
Spaceplane Trajectory Optimisation with Evolutionary-Based Initialisation

Christie Alisa Maddock, Edmondo Minisci
Aerospace Centre of Excellence

Department of Mechanical & Aerospace Engineering
University of Strathclyde

Glasgow G1 1XJ, United Kingdom
christie.maddock@strath.ac.uk, edmondo.minisci@strath.ac.uk

Abstract— In this paper, an evolutionary-based initialisation
method is proposed based on Adaptive Inflationary Differential
Evolution algorithm, which is used in conjunction with a
deterministic local optimisation algorithm to efficiently identify
clusters of optimal solutions. The approach is applied to
an ascent trajectory for a single stage to orbit spaceplane,
employing a rocket-based combine cycle propulsion system. The
problem is decomposed first into flight phases, based on user
defined criteria such as a propulsion cycle change translating
to different mathematical system models, and subsequently
transcribed into a multi-shooting NLP problem. Examining the
results based on 10 independent runs of the approach, it can be
seen that in all cases the method converges to clusters of feasible
solutions. In 40% of the cases, the AIDEA-based initialisation
found a better solution compared to a heuristic approach
using constant control for each phase with a single shooting
transcription (representing an expert user). The problem was
run using randomly generated control laws, only 2/20 cases
converged, both times with a less optimal solution compared to
the baseline heuristic approach and AIDEA.

I. INTRODUCTION

One forerunner for the next generation of space access
vehicles are spaceplanes. Spaceplanes operate both as an
aircraft, taking advantage of the atmosphere at low altitudes
where, for example, air-breathing engines can be used along
with lifting surfaces, as a rocket at higher altitudes where the
atmosphere is less dense, and as a spacecraft in orbit. This
concept offers mass savings due to air-breathing engines,
which reduces the need for on-board oxygen, and allow more
control into the flight path and therefore the orbits that can
be reached from a given take-off and landing site as well as
a wider choice in the site, or spaceport, itself.

While a single stage to orbit offers full re-usability of
the vehicle, it is still largely in the development stage, with
many of the key technologies still unproven and also comes
with a cost of lower payload fraction [1]. Reaction Engines’
Skylon vehicle is currently under research and development,
with a proposed test flight in 2025. Multi-stage spaceplanes
offer a more immediate time to market though often at a
cost of partial expendability of parts. Virgin Galactic and S3
SOAR are two examples which use a carrier subsonic aircraft
to launch a smaller spaceplane. Orbital ATK Pegasus is a
multi-stage rocket launched from an aircraft that has been
operational since 1990s.

From a design point of view, these vehicles are highly
complex systems operating across very different environ-
ments from low-altitude subsonic flight to high thermal
loads during high altitude re-entry, to orbital insertion and

de-orbiting manoeuvres in space. Coupled with changes in
operation, such as switching from an air-breathing engine to
a closed-intake rocket engine or vehicle stage separations, the
software models must be designed to handle discontinuities.

The design of spaceplane mission delivering a payload
to a specified orbit and re-entering is in itself a multiphase
problem. Across the entire mission, assuming a returnable
vehicle, the division is similar to an aircraft with runway
take-off, ascent, operations (e.g., payload delivery), re-entry
and runway landing. The two transatmospheric trajectories
can be further divided in multiple segments; the elements
defining the problem can differ though disciplinary models
(e.g., propulsion modes for a hybrid engine, or in a multi-
stage propulsion system), problem objectives and constraints,
and level of fidelity needed within the models. To allow such
flexibility in the design, the simulation needs to be structured
in multiple phases, with interchangeable disciplinary models,
plus mission objectives and constraints. The approach herein
has been designed to allow each phase to define the set of
models used and all the variables involved in the parametri-
sation of the controls and propagation of the trajectory. The
continuity between phases is guaranteed at convergence of
the optimisation process by the optimiser and the problem
formulation through constraints functions.

The development of methods presented here are part of a
larger initiative to develop an integrated, multi-disciplinary
design platform for quickly assessing and optimising con-
ceptual vehicle design and performance for future space
access vehicles, in particular single and multi-stage reusable
vehicles. The trajectory optimisation solves for an open loop
control scheme using a multi-phase approach for the configu-
ration implemented with a direct multi-shooting transcription
method. A set of first guesses are generated using the in-
house Adaptive Inflationary Differential Evolution (AIDEA)
algorithm [2], which focuses on exploration, followed by a
local optimisation of candidate solutions using a derivative
based method for non-linear, constrained problems using
a fixed time step integrator. The trajectories are then re-
propagated with the locally optimal control laws using a
variable step numerical integrator with lower tolerances
(higher accuracy) to ensure the feasibility of the solutions.
The results for the first guess using AIDEA are compared
against a phase-based single shooting method using an user
supplied control law based on educated guessing.

Results are presented for a test case of conceptual single
stage to orbit spaceplane optimising the ascent trajectory for



a payload delivery mission to a 100 km altitude, circular,
equatorial orbit. The objective function is the maximisation
of the payload mass delivered to an orbit, with equality
constraints on the final position and velocity vectors. Using
AIDEA for the first guess generation has proved robust and
effective at finding sets of feasible, locally optimal solutions
which can be used to understand the trade-offs between
performance and vehicle design.

II. OPTIMISATION APPROACH

The optimisation algorithms and approach are shown
below, describing the transcription method, based on direct
multi-shooting transcription and flight mission decomposi-
tion, the evolutionary-based initialisation using AIDEA, and
the local derivative-based optimisation and refinement step.

A. Transcription

The optimal control problem is transcribed into an nonlin-
ear programming problem by using a multi-phase, multiple-
shooting approach. The mission is initially divided into np
user-defined phases. Within each phase, the time interval is
further divided into n multiple shooting segments.

∪npk=1 ∪
n−1
i=0 [ti,k, ti+1,k] (1)

With each interval [ti,k, ti+1,k], the control is further discre-
tised into nc control nodes {ui,k0 , ..., ui,knc } and collocated on
Tchebycheff points in time.

Continuity constraints on the control and states are im-
posed,

xi,k = F ([ti−1,k, ti,k],xi−1,k)

ui−1,k
nc = ui,k0

}
for k = 1, ..., np (2)

x1,k = x(tn+1,k−1)

u1,k
0 = un+1,k−1

nc

}
for k = 2, ..., np (3)

where F ([ti−1,k, ti,k],xi−1,k) is the final state of the nu-
merical integration on the interval [ti−1,k, ti,k] with initial
conditions xi−1,k. This approach increases the degree of
freedom of the optimisation process reducing the sensitivity
of the overall problem to its variables although at a cost of
a steep increase in the number of optimisation variables.

The optimisation variables are therefore:

• The initial state vector of each shooting segment within
every phase (excluding the first segment of the first
phase) xi,k

• The control nodes of each shooting segment
{ui,k0 , ...,ui,knc }

• The time of flight for each shooting segment ∆ti,k

The discretised optimisation problem is defined as

min
{ui,kj },{xi,k},{∆ti,k}

φ(xn,np) +

np∑
k=1

n−1∑
i=0

∆ti,kf0(xi,k,u
i,k
j )

(4)

subject to

xi,k = F ([ti−1,k, ti,k],xi−1,k),

ui−1,k
nc = ui,k0 ,

x1,k = x(tn+1,k−1),

u1,k
0 = un+1,k−1

nc ,

c(x(t), u(t)) ≤ 0, t ∈ [t0, tf ]

g(xn,k,u
n,k
nc ) ≤ 0,

ω(x0,1,xn,np) = 0

for i = 1, ..., n− 1, k = 1, ..., np and ∆ti,k = ti+1,k − ti,k.
Path constraints are evaluated at a discrete set of points based
in time, and g(xn,k,u

n,k
nc ) are the inequality constraints for

phase switching.
The resulting optimisation problem is usually handled via

standard derivative-based methods, requiring a trial-and-error
approach by an knowledgeable or expert user to find a
suitable starting point, i.e., an initial solution that can produce
a near-feasible solution that will allow the local deterministic
optimiser to converge. In this respect, the possibility to use
evolutionary algorithms to find a suitable starting point is
explored in this paper. Using an evolutionary approach also
has the benefit of producing multiple first guesses as well as
clustering information on the archived solution sets.

B. Adaptive Inflationary Differential Evolution Algorithm

The creation of the algorithm stemmed from the idea
to create new hybrid algorithms that take elements from
different approaches and use them as building blocks for
a new algorithm. Following this approach, one of the co-
authors [3] first co-proposed the Inflationary Differential
Evolution Algorithm (IDEA) in 2011, which combines dif-
ferential evolution (DE) [4] with the restarting procedure
of Monotonic Basin Hopping (MBH) [5] algorithm. IDEA
showed very good results when applied to problems with a
single or multi-funnel landscape. However, its performance
was found to depend on the parameters controlling both the
convergence of DE and MBH, and the inflationary stopping
criterion used to terminate the DE search. In particular,
the DE performance is strongly influenced by the crossover
probability CR and the differential weight F whose best
settings are heavily problem dependent [6]. This led to the
development of Adaptive-IDEA, or AIDEA, which uses a
probabilistic, Parzen-based kernel approach to automatically
adapt the values of both CR and F during the search process
[2]. Tested on several engineering problems, AIDEA showed
both good exploratory and local search performance, making
it a suitable approach for the initialisation of spaceplane
trajectories.

The general procedure for the AIDEA used in this paper
is:

1) The optimisation procedure starts by setting values of:
npop, the maximum number of local restarts, iunmax,
the size of the convergence box, tolconv , ρA,max, and
δc; and by initialising the population.



2) Then the joint PDF for CR and F , CRFp, is initialised
to be a uniform distribution. At this point, the actual
optimisation loop starts by sampling the two vectors
CRk and Fk, where k is the current iteration.

3) DE is run drawing probabilistically a value for F and
CR from CRFp, and CRFp is updated on the basis
of the improvement of the individual using the drawn
values of F and CR.

4) At this point,
a) if the population contracts below the predefined

threshold, a local optimiser from current mini-
mum is run, and at the end of local optimisation,

b) if the local optimiser failed to improve the value
of fmin more than iunmax times, the population
is restarted globally and iun is set to 0, otherwise,
the population is restarted within a local bubble
and iun = iun+ 1.

5) At this point,
a) if the population is re-initialised, the loop restarts

from the initialisation of CRFp,
b) otherwise just the DE loop restarts.

6) As a terminal criterion, the algorithms stops if the
maximum number of function evaluations, nfeval,max,
has been performed.

In particular, the initialisation of the CRFp to an uniform
distribution is done by building a regular mesh with (nk +
1)× (nk + 1) points (where nk is a predefined value) in the
space CR ∈ [0.5, 0.99] × F ∈ [0.1, 1]. Note, this approach
and space definitions are different from the original AIDEA.
A Gaussian kernel is then allocated on each node and the
PDF is built by Parzen approach [7]. A step change value,
dd is linked to each kernel (row of CRFp) and its initial value
is set = 0. npop values of CR and F are sampled from the
Parzen distribution and each couple of CR and F values
is associated to one element of the population and used to
create the offspring on the basis of the chosen strategy.

During the optimisation, the location of the kernels is
updated on the basis of the obtained results. More in details,
to update the matrix containing the location of kernel centres
(CRFp) after that rows of CRFp are sorted on the basis of
the associated value of dd, if the objective function of the
offspring has a value that is strictly lees then the parents
(it is supposed a minimization problems) then the element
of the sorted CRFp are sequentially evaluated and the first
time that the associated dd value of the row is less than the
difference between the objective function of the parent and
that of the offspring then the F value used to operate on
the individual xi,k substitutes the element CRFp,2,j,k. The
CR value used to operate on the individual xi,k substitutes
the element CRFp,1,j,k only if the difference between parent
and offspring is greater than a predefined threshold CRC.
The different approach for updating the CR coordinate of
the kernels is meant to dump the learning of the crossover
to avoid the too fast convergence toward the extremes of the
allowed range that can occur in some cases. Note that, as for
other self-adaptive schemes, the adaptive version of IDEA

has an additional parameter to be adjusted: the threshold on
the minimum expected improvement of the cost function.
This threshold is used to limit the updating of CR, a failsafe
procedure that has proven to improve the robustness of
the algorithm. For a complete description of the original
algorithm, see [2], [8].

C. User Defined Constant Control Initialisation Procedure

A first guess solution can be generated based a phase-
based single shooting method. A control scheme is defined
by the user which are linearly interpolated within each phase.
For the test case here, a constant set of controls are used
for each phase. A set of event functions are set, based on
optional user defined conditions, the upper and lower bounds
for the states for each phase and the final state. When an
event condition is triggered, the integration for that phase
is stopped, with the final state from that phase used as the
initial state for the next phase.

D. Evolutionary-based Initialisation Optimisation Proce-
dure

1) As AIDEA can only handle unconstrained optimisa-
tion problems, the constrained problem in (4) is first
converted into an unconstrained one.

min
{ui,kj },{Ti,k}

φ(xn,np) +

np∑
k=1

n−1∑
i=0

∆ti,kf0(ui,kj )

+wα
∑∣∣∣ui−1,k

nc − ui,k0

∣∣∣
+wα

∑∣∣∣u1,k
0 − un+1,k−1

nc

∣∣∣
+wβ

(∑
ca +

∑
ca +

∑
ωa

)
(5)

where w are weights, and ca, ga and ωa are the active
inequality constraints. Note that equality constraints
enforcing matching of the state vectors between the
segments is not considered as during the initialisa-
tion phase the trajectory is propagated using single-
shooting direct transcription approach (using the single
shooting integration approach in Section II-C).

2) Within AIDEA, for each iteration of the underlying DE
the current, best solution is saved into an archive Abest

along with the best individual in the population found
with a local search before a local or global restart is
initiated.

3) At the end of a run of AIDEA, the final population is
added to the archive Abest.

4) All the solutions in the archive Abest are clustered
on the basis of the Euclidean distance in the search
space. The clusters are then ranked on the basis of
the performance of best solution within the cluster,
where the first cluster, Cbest,1, contains the overall best
solution found by AIDEA during that run.

5) The best solution contained in each one of the first
NC,r clusters is then optimised by a gradient-based
method considering the problem as formulated in (4).



III. SPACEPLANE SYSTEM MODELS

In this section, mathematical models are presented for
the vehicle design and operation of a single-stage-to-orbit
(SSTO) spaceplane. The models are divided by discipline:
vehicle mass and configuration, aerodynamics and propul-
sion, environment models for Earth including dimensions,
gravitational field and atmospheric model, and the flight
dynamics and control.

A. Vehicle Model

The model configuration is based on the CFASTT-1 con-
ceptual test vehicle [9], which has a gross take-off mass of
260 tons. The design of the vehicle is similar in scale and
function to Reaction Engines’ Skylon C1 SSTO vehicle [10],
and was designed as an open test case to examine alternate
vehicle configurations and aerodynamic properties.

B. Environment

The Earth is modelled as oblate spheroid based on the
WSG-84 model. The gravitational field was modelled using
4th order spherical harmonics (accounting for J2, J3 and J4

terms) for accelerations in the radial gr and transverse gφ
directions [11]. The angular rotation of the Earth is assumed
constant at ωE = 7.292115× 10−5 rad/s.

The atmospheric conditions – temperature Tatm, pressure
patm, density ρatm and speed of sound – are modelled
through the global International Standard Atmosphere (ISA)
model as a function of altitude.

C. Aerodynamics

The aerodynamic model of the vehicle predicts the total
coefficient of lift cL and drag cD as a function of the
angle of attack α and Mach number M(h, v). For the test
case presented here, the aerodynamics were first run with
higher fidelity simulations using CFD for the continuum
regime (lower atmosphere) and Direct Simulation Monte
Carlo based methods for the upper atmosphere [12] to obtain
a set of discrete data points. These data sets were used to
fit a set of polynomial-based surrogate models for cLα and
cD0 . The net values for the cL and cD are then determined
based on linearised aerodynamic theory for the supersonic
regime and modified Newtonian theory for the hypersonic
regime, linked together through a bridging function. The drag
coefficient is calculated as the sum of a CD0

term and the
induced drag of lifting surfaces (cL tanα). The lift L and
drag D forces in the vehicle body reference frame are given
by the equations,

L =
cLρatmv

2Sref
2

D =
cDρatmv

2Sref
2

(6)

where Sref is the total aerodynamic reference area of the
vehicle, for this test case Sref = 300 m2.

D. Propulsion

The propulsion system is assumed to be a rocket-based
combine cycle engine with two distinct modes of operation,
modelled as two different engines with an instantaneous
switching mechanism.

The rocket cycle is modelled based on Tsiolkovsky rocket
equations. The present configuration used in the test case
uses LOX/LH2 rocket engines with an Isp of 450 s. The fuel
mixture ratio is assumed constant and the two propellants
are treated as a single mass flow ṁp. A throttle control
τ ∈ [0, 1] is added, which dictates the fraction of maximum
available thrust applied and fuel mass flow (and therefore
consumption). A simplifying assumption is made that the
mass flow varies linearly with thrust. The maximum total
thrust in a vacuum is set at FT0,max = 4 MN. The
instantaneous thrust and mass flow rate are then calculated
as,

ṁp = τ
FT0,max

g0Isp
(7a)

FT,h = FT = τ (FT0,max − patmAe) (7b)

A penalty proportional to atmospheric pressure patm and
nozzle exit area Ae is introduced to account for the difference
in nozzle expansion under pressure compared to in a vacuum.

The air-breathing cycle was simulated using a higher
fidelity tool designed for combined cycle engines [13], [14].
Due to the high computational overhead, a dataset was
generated and used to fit a simpler analytic model. The model
in (7) was used with a variable equation for the Isp as a
function of altitude, Mach and throttle. The net thrust from
the two models are show in Figure 1.
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Fig. 1: Net maximum thrust for air-breathing cycle (top) and
rocket (bottom). The mass flow rates are 50 kg/s for the
air-breathing cycle, and 890 kg/s for the rocket cycle.



E. Trajectory Dynamics and Control

A 3-DOF variable point mass dynamic model is used
where the spaceplane is a time-varying mass located at the
centre-of-gravity of the vehicle. The state vector for the flight
dynamics xdyn = [r, ṙ] is the spherical coordinates for the
position r = [r, λ, θ] and the velocity ṙ = [v, γ, χ] where r
is the radial distance, (λ, θ) are the latitude and longitude, v
is the magnitude of the relative velocity vector directed by
the flight path angle γ and the flight heading angle χ. The
equation of motion is expressed in the Earth-Centred-Earth-
Fixed F rotating reference frame [15].

r̈ =
FF

m(t)
− 2ωE × r− ωE × (ωE × r) (8)

where the vehicle mass m(t) is a sum of the constant dry
and payload masses, and the mass of the on-board propellant
mp(t) =

∫
t
ṁp dt, FF is net force from the lift L, drag D,

gravitational forces in the radial and transverse directions
[mgr, mgφ] and propulsion thrust FT converted from the
vehicle body reference frame based on the vehicle angle of
attack α and bank angle µ.

FF =


FT cosα cosµ−D

m − gr sin γ + gφ cos γ cosχ
FT sinµ
m − gφ sinχ

FT sinα cosµ+L
m − gr cos γ − gφ sin γ cosχ

 (9)

The thrust is assumed to be aligned to the x-axis of the
vehicle body reference frame. The explicit equations for the
dynamic model can be found implemented in [16], or more
generally derived in [11].

The discrete control law is interpolated using piecewise
cubic Hermite interpolating polynomial. Within the global
and local optimisation, the trajectory dynamics are integrated
using an non-adaptive 4th order Bogacki-Shampine Runge-
Kutta method. For the refinement, an adaptive Runge-Kutta
4/5 integrator is used with a tolerance of 10−9.

IV. RESULTS

The proposed initialisation approach has been applied
to solve the trajectory optimisation problem related to the
ascent phase of the spaceplane, from transonic conditions
at low altitude to low orbital boundary conditions. The
outcome of the proposed method is compared to the results
of the trajectory optimisation process with a single shooting
initialisation.

A. Test Case

The test case is for a payload delivery mission to LEO.
The objective function is to minimise the fuel consumption,
mp, which is analogous to maximising the payload delivered
to orbit assuming a fixed gross take-off mass for the vehicle,
and therefore that the sum (mp +mpayload) is also fixed.

The problem is decomposed into two phases correspond-
ing to the two propulsion modes: Phase 1 uses an air-
breathing cycle, while Phase 2 uses the rocket cycle. Phase
1 is configured with n = 2 multi-shooting segments and

nc = 5 control nodes per segment, while Phase 2 has n = 4
and nc = 5.

Table I lists the initial and final boundary conditions, and
the upper and lower bounds for the state and control vari-
ables. The trajectory is designed to be within the equatorial
plane, starting from a nominal position 0◦E longitude on
the equator and ascending to a 100 km, circular equatorial
orbit. The arrival true anomaly is left free, with the final
altitude hf = 100 km, orbital velocity vf and flight path
angle γf = 0◦ set as equality constraints. As the trajectory
is in-plane, the control parameter for the bank angle µ is set
to 0.

B. User Defined Constant Control Initialisation

A trajectory obtained by using a single shooting approach
per phase with user defined constant control laws has been
used as first guess for the gradient-based optimisation of the
control laws. For the first phase, α = 5◦ and τ = 1, while the
second phase α = 20◦ and τ = 1. The optimisation process
converges to a final fuel mass mp = 189011 kg after 9013
model evaluations (∼1800 s on a CORE i5 CPU running
Matlab 2016a).

C. Evolutionary Based Initialisation

For this test case, AIDEA is set with DE population size
npop = 20, number of AIDEA local restarts iunmax =
5, δb = 0.1 where ±δb is added to current solution to
create the local bubble for local restart, inflationary tolerance
tolconv = 0.25, distance for global restart δc = 0.1,
adaptation threshold CRC = 3, and the adopted DE strategy
was DE/best/1/bin (see [4]).

All reported statistics in Table II are computed on the re-
sults obtained from 10 independent runs of AIDEA (multiple
independent runs allows for the evaluation of the robustness
of the method). It can be seen that for all the runs the method
converges to a feasible solution, and on 40% of the cases the
performance is comparable to, or better than, the solution
obtained by user defined single shooting initialisation. The
extra computational costs are offset by the robustness of the
approach and the saving in required user expertise and trial-
and-error time.

Figures 2–4 show the trajectory dynamics, vehicle mass
time history and control law for the best solution in Table
II. For the dynamics, Figs. 2–4 show the first guess found
by AIDEA, the locally optimised solution divided by phases
to show the optimised switching point for the propulsion
mode, the refined solution and the target value. The controls
in Fig. 5 show the control nodes for the AIDEA solution
and the locally optimal solution, as well as the interpolated
nodes used by the integrator within the local optimisation
and the smoothed interpolation (pchip) used in the refinement
integration step. The duration of each segment within each
phase is also shown, as the time-of-flight for the segments
were optimisation variables.

As can be seen, looking at the time history of the vehicle
mass (Fig. 4) and throttle (Fig. 5b), the optimised solution
follows the expected trend of τ = 1 during the ascent,



TABLE I: BOUNDARY CONDITIONS AND BOUNDS ON STATE AND CONTROL VARIABLES

Variable Initial conditions
Bounds per phase

Final conditions
Phase 1 Phase 2

Altitude, h h0 = 5 km [0.8h0, 30] km [h0, 1.2hf ] km hf = 100 km

Latitude, λ 0 deg N [−45,+45] deg N [−45,+45] deg N free

Longitude, θ 0 deg E [−180,+180] deg E [−180,+180] deg E free

Relative velocity, v v0 = 400 m/s [0.5v0, 1000] m/s [0.5v0, 2vf ] vf = 7381 m/s

Flight path angle, γ 6 deg [−90,+90] deg [−90,+90] deg 0 deg

Flight heading angle χ 90 deg [−180,+180] deg [−180,+180] deg free

Vehicle mass, m m0 = 2.47 × 105 kg [mdry ,mgtow] [mdry ,mgtow] J = min(mp)

Angle of attack, α N/A [0,+40] deg [0,+60] deg N/A

Engine throttle, τ N/A [0.8, 1] [0.4, 1] N/A

Time of flight, ∆t N/A [10, 200] s [50, 500]s N/A

with the engine cut-off (τ = 0) during the last segment
creating a coasting arc. This means that the spaceplane also
arrives at the target orbit the correct velocity vector and zero
acceleration, which was not added as a constraint in order
to evaluate the optimality of the solutions found.

No matching constraints were imposted between segments
on the controls nor derivative limits on the control imposed
(e.g., to limit dα/dt or to match u̇1,k

0 = u̇n+1,k−1
f ). For

the most part, the controls are smooth with one exception
producing an spike in α (Fig. 5a) between the second and
third segments. Due to the close proximity in time to the two
neighbouring points, the effect on the dynamics in negligible.

TABLE II: STATISTICS ON RESULTS FROM AIDEA INI-
TIALISATION

Run ID
Objective function, mp (kg) No. Func. Eval.

Min Mean Max (×105)

1 188320 199070 236120 1.7262

2 208370 221810 226500 1.8099

3 188390 188510 188780 1.5359

4 206500 229580 241840 0.75733

5 188440 200510 213320 1.2915

6 198500 202310 206200 0.81749

7 208940 216370 224420 1.0861

8 215780 222490 229300 0.81134

9 188310 194370 205700 1.4598

10 206500 229090 242080 1.1883

D. Random Initialisation

To better understand the potentialities of the proposed
method, 20 optimisation runs have been initialised by uni-
form random sampling within the entire search space. Of the
20 runs only two processes converged to feasible results, with
the objective function mp = [205870, 200220] kg. The 20
runs had a total computational cost of 6×105 function evalu-
ations. Even if the sampling cannot be considered enough for
a correct statistical analysis of the process performance, the
success rate of the process is ∼ 0.1 and near 3×105 function
evaluations should be spent to have a feasible solution with

this approach on such a problem, compared to less than
1.2×105 evaluations of the evolutionary based initialisation.

V. CONCLUSIONS

This paper has introduced an evolutionary-based ini-
tialisation using AIDEA followed by a local optimisation
procedure to identify clusters of locally optimal solutions,
applied to the multi-phase ascent trajectory of a hybrid
propulsion spaceplane. The solutions found by this method
were compared against a more conventional case using a first
guess generated by with a constant control law per phase, and
a random initialisation approach. The user defined constant
control initialisation approach requires a degree of trial-and-
error and a familiarly with the specific problem, meaning
a high cost in terms of human time, while the random
approach is computationally expensive. Instead, the AIDEA-
based method requires less problem-specific inputs of the
constant control initialisation approach, and is more efficient
and more robust at finding a potentially globally optimal
solution as well as highlighting clusters of locally optimal
trajectories which can be used by the designer to understand
the sensitivity of the optimisation variables (for example
here, the propulsion switching point and control law) to the
performance or mission objectives and constraints, than the
random initialisation.

Future work will investigate better formulations of the
problem handled by AIDEA, and to improve the robustness
and the convergence properties of the gradient-based method.
This approach will also be applied to more complex, longer
duration test cases for future space access vehicles.
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