdenoisecbandimage | _d,
end for

crop | _dj to theoriginal size P2 Q3 B

. end procedure

CurvelLab and the denoised HSI data cube is achieved, shown as
(27),

& J18 Q
| _d, =ICT& 51+ Youa t _3-2 Iale,j,I 8 @
Q J: = -

IV. DATA SETS AND EXPERIMENTAL SETUP

In this section, the experimental data sets will be introduced
as well as the choice of the classification model and parameters.
Three pblicly available and widely used HSI remote sensing

where ICT stands for the inverse curvelet tséorm operation. data sets are employed to evaluate the performance of the
The last step is to crop the denoised HSI cube to its original sipéoposed method in this paper, including the airborne
The pseudo code of the proposed curvelet and SSA approact$ile/infrared imaging spectrometer (AVIRIS) natural scenes
summarized in A|gor|thm 1. Indian Pines [40] and Salinaﬁalley [41], as well as the
reflective optics system imaging spectrometer (ROSIS) urban
scene Pavia University [42].

The Indian Pines data set, was collected in the Indian Pines
test site in Northbwestern Indiana, USA in June 12, 1992. The
scene consistsf ewo-thirds agriculture, and orthird forest or
other natural perennial vegetation [43]. Acquired in band
interleaved (BIL) format, it has 145 by 145 pixels with a spatial
resolution of 18 m, and 220 continuous spectral channels
ranging from 400 to 2500nm covering the complete

Algorithm 1 The Curveletand SSA algorithm
1! procedure CURVELETSSA(l , L, EVG).
P3 Q3 B HSldataset | , SSAwindowsize L

and groupingparameter EVG
2. if P, Q & P,Q arenotpowerof two then

3 zeropadeachbandof | to the nextlarger
powerof two to get
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VIS-NIR-SWIR spectrum. The nominal spectral resolution iand radiometric resolutions of this data set are the same as for
10 nm and the radiometric resolution is 16 bits [44]. Due timdian Pines. After removing water absorption bands {18
atmospheric water absorption, bands-108, 156163 and 220 154167 and 224), the obtained image then has 2@hmels
do not contain useful information and are consetipen covering 400 to 2500 nm [44]. The ground truth map of Salinas
removed to prevent from decreasing the classification accura®glley contains 16 classes as shown in Fig. 4.
resulting in a reduced data set with 200 spectral bands. Therdhe Pavia University data set was collected during a flight
are 16 classes in the original ground truth map. However, socempaign over the Pavia district in north Italy, with a spatial
classes have insufficient samples for training the classdfitat resolution of 13 m per pixel [47]. There are originally 115
model. As suggested by other researchers [9, 37, 45], 7 out oftlhds with a spectral coverage ranging from 430 to 860 nm.
classes are discarded for more consistent results, leavindi®wever, 12 channels have been removed due to noise, leaving
classes considered in experiments. One band image and 288 bands with 610 x 340 pixels p&and. Nine classes of
reduced ground truth map of Indian Pines are shown in Fig. 3nterest are provided in the gnad truth map, including urban,

soil and vegetation features, as shown in Fig. 5.

B 2. Corn-no till (1428) MM 3. Corn-min till (830) B 5. Grass/Pasture (483)
6. Grass/Trees (730) 8. Hay-windrowed (478) 10. Soybean-no till (972)
11. Soybean-min (2455) 12. Soybean-clean (593) WMl 14. Woods (1265)

Fig. 3. IndianPinesdataset:band1500ut of 200bandg(left) andthereduced
9-classground truth map (right) with numberof sampleshown

I 1. Asphalt (6631) Il 2. Meadows (18649) I 3. Gravel (2099)
4. Trees (3064) 5. Painted metal sheets (1345) 6. Bare soil (5029)
7. Bitumen (1330) 8. Self-blocking bricks (3682) MM 9. Shadows (947)

Fig. 5. PaviaUniversity dataset:band 70 out of 103 bands(left) andthe 9
classgroundtruth map (right) with numberof samplesshown

The spatial area of all datatsés not a square, hence, before
applying the curvelet transform, Indian Pines, Salinas Valley
and Pavia University are zepadded to the size of 256 x256 x
200, 512 x512 x204 and 1024 x 1024 x 103, respectively.
Then, when the denoising and featurdraction process is
finished, reconstructed images are cropped to their original
sizes for the following performance evaluation.

In the context of supervised classification, a variety of
methods have been developed for HSI data classification
problems, igluding the famous artificial neural networks

M 1. Broceoli green weeds 1 (2009) WM 2. Broccoli green weeds 2 (3726) [48| 50]’ mU|t|nom|a| |OgIStIC regreSSI()n [51]’ as We” as the
B 3. Fallow (1976) B 4. Fallow rough plow (1394) 1 i i i
—ierd . e widely uged support vectqr machine (SVM) which shows its
7. Celery (3579) 8. Grapes untrained (11271) outstanding performance in many papers [1, 8, 37, 52]. The
9. Soil vineyard develop (6203) 10. Corn senesced green weeds (3278) . . .
11. Lettuce romaine 4wk (1068) W8 12. Lettuce romaine Swk (1927) propertIeS of SVM make it an efftive tool for HSI data
B 3. Lettuce romaine 6wk (916) Wl 14. Lettuce romaine 7wk (1070) e . . .
B 15. Vineyard untrained (7268) W 16. Vineyard vertical trellis (1807) classification pr0b|em5 which are influenced by the Hughes
Fig. 4. Salinasvalley dataset: band 50 out of 204 bands(left) and the 16 phenomepon [53]' The Hthes p_henomenor_1 is also knpwn aSA
classgroundtruth map (right) with numberof samplesshown the 6curse of di mensionalityo,

bands and low number of labelled training sampselten an
The second data set was collected over Salinas Valley, CAdacrease in the generalisation capability of the classifier [37]. In
low altitude in October 9, 1998, resulting in a high spatighis paper, a publicly available SVM library called LIBSVM
resolution of 3.7 m per pixel [46]. The full scene, whicH{54] is adopted and the Gaussian radial basis function (RBF)
includes vegetables, bare soils and vineyarddijecomprises kernel is chosen as it has been shown to outperform keheel
512 lines by 217 samples with 224 spectral bands. The specfraictions for HSI data, such as linear and polynomial kernel
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functions, in terms of classification accuracy [37]. Optimahigher than the default setting. Therefore, different values have
values of the regularization paramet€r and the width been tested to look for optimal parameters. Firstly, the default
parameted i n t he Gaussi an RBF nknbernoé decompositiora levels éssae th the scurvelpt
tenfold cross validation on training samples, where values @fansform and the window sizk is tested from 2 to 5 as
both parameters are tested within the exponentially increasiptted in Fig. 6. Similarly, experiments have been carried out

sequencg2 1°,2°% 2 219 ten times, and the average OA as well as the standard deviation
are shown in the plots. Byalfiand error, optimal value fdc is
V. RESULTS ANDANALYSIS set as 5 for both Indian Pines andliSas Valley. For Pavia

University, L is set as 4. The same settings of SSA are used for

In this section, the classiftion results based on SVM for . .
three hyperspectral data sets are revealed. The Classificatcl%)L'SSA and WFSSA as well. With the chosen optimailues

performance is evaluated by the overall accuracy (OA) and tif Window sizeL , the number of decomposition levels is
average accuracy (AA), where OA refers to the percentage Of%;.ted from 2 to the default' setting. Result; 'pIotted in Fig. 6
pixels that are correctly labellghd AA stands for the average'nd'cate that the default setting of decomposition levels should

percentage of correctly labelled pixels for each class always be used in the curvelet transform.
Since the proposed methodology is inspired by feature, , , ‘ .

extraction approach based on SSA [9] and the denoisi . o

approach in [22] which uses MLR applied in the curvelez g9

doman, it is compared with them in subsection A below§" g

2 g9
8

Besides, the curvelet transform is similar to the waveln‘:ﬁ
transform as a mulscale geometric analysis (MGA). 55” &
Therefore, SSA and MLR are also applied in the wavelr 88 _ _ !
domain for comparison in this subsecti For the wavelet = 5 5 ooy = e
transformbased approaches, the hyperspectral data are &--; i i

zeropadded and the number of decomposition scales is set  «s
same as the curvelet transform, where thE «
CohenDaubechied~eauveau (CDF) 9/7 wavelet is adopted§ s>
For conveniencehe proposed approach is denoted asSSA %
and other inspirational approaches are named as SSMLERT
(MLR applied in the curvelet domain), WNILR (MLR applied

T o0
o
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Qverall accuracy (%)

Overall ac:

955

©
=

95

—— Decomposition level = 6 —=—\Window size L = 5
94.5 :
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in the wavelet domain) and W3SA (SSA applied in the ! e, ¢ N T

Decomposition level L

wavelet domain). The computational caestjuired for these *
methods is also discussed in this part. e
Then, the CTSSA method as well as its extended versio
CT-SSAPCA, are further compared with some staffethe-art
spectral feature extraction techniques in subsection B, includi
PCA, LDA, NMF and ensemble EMD (EEMD) [55], to show

©
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the efficacy of the proposed methodology. SR é{‘“‘ﬁ’“:m"‘t‘e“e'”]a - (== Window size L =4
. . 1 2 3 4 5 (¢} T 8
The proposed approach only takes into account the spec Vi i L Desompositon level

information of the HSI data, while ignoring the important spatid]!_® Sensiiviy anaysis of: window size (left) and humber of
. . . . . . ecompositionlevels (right) for Indiana Pines (top),Salinas Valley
information. For this reason, in subsection C, mpde yet (middle) and Pavianiversity (bottom).
powerful postprocessing technique is applied to the classified
ground truth map and it is compared with several recentpor the Indian Pines data set, in each class out of the 9 classes,
spectraispatial classification methods listed in [56]. 10% of pixels are randomly extracted into the training set with
A.Comparison with Inspirational Approaches the res.t allocated in the testing seF. As Salinas Valley is a high
The SSA based feature extractiapproach mentioned in [9] resolution HSI data set_, specmth .thls scene are more
has two parameters: window site and arouping barameter separable than those with Indian Pines. Therefore, a lower
'_3 ) = grouping p ) _percenage of samples in each class (5%) is used for training the
EVG. Itis noticed in [9] that good results can be achieved withassification model of SVM to give a more interpretable resuit.
only the first component used fdrVG, as longas a proper A recent publication proposed to use a fixed number (200) from
window size L is chosen. Another parameter in the proposeeach class in the Pavia University data set as training samples
approach is the decomposition level in the curvelet transforif®6], which account for 4% of the whole labelled pixels.
As mentioned previously, the default number of decompositiorherefore, 4% of pixels are also randomly chosen from Pavia

levels in the CurveLab toolbox i§ =log,(N) - 3 and it is University for training SVM in the following experiment. Big

advised that the number of decomposition levels should not Eeg have shown the classification maps as well as overall
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accuracies for three tha sets. Compared with thosehighest classification accuracy, especially in class 15 of Salinas
inspirational methods, the CGISA approach always presentsvalley, the accuracy is improved by over 20% compared with
better denoising and feature extraction performance in termstbé raw image. Although it was found that the classification of
highest classification accuracies. hyperspectral urban data is a challenging problem without
Additionally, the capability of the proposed €SISA method combining thespatial and spectral information together][4
in removirg noise is compared. One noisy band is taken froboth AA and OA are slightly improved for Pavia University
each data set and the same band after being processedudigg the proposed spectral processing methodSEA. In
CT-SSAis compared visually in Fig. IA.2. It can be observed comparison with CIMLR, WT-MLR vyields slightly worse
that the CTSSA method works for both higioise (Fig. 10 and results in both AA and OA. Same sitwats occur for WISSA
Fig. 11) and lownoise(Fig. 12) cases, where the noise in thend CFSSA, where the latter presents slightly higher AA and
corrupted band is effectively suppressed and local details of & than the former. It proves that the curvelet transform does
original image can be kept simultaneously. have advantages over the wavelet transform for extracting
In order to avoid errors and to get a more consistent result, ggometric details in some ways, but the performaricthe
repeated experiments are carried out baserandomly chosen curvelet transform is largely depemi®n the data set. Despite
training and testing samples, and average classificatithre fact that CISSA is inspired by C'MLR, SSA is applied to
accuracies are calculated, with numerical results shown in Takie detail curvelet coefficients for each pixel while MLR is
I 7 11l for three experimental data sets. It can be noticed thapplied to each detail image stack all at once. This alorg wit
compared with the original image, OA using th@-8SA the embedding process and SVD decomposition in SSA is the
method is increased with a percentage of 10.02%, 4.44% amdin reason why GBSA overperforms MLR in potentially
0.89% respectively for three data sets, achieving an impressiaximised the opportunity in reducing redundancy and noise
improvement over other methods. For both Indian Pines amdthin the hyperspectral image data for improved accuracy of
Salinas Valley, in most cases, the proposed method presentsdiassification.

TABLE |
MEAN CLASS-BY-CLASS, AVERAGE AND OVERALL ACCURACIES(%) OF TENREPEATEDEXPERIMENTS ONTESTING SAMPLES OF THEORIGINAL INDIAN PINES DATA
SET AND SSA,CT-MLR, WT-MLR, WT-SSAAND CT-SSAPROCESSEDATA SETS WITH10%OF DATA USED FORTRAINING, FOLLOWED BY THE STANDARD

DEVIATION
Method
Class
Original SSA CT-MLR WT-MLR WT-SSA CT-SSA
2 75.44 £2.09 80.02+2.38 86.76+1.35 86.15+2.20 87.61+1.97 89.58 +3.15
3 69.92+5.11 77.01+5.34 88.26+3.16 89.64+2.84 93.19+1.42 92.38 +2.43
5 90.46 £3.4  91.31+1.34 93.33+2.10 92.60+2.08 93.17+2.06 94.76+1.94
6 98.11+0.86 97.79+0.67 98.71+0.95 98.54+0.88 98.89+0.95 98.95+0.45
8 99.26 +0.42  99.63+0.23  99.61+0.35 99.77 £0.36  99.54 +0.48  99.84 +0.11

10 72.35+2.59 80.87+474  86.22+1.52 85.49+256 90.20+2.33  89.45+2.29
11 85.10+2.32 87.52+1.73 92.01+1.52 91.65+1.65 94.59+2.02 93.96+0.95
12 75.21+3.96 82.42+523 85.99+2.16 87.83+2.80 91.92+2.00 90.83%2.73
14 98.27 +0.52  98.37+0.62 99.17#0.35 99.07 £0.57 98.93+1.04 99.54 +0.26

AA 84.90+1.18 88.35+1.01 92.34+0.41 92.30+0.55 94.23+0.29 94.48 +0.32
OA 84.11 +0.87 87.54+0.83 91.93+0.50 91.76+0.44 93.87 +0.38 94.13 +0.28

TABLE Il
MEAN CLASS-BY-CLASS, AVERAGE AND OVERALL ACCURACIES(%) OF TENREPEATEDEXPERIMENTS ONTESTING SAMPLES OF THEORIGINAL SALINAS VALLEY
DATA SET AND SSA,CT-MLR, WT-MLR, WT-SSAAND CT-SSAPROCESSEDATA SETSWITH 5% OF DATA USED FORTRAINING, FOLLOWED BY THE STANDARD
DEVIATION

Method

Class
Original SSA CT-MLR WT-MLR WT-SSA CT-SSA

99.02 £0.50 99.07 £0.61  99.48 £0.44  99.40+0.41 99.32+0.37 99.35+0.33
99.85+0.06 99.71+0.20 99.68+0.20 99.72+0.20 99.68 £0.24  99.69 +0.27
99.07 £0.41  99.37£0.49  99.39£0.33  99.67 £0.08  99.65+0.19  99.59 +0.22
99.21+0.34 99.44+0.34 99.32+0.28 99.30 +0.41  99.09 £0.69  99.28 +0.33
98.79+0.42 98.52+0.75 99.07 +0.66 98.84 +0.60 98.98 £0.55 99.04 +0.32

a b W N
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6 99.80 +0.08  99.74 £0.17  99.80 £0.09  99.98 +0.14  99.83+0.16  99.81 +0.08
7 99.62 £0.18  99.48 £0.23  99.52 £0.17  99.51 +0.23  99.59 +0.18  99.62 +0.15
8 88.05+1.47 87.90+1.20 91.28+0.82 90.62+0.77 92.26 +0.74  94.60 +0.75
9 99.65+0.22 99.72+0.14 99.60 £0.42  99.54 +0.21  99.86 +0.09  99.88 +0.09
10 94,98 +1.20 95.19+0.80 95.36+1.30 96.01+1.11 97.35+1.17 97.19+1.02
11 97.63+1.01 97.02+2.10 97.84%1.42 97.62+2.44 97.78+2.58 98.58 +0.30
12 99.53+0.28 99.64 £0.19 99.78 £0.15 99.50+0.80 99.79£0.20 99.92 +0.06
13 98.09+1.11 98.45+1.40 98.43+0.86 98.84+0.72 98.52+0.93 98.54 +0.95
14 9456 +2.12 95.70+1.99 96.86 £1.45 95.89+2.14 94.83+3.80 96.46+1.62
15 71.73+3.21 76.16+1.85 82.70+2.88 83.17+1.26 87.12+1.73 92.49+0.86
16 98.34 +0.28 9813 +0.51  98.72+0.32 98.48+1.18 98.50+0.97 98.71+0.26
AA 96.12+0.11  96.45+0.22 97.30+0.28 97.25+0.31 97.63+0.44 98.30 +0.13
OA 92.91+0.12 93.49+0.25 95.18+0.33 95.11+0.21 96.08 +0.34 97.35+0.16
TABLE IlI

10

MEAN CLASS-BY-CLASS AVERAGE AND OVERALL ACCURACIES(%) OF TENREPEATEDEXPERIMENTS ONTESTING SAMPLES OF THEORIGINAL PAVIA UNIVERSITY
DATA SET AND SSA,CT-MLR, WT-MLR, WT-SSAAND CT-SSAPROCESSEDATA SETSWITH 4% OF DATA USED FORTRAINING, FOLLOWED BY THE STANDARD

DEVIATION
Method
Class
Original SSA CT-MLR WT-MLR WT-SSA CT-SSA

1 93.05+0.69 92.50 +1.11 93.27 £0.99 92.27 +0.66 92.81 £0.66 94.17 +0.91
2 97.63 £0.38 97.47 £0.54 97.74 £0.54 97.65 £0.39 98.10 £0.27 97.92 £0.21
3 76.45 £1.65 76.21 £2.02 79.06 £2.79 77.51+2.78 80.48 £0.84 79.63 £1.59
4 93.15+1.63 92.88 +1.42 93.40+£1.41 92.69+1.99 9243226 93.97 £1.66
5 99.08 £0.35  99.03 +0.29 99.11 £0.41  99.15+0.32 99.01£0.24  99.10 +0.31
6 86.19£1.91 85.20 +1.56 86.99 £1.02 86.46 +1.53 88.10+1.16  88.11 +1.67
7 83.07 £3.70 85.45+2.14 8355+2.09 85.47+299 86.59+2.94 85.62+1.72
8 87.43 £2.52 87.75 +£1.44 87.66 £2.40 88.04 £1.97 88.02 £0.58 88.08 £1.90
9 99.84 £0.12  99.77 £0.23 99.85+0.16  99.85+0.13 99.76 £0.12 99.84 £0.11

AA 90.59£0.49 90.69 +0.41 91.18£0.36 91.01+0.54 91.70+0.58 91.82 +0.32

OA 92.96 £0.32  92.77 £0.37 93.34£0.20 93.05+0.30 93.67 £0.21  93.85+0.28
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Fig. 7. Classificatiorresults(overallaccuracyn percentagedf IndianPinesobtainedon (a) originaldata,(b) SSAprocessedata,(c) CT-MLR processedlata,
(d) WT-MLR processediata,(e) WT-SSA processediata,and (f) CT-SSA processediata.
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OA, = 52 68% OA = 83.55% 04 = 0535%, O = 95,306, DA = 85.87% OA = 97.23%
(a) (h} 3] d) () (£

Fig. 8. Classificationresults(overallaccuracyin percentagepf SalinasValley obtainedon (a) original data,(b) SSA processedlata,(c) CT-MLR processed
data,(d) WT-MLR processedlata,(e) WT-SSA processedlata,and (f) CT-SSA processedlata.

) ?“”\\

\

L)

0A=1235% OA=92.44% OA=0275% OA=9273% 0A=0326% 0A =93.41%
(al th} [ id} {eh f

Fig. 9. Classificationresults(overallaccuracyin percentagedf Pava University obtainedon (a) original data,(b) SSAprocessediata,(c) CT-MLR processed
data,(d) WT-MLR processedlata,(e) WT-SSA processedlata,and (f) CT-SSA processedlata.

For an N3 N block, the computational complexity for the degrading the feature extraction performance. For the Indian

L 2 . Pines data set, the computing time of the proposes8A
curvelet transform is given (N “logN) [31], while the method (using the original SSA implementation) is about 5 min

computation  of the wavelet transform  requiregn g personal computer with an Intel Cori®0 CPU at 3.10
O(3/2(m|_| + mL)(:I_- ]/4J)N2) flops for a block with the GHz using Matlab 2014a (Mathworks). Hence, it is reasonable
to believe that with the fully optimised CurvelLab toolbox and

) ) the fast implementation of SSA, the time cost of the proposed
My , M are the lengths of the filter [57]. With the CDF 9/7yethod should be much lower

filter used in the experiments, the lengths of the filter are both 9,
i.e. My =m_ =9. Therefore, whenJ is higher than 2, the

computational complexity for the wavel&ransform can be

approximated a$D(27N 2) , Which is much higher than that of

the curvelet transform. Besides, it should be noted that the
processing time for MLR and SSAlergely dependent on the
number of detail coefficient stacks andethumber of total
pixels in those stacks. However, it is not a problem for SSA, as

. . : . 10. Band199 of Indian Pinesi iginal data and (b) CT-SSA
fast implementation of SSA [10] has been proposed WlthoHﬁcessed,a?g of Indian Pinesin (2) original data and (b)

same size, whereJ is the decomposition level and

(a) (b)
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decomposeshe signal into a finite number of intrinsic mode
functions (IMFs) [®]. Each IMF represents a zenwean
frequencyamplitude modulation component that is often
related to a specific physical process so that EMD is not biased
with any predetermined basislthough EMD has shown its
efficacy in time series decomposition (e.g. speech recognition),
results reported ir6[0] indicated that spectral feature extraction
using EMD could potentially reduce the following classification
accuracy. Consequently a more web and datariven
technique, EEMD was proposed to alleviate the addressed
., problem. It is achieved by sifting an ensemble of white
. noiseadded signal and similarly it generates a series of IMFs,

Fig. 11. Ban of Salinasvalleyin (a)originaldataand(b) CT-SSAprocesed where the sum of them represents the ProceSSEd signais In th
data paper, the fast EEMD Matlab toolbox is adopte®][5The
performance of PCA on the proposed approach for further
feature extraction is also included for comparison.

The number of resulting features using PCA on both original
data and CISSA processed this tested within 5 50 in a step
of 5 [11], while the dimensions of extracted features are tested
from 2 to 10 for both LDA and NMF. Best results with highest
classification accuracy are chosen for comparison. With regard

to EEMD, it is suggested th#fte input white noise leve,

= B should be in the range of 0.10.4 and the number of ensemble
Fig. 12. BandL of PaviaUniversityin (a) original data,(b) CT-SSAprocessed NE should be the order of 100 [61]. Therefore, we keep these

data parameters the same as [55], whgye= 0.2, Ng = 200 and

B.Comparison with Other Statf-the-Art Spectral Processing the number of IMFs is 7. Experiments are also repeated ten

Techniques . . ) .
) o _times and comparison results are given in Table IV.
Although the curvelet transform is applied in the spatial
domain of the hyperspectral ages, the dominating part of the TABLE IV

proposed denoising and feature extraction method, SSA, MEAN OVERALL ACCURACIES(%) OF TENREPEATEDEXPERIMENTS ON THE

lied in th ral domain. A m roff he pr ORIGINAL DATA SETS, SSA,CT-MLR, WT-MLR, WT-SSA,CT-SSA,
app edint e spectra doma S a matter of fact, the p oposed CT-SSAPCAAND SOME STATE-OFTHE-ART SPECTRALFEATURE

CT-SSA approaCh aCtua”y belongs to the 1D Spec“‘@xTRACTIONTECHNIQUESPROCESSEEDATASETS,WITH DIMENSIONALITY OF

processing technique for hyperspectral imagasrefore, a few FEATURESSHOWN IN PARENTHESES
stateof-theart 1D spectral feature extraction and Data set

dimensionality reduction techniques, including PCA, LDA, Method Indian Pines Salinas Pavia University
NMF are compared with the proposed approach for further (10%) Valley (5%) (4%)
performance assessments. Linear discriminant analysis is a Original 84.11(200)  92.91 (204) 92.96 (D3)
standard supeised dimensionality reduction technique for SSA 87.54 (200)  93.49 (204) 92.77 (103)

pattern recognition, where the highest degree of class CTMLR ~ 91.93(200)  9518(204)  93.34(103)
separability is obtained by maximizing the Raleigh quotient, i.e. WT-MLR 91.76 (200)  95.11 (204) 93.05 (103)
the ratio of the betweewlass scatter matrix to the withatass \gsss: Zi'i’; ggg; Zs'gi ggj; Zg'g; 882;
scatter matrix [14]. Dierent from PCA which could only ' ' '

i o - CT-SSAPCA  95.75 (50) 98.33 (50) 91.78 (10)
extract holistic features from the original HSI data, NMF is a — 5~ [12] 82.65 (50) 92.78 (40) 92.93 (50)
partsbased learning algorithm, decomposing a-negative LDA [14] 87.03 (9) 91.62 (10) 92.06 (10)
matrix into two nonnegative matrices which are more intuitive NMF [58] 77.43 (10) 92.64 (10) 91.71 (10)
and interpretable. One of the decongubsnatrices is formed EEMD [59]  83.78(200)  93.20 (204) 93.22 (103)

with a set of basis vectors, which can be utilised to project the

original data into the lower dimensional subspace [16]. The |t can be seen that those dimensionality reduction techniques
NMF algorithm is realized by the NMF Matlab toolbox8[5 only give comparable results compared with original data set,
Additionally, as an upgraded version of EMD, EENtDalso  even though they could speed up the classification process. As
included for comparison as it overcomes the drawback of EMiiven in [9], with 10% training rate of Indian Pines, the highest
and therefore it outperforms EMDHp Being the fundamental classification OA achieved by EMD is 75.49%. Although
part of the HilberHuang transform (HHT), EMD is a EEMD has made amiprovement of over 8% on this data set, it
nonlinear and nosstationary signal decomposition method thajs not as good as the proposed-8FA approach. For Indian
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Pines and Salinas Valley, adding an extra PCA step leadsGE@T-SSA-SPP approach. This has clgademonstrated the
further improvement in classification accuracy while reducingfficacy of the SPP procedure in the proposed approach.
the classification time with lssnumber of features. Even though

the extra step of PCA has limited performance on the Pav(i:a o N TA/\AB'-EV ov N

. . . OMPARISON OFCLASS-BY-CLASS, AVERAGE AND ERALL CLASSIFICATION
University data set, the proposed -S‘§A methpd still ACCURACIES(%) OF THECT-SSASPPAPPROACH ANDRECENT SPECTRAL-
outperforms other spectral feature extraction techniques. SPATIAL METHODSFORTHE INDIAN PINES DATA SET (10%TRAINING RATE)

C.Comparison with Recent Spectspatial Classificabn Method
Class ~ EMP LMLL _ EPF _ IFRF D CT-SSA

Methods [47]  [63] __ [64] __ [65] _ [56] SPP(T=5)
For the majority of supervised classifiers, such as neural 2 86.63 90.64 9503 9541 96.90 96.18
networks, decision trees, SVM and etc.,, the spectral 3 89.74 8723 9568 96.07 97.20  99.63
featurebased classification chain is adopted. However, they are > 9323 9639 9839 98.07 97.88 97.08
not able to incorporate spatial dependencies presented in the 8~ 9750 99.90  98.90  98.62 99.40 100
original scene into the classification procesd.[6everal recent 8 100 100 9949 100 100 100
N . . 86.18 93.49 8209 9526 9549  95.45
publications have demonstrated that the integration of spectral
and spatial information could be beneficial to hyperspectral 9382 89.75 9593 9842 9803 9938
) P e Yypersp 12 87.09 9860 9281 9672 97.23  97.32
image classification problems, where some spespatial

o . . .14 9959 9245 9911 99.75 99.76  99.96
classifiation methods, including the extended morphological™— ;4 9264 9427 9527 9759 9799 9833

profile (EMP) [47], the logistic regression and mdlével OA 9245 9257 9507 97.% 97.89  98.40
logistic (LMLL) [63], the edgepreserving filter (EPF) [4),
image fusion and recursive filter (IFRF)5J6and the intrinsic TABLE VI

image decompositio(liD) [56], have been proved to be COMPARISON ZJF():LASS—BY-CLASS, AVERAGE AND OVERALL CLASSIFICATION
; . ACCURACIES(%) OF THECT-SSA-SPPAPPROACH ANDRECENT SPECTRAL-
superior to the spectral _featuvase_d classification method. SPATIAL METHODSFORTHE SALINAS VALLEY DATA SET (2% TRAINING RATE)
Therefore, a pogbrocessing step is added to the proposed Vethod
CT-SSA approach to increase the spatial consistency in theciass “Evp  LMLL _EPF_ IFRFE IID _ CT-SSA
classification result, where &3 T spatial window is applied [47] [63] [64] [65]  [56] SPP (T=9)
around each central pixel in the classification map and the final 1 99.93 9983 100  99.99 100 100
classified label is decided in favour of the class which appears 22'32 gz'zg 9180;’6 919029 gg:g 100
most in the window. The window shape could be designed to 98'25 99'22 97'17 97'32 97'80 99023
conform _to dlffgrent scengdbut to make it simpleherethe 9014 9875 99.95 9994 99.96 99.73
square window is used.

As can be noticed in ground truth maps in Figs, 3ndian 23:2? szgg Zg:g: 9;?30 22:23 188
Pines has a smaller spatial area for some classes compared withg 9479 85.97 91.78 99.34 99.07 98.15
Salinas Valley and Pavia University. Therefore, the spatial o 9941 99.69 99.65 99.99 99.86  99.92
postprocessing(SPP) windowT is chosen as 5 for Indian 10 95.10 9468 9388 99.81 98.80  99.69
Pines, 9 for Salinas Valley and 9 for Pavia University, 11 ~ 96.39 9847 98.80 99.26 99.98 100
respectively. Results using EMP, LMLL, EPF, IFRF and IID 12 9879 100 9999 99.90 99.99  99.99
are cited directly from [6]. Since only 9 classes in Indian Pines 13 ~ 9887 9848 100 9928 100 100
are involvedm our experiments, we have eliminated the other 7 ig 22'23 3:?2 Zg';g Z;'gg’ g;g; 2;'(1)2
classes from their results and recalculated AA and OA 16 97:31 99:35 99:99 99:95 97:92 99:99
accordingly. For Salinas Valley in §h 2% of pixels in each A 9737 9692 9776 9934 9938  99.60
class have been used for training. Therefore, we have 5, 911 9355 9559 9927 9945 9939
reperformed the experiment under 8w@me training rate with
other parameters unchanged. Numerical results are shown in TABLE VI

Tables ViVIl, where the proposed approach with spatialComMPARISON OFCLASS-BY-CLASS, AVERAGE AND OVERALL CLASSIFICATION
postprocessing (CISSASPP) gives comparable accuraciesACCURACIES(%) OF THECT-SSASPPAPPROACH ANDRECENT SPECTRAL-

. . . . SPATIAL METHODSFORTHE PAVIA UNIVERSITY DATA SET (4% TRAINING
with other spectraspatial classification methodd~or the (4%

~No a b~ wN

RATE)
proposed CISSA approachit is found that the best overall Method
accuracy values achieved are 94.13, 97.35 and 93.85 for theclass — EmMP  LMLL EPF IERE ID CT-SSA
three datasets Indiana Pines, Salinas Valley and Pavia [47] [63] [64] [65]  [56] SPP(T=9)

98.61 9436 98.07 97.25 99.62 100
98.84 97.79  98.38 99.68 99.88 100
95.09 88.10 98.39 9553 98.92 98.57

University, where the corresponding training ratios are 10%, 1!
2
3
4 96.64 98.05 98.45 9652 97.54 95091
5
6

5% and 4%, respecely. With the introduced spatial
postprocessing and under the same or even less training ratios,
the overall accuracy values for the three datasets have been

: . 98.00 99.83 9951 99.90 99.89 100
dramatically improved to 98.40, 99.39 and 99.19 from the new

88.33 99.74 9535 98.72 99.91 99.97






