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Abstract: Microfluidic droplet technology has been developing rapidly. However, precise control of
dynamical behaviour of droplets remains a major hurdle for new designs. This study is to understand
droplet deformation and breakup under simple shear flow in confined environment as typically
found in microfluidic applications. In addition to the Newtonian–Newtonian system, we consider
also both a Newtonian droplet in a non-Newtonian matrix fluid and a non-Newtonian droplet in a
Newtonian matrix. The lattice Boltzmann method is adopted to systematically investigate droplet
deformation and breakup under a broad range of capillary numbers, viscosity ratios of the fluids,
and confinement ratios considering shear-thinning and shear-thickening fluids. Confinement is
found to enhance deformation, and the maximum deformation occurs at the viscosity ratio of unity.
The droplet orients more towards the flow direction with increasing viscosity ratio or confinement
ratio. In addition, it is noticed that the wall effect becomes more significant for confinement ratios
larger than 0.4. Finally, for the whole range of Newtonian carrier fluids tested, the critical capillary
number above which droplet breakup occurs is only slightly affected by the confinement ratio for a
viscosity ratio of unity. Upon increasing the confinement ratio, the critical capillary number increases
for the viscosity ratios less than unity, but decreases for the viscosity ratios more than unity.

Keywords: droplet dynamics; lattice Boltzmann method; multiphase flows; power–law fluids;
droplet deformation; droplet breakup

1. Introduction

Droplet-based microfluidic technology has recently been exploited to perform microfluidic
functions. For example, polymerase chain reaction (PCR) in droplets can avoid PCR inhibition and
carryover contamination, which is a serious problem for single-phase microfluidic PCR [1]. However,
most available droplet-based microfluidic devices do not have integrated functions and are still far
from full automation. One major challenge towards an automated, sample-in and answer-out system
is to be able to control dynamical behaviour of droplets on-chip. Although flow speed is usually low,
which ensures a laminar flow, droplets are confined in microfluidic channels, and their interfacial
dynamics are still difficult to predict. In addition, in microfluidic applications, biological fluids and
surfactants are often used, so the fluids can exhibit non-Newtonian rheology. In such microfluidic
systems, the flow behaviour of droplets can be very different from Newtonian–Newtonian systems.
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The interest in droplet deformation dates back to Taylor [2], with the small deformation DT being
described in terms of the viscosity ratio λ (defined as the ratio of the viscosity of the dispersed phase
to the continuous phase) and the capillary number Ca as

DT =
19λ+ 16
16λ+ 16

Ca. (1)

However, Equation (1) is not able to predict the droplet deformation for very large viscosity
ratios [2,3]. Furthermore, Taylor’s theory is for Newtonian fluids and does not take into account effects
of shear-dependent viscosity and the influence of the wall proximity [4].

A comprehensive work on a simple shear flow involving shear-thinning fluids (in which
the viscosity decreases with increasing shear rates) is reported in [5]. This work examines the
deformation and breakup mechanisms of droplets in two experimental setups: (i) Newtonian droplets
in a shear-thinning matrix fluid; and (ii) shear-thinning droplets in a Newtonian matrix fluid.
The findings show that, in case (i), the deformation of the droplet does not increase linearly with
increasing shear rate. However, the orientation angle θ follows the theoretical predictions as reported
in [6], regardless of the nature of the suspending fluid, showing a decreasing θ from 35◦ to 40◦.

In the case of system (ii), the droplets deform following the Taylor theory for the specific values of
apparent viscosity ratio and capillary numbers, indicating that, for a given shear rate, a Newtonian
droplet of a specific viscosity can replicate the behaviour of a power–law droplet, which exhibits the
same viscosity at that shear rate. Meanwhile, the strongly shear-thinning droplets in a Newtonian
fluid exhibit a very weak deformation and high orientation to the flow for small Ca, while noteworthy
deformation is observed at a capillary number above Ca ≥ 6 [7]. However, more work is required to
understand whether droplets behave differently in a confined microfluidic environment.

Complementing theoretical and experimental studies, numerical simulations have been
extensively used to investigate the droplet behaviour in simple shear flow. Numerical simulations
give insight into flowfield quantities such as the velocity, pressure and viscosity distributions inside
and outside the droplet. In this work, we study droplet dynamics numerically using the lattice
Boltzmann method (LBM). The remainder of the paper is organised as follows. First, we describe the
numerical method and the simulation setup. In addition to the Newtonian–Newtonian reference case
(i.e., a Newtonian droplet in a Newtonian matrix), we also consider the case of a non-Newtonian droplet
in a Newtonian matrix, and of a Newtonian droplet in a non-Newtonian matrix. Effects of rheology,
geometrical confinement and flow conditions on droplet dynamics are presented and analysed before
we conclude the work.

2. Simulation Method and Setup

2.1. Lattice Boltzmann Method

The lattice Boltzmann method has four major multi-phase models: the colour-gradient model [8],
the interparticle-potential model, frequently referred to as the Shan–Chen model [9], the free-energy
model [10], and the mean-field theory model [11].

The colour–gradient model, proposed for immiscible fluids [12], integrates a continuum surface
force (CSF) model [13] to describe the interfacial tension dynamics. This formulation considers the two
phases as a single fluid [14], with space-dependent properties, and replaces the jump condition at the
interface with an additional force that acts only in the interface region.

Henceforth, the dispersed fluid is referred to as “red” phase and the continuous as “blue” phase.
The respective distribution functions are described as f R

i and f B
i , where the subscript “i” denotes the

velocity lattice direction and the superscripts “R” and “B” refer to the red and blue fluids, respectively.
Summing the two sets leads to the total distribution function:

fi = f R
i + f B

i . (2)
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The zeroth moment of each set calculates the density of the respective fluid

ρR = ∑
i

f R
i , red fluid,

ρB = ∑
i

f B
i , blue fluid.

(3)

Moreover, the method utilizes these partial densities to define the colour function or state as the
order parameter, which indicates the spatial distribution of the two fluids as

ρN =
ρR − ρB

ρR + ρB , −1 ≤ ρN ≤ 1. (4)

Thus, the colour function captures an interface of finite thickness. The location where the colour
function ρN = 0 dictates the interface between the red and blue fluids. Clearly, the total density of the
fluid is the sum of the partial densities or the zeroth moment of the total distribution function:

ρ = ρB + ρR,

ρ = ∑
i

fi.
(5)

In the LBM, the total distribution function ( fi) usually undergoes a Bhatnagar–Gross–Krook (BGK)
collision step as

f †
i = fi −

1
τ
( fi − f eq

i ) + Φi, (6)

where fi is the total distribution function in the i-th velocity direction at the position r and the time
t, f eq

i is the equilibrium distribution function of fi, f †
i is the post-collision distribution function, τ is

the dimensionless relaxation time, and Φi is the forcing term. The equilibrium distribution function is
obtained by a second-order Taylor expansion of Maxwell–Boltzmann distribution with respect to the
local velocity~u:

f eq
i = ρwi

[
1 +

~ei ·~u
c2

s
+

(~ei ·~u)2

2c4
s
− ~u2

2c2
s

]
, (7)

where cs is the speed of sound,~ei is the lattice velocity in the i-th direction, and wi is the weight factor.
For the three-dimensional 19-velocity (D3Q19) model, seen in Figure 1, the lattice velocity~ei and the
weight factors are given by

~ei =


(0, 0, 0)c, i = 0,
(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c, i = 1, 2, ..., 6,
(±1,±1, 0)c, (0,±1,±1)c, (±1, 0,±1)c, i = 7, 8, ..., 18,

(8)

wi =


1/3, i = 0,
1/18, i = 1, 2, ..., 6,
1/36, i = 7, 8, ..., 18,

(9)

and the speed of sound cs = c√
3
= δx√

3δt
with δx and δt being the lattice length and lattice time

step, respectively.
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Figure 1. Schematic illustration of the three-dimensional, nineteen velocity (D3Q19) lattice.

As~n = − ∇ρ
N

|∇ρN | , the interfacial tension force can be written as [13]

~FS = −1
2
σκ∇ρN , (10)

where the local interface curvature κ is related to the unit normal to the interface by

κ = − [(I−~n⊗~n) · ∇] ·~n = −∇ ·~n, (11)

and I is the second-order identity tensor. With the interfacial tension force given by Equation (10),
the forcing term Φi that is applied to realize the interfacial tension effect, reads as in [15]:

Φi =

(
1− 1

2τ

)
wi

(
~ei −~u

c2
s

+
~ei ·~u

c4
s
~ei

)
·~FSδt. (12)

According to Guo et al. [16], the local fluid velocity should be defined to incorporate the spatially
varying interfacial tension force

ρ~u = ∑
i

fi~ei +
1
2
~FSδt. (13)

Using the Chapman–Enskog multiscale expansion, Equation (6) can be reduced to the
Navier–Stokes equation in the low frequency, long wavelength limit with the pressure and the fluid
viscosity defined by

p = ρc2
s , (14)

η = ρc2
s

(
τ− 1

2

)
δt. (15)

The partial derivatives required for the curvature and normal vector calculations are obtained
using the 19-point compact finite difference stencil [17]. To deal with unequal viscosities of the two
fluids, the viscosity of the fluid mixture follows a harmonic mean average function to the color function:

1
η (ρN)

=
1 + ρN

2ηR
+

1− ρN

2ηB
, (16)

where ηR and ηB are the dynamic viscosities of the red and the blue fluids, respectively, as in [17–19].
The viscosities ηR and ηB are calculated independently from each other, thus each fluid can be
Newtonian or power–law.

Although the forcing term generates an interfacial tension, it does not guarantee the immiscibility
of both fluids. To promote phase segregation and maintain a reasonable interface, the segregation
(recolouring) algorithm of Latva–Kokko and Rothman is used [20]. It can overcome the lattice pinning



Micromachines 2017, 8, 57 5 of 14

problem and creates a symmetric distribution of particles around the interface so that unphysical
spurious currents can be effectively reduced. The post-segregation (recoloured) distribution functions
of the red and blue fluids are

f R
i =

ρR
ρ

f †
i + β

ρRρB
ρ

wi cos(ϕi)|~ei|,

f B
i =

ρB
ρ

f †
i − β

ρRρB
ρ

wi cos(ϕi)|~ei|,
(17)

where β is the segregation parameter and is set to be 0.7 for numerical stability and model accuracy [21];
and ϕi is the angle between the colour gradient and the lattice vector~ei, which is defined by

cos(ϕi) =
~ei · ∇ρN

|~ei||∇ρN | . (18)

After the recolouring step, the red and blue distribution functions propagate to the neighbouring
lattice nodes, known as propagation or the streaming step:

f j
i (R +~eiδt, t + δt) = f j

i , j = R or B, (19)

and the resulting distribution functions are then used to calculate the densities of both fluids as in
Equation (3).

2.2. Geometry, Mesh and Boundary Conditions

The computational domains are simple three-dimensional cuboids on the Cartesian coordinate
system. The length, depth and height of a domain are assigned to the x-, y- and z-directions,
respectively. Each domain is meshed by structured orthogonal grids and the D3Q19 lattice is
implemented. A cross sectional slice in the x-z plane positioned in the middle of the y-axis, shown
blue in Figure 2, will be referred to as the “x-z middle plane”, or plainly “middle plane”. In this
characteristic plane, the vector and tensor properties are nullified in the y-direction due to symmetry.
The periodic boundary condition is applied at the inlet and outlet normal to x- and y-, and the half-way
bounce-back at the solid walls in the z-direction.

Y

X

Z

height

length depth

Figure 2. Simulation geometry. The blue plane illustrates the “x-z middle plane” described in the text.

Grid independence tests in a typical shear test showed a variation in the deformation parameter
up to 4.5 % for a droplet with radius R = 10 lattice units (l.u.), and below 1% for a droplet of 30 l.u.
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The droplet is considered sufficiently isolated for length and depth of 100 and 71 l.u., respectively.
However, in high intensity shearing, i.e., high capillary number cases, a droplet can elongate
significantly, so the length of the domain will increase to 492 l.u. The height H varies within a
range of 51 to 223 l.u. to obtain different confinement ratios from 2R/H = 0.18 to 0.8.

2.3. Initial Conditions and Fluid Properties

In all the simulations, the initial droplet (red fluid) is in the centre of the domain, while the matrix
fluid consists only of blue fluid. The velocity everywhere in the domain is ~u = (0, 0, 0). At the first
time step, the velocities on the top and bottom walls are set to ~ut = (Uw, 0, 0) and ~ub = (−Uw, 0, 0),
respectively. The magnitude of the velocity at the walls (Uw) and the viscosity of the continuous fluid
(ηc) are imposed considering the Reynolds (Re) and the capillary (Ca) numbers, along with the height
of the domain.

Non-Newtonian fluids are modelled using a power–law constitutive equation

η (|γ̇|) = k (|γ̇|)n−1 , (20)

where k is the consistency index, n the power law index and γ̇ the shear rate. For n = 1, the viscosity is
independent of the shear rate and the fluid is Newtonian; for n < 1, the fluid exhibits a shear thinning
behaviour, with the viscosity decreasing with increasing shear rate; on the other hand, when n > 1,
the fluid is shear-thickening, with the viscosity increasing with increasing shear rate.

The Re and Ca numbers are defined using the properties of the continuous-matrix fluid as

Re =
ργ̇0R2

ηc
, Ca =

γ̇0Rηc

σ
, (21)

where the R refers to the radius of the droplets and σ is the interfacial tension. The shear rate can
therefore be written as

γ̇0 =

√
ReCa

σ

ρR3 , (22)

and the velocity magnitude on the walls (Uw) is calculated from

γ̇0 =
Uw

H/2
⇔ Uw =

γ̇0H
2

. (23)

For the range of parameters used, the imposed velocity is low enough to neglect compressibility
of fluids [22]. Even for a large capillary number, e.g., Ca = 1, the Mach number is less than 0.01. Finally,
the viscosity of the continuous-matrix fluid (ηc) can be written as

ηc =

√
Ca
Re
ρσR, (24)

and the viscosity ratio is
λ =

ηd
ηc

(25)

when a non-Newtonian matrix fluid is used, and the viscosity depends on the shear rate. A set of
modified dimensionless numbers that account for this dependency become

Re =
ργ̇2−nc

0 R2

kc
; Ca =

γ̇0Rηc

σ
=

γ̇0R
(

kcγ̇nc−1
0

)
σ

, (26)

using the shear rate dependent viscosity and the droplet radius as characteristic properties. Clearly,
when the exponent is unity i.e., nc = 1, the fluid is Newtonian and Equation (26) reduces to
Equation (21).
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In the simulations, the consistency index i.e., k, is used to define power–law viscosity ratio λPL.
For example, the viscosity of the Newtonian droplet (ηd) equals the consistency index of the matrix
fluid (kc) to obtain a unity viscosity ratio. Finally, note that the interfacial tension is considered as a
free parameter and is set to σ = 0.001 to minimize spurious currents.

3. Results and Discussion

3.1. Newtonian Droplet in a Non-Newtonian Matrix Fluid under Simple Shear

First, we examine the confinement effect while keeping the capillary number fixed at Ca = 0.2.
Figure 3 shows the variation of the deformation parameter and the orientation angle as a function
of the confinement 2R/H. For all the cases studied, increasing confinement leads to more deformed
droplets that are more oriented towards the shear flow. Additionally, the droplet deforms to a greater
extent in the carrier fluid that exhibits a high power–law index, i.e., the drop deforms more in a
shear-thickening carrier fluid (nc > 1) than in a Newtonian carrier fluid (nc = 1), and deforms less
in shear-thinning (nc < 1) carrier fluid. The more confined the droplet is, the higher the shear stress
exerted on its surface. Additionally, shear stress becomes larger as the power–law index increases.
This relative increase in the stresses can explain the behaviour of the deformation curves in Figure 3.

Furthermore, the velocity fields (not shown here) are similar to the equi-viscous Newtonian
case [4]. The difference is that the high pressure point shifts further from the droplet surface and
slightly closer to the centreline when the matrix fluid is more shear thickening, while the exact opposite
happens when the carrier fluid is shear-thinning.

0.2 0.3 0.4 0.5 0.6 0.7

0.15

0.20

0.25

0.30

0.35

0.40
   nc

 0.5
 0.75
 1
 1.25
 1.5

 nc=0.5
 nc=0.75
 nc=1
 nc=1.25
 nc=1.5

D

2R/H

0.2 0.3 0.4 0.5 0.6 0.7

22.5

25.0

27.5

30.0

32.5

35.0

   nc

 0.5
 0.75
 1
 1.25
 1.5

(
)

2R/H

(a) (b)

Figure 3. (a) deformation parameter; and (b) orientation angle as a function of the confinement
ratio, 2R/H, for a Newtonian droplet in a range of matrix fluids (Newtonian and power–law fluids,
with power–law index nc) at Ca = 0.2 and λ = 1.

We have also investigated the dynamics of droplet breakup and the critical capillary number for
droplet breakup under confinement ratios ranging from 0.37 to 0.8. Although the LBM has been used
extensively to simulate the droplet breakup [23–26], to the best of our knowledge, no studies cover
such a broad range of parameters. This is partially because of the unsolved technical issues, such as
the artificially enlarged interface thickness and case-dependent mobility in the phase-field-based
model, high spurious currents as well as the numerical instability in the interparticle-potential model.
The color-gradient model we adopt here allows us to be able to access a high viscosity ratio, which is
essential for dealing with power–law fluids and low capillary number [21,27].

In Figure 4, we consider a Newtonian carrier fluid (nc = 1) with three typical viscosity ratios,
i.e., λ = 0.3, 1 and 5, and two power–law matrix fluids (nc = 0.75 and 1.25) for a single viscosity
ratio (λPL = 1). Figure 4 shows a map of drop configuration in the capillary number and confinement
ratio parameter space. For the Newtonian fluid, empty symbols represent the steady state regime,
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while half-filled and full-filled symbols distinguish the binary and ternary breakup modes. The same
graph includes two cases of breakup in a power–law matrix fluid. The green ellipses show the cases
for nc = 0.75 and the purple ones for nc = 1.25. Empty symbols again represent the steady state
regime, while crossed symbols denote binary breakup. The critical capillary number (Cacr) for drop
breakup lies between the empty and filled or crossed symbols and, in the case of the Newtonian fluid,
is indicated with the dashed lines.

Figure 4. The effect of capillary numbers and confinement ratio on the droplet steady deformation
or breakup for the case of a Newtonian droplet in Newtonian matrix fluids (λ = 0.3, 1, 5 and nc = 1),
and in power–law matrix fluids (nc = 0.75, 1.25 and λPL = 1). The open symbols depict steady states.
The half-filled symbols depict binary breakup, and the full symbols ternary breakup for the Newtonian
cases, while the crossed symbols show binary breakup for droplets in power–law matrix fluid. The lines
highlight the critical capillary numbers for the case of the Newtonian fluid.

For the Newtonian carrier fluid, we observe that the effect of confinement ratio on the critical
capillary number depends on the viscosity ratio. For the low viscosity ratio, i.e., λ = 0.3, the critical
capillary number varies from 0.4 ≤ Cacr ≤ 0.5 at 2R/H = 0.37, to 0.5 ≤ Cacr ≤ 0.6 at
2R/H = 0.5 and finally to 0.55 ≤ Cacr ≤ 0.625 at 2R/H = 0.625, suggesting that Cacr increases
with increasing confinement.

Furthermore, Figure 4 shows that the confinement ratio has only a small effect on the critical
capillary number, which is around 0.4. These findings agree well with the previous experimental and
numerical studies [28,29]. It should be noted that, for λ = 1, the critical capillary number is known to
exhibit a minimum critical capillary number occurring at 2R/H = 0.5 [4].

Even though the overall agreement is quite satisfactory between the present results and
those obtained by Janssen et al. [28], some quantitative differences are also noticed. For example,
Janssen et al. [28] finds experimentally that binary breakup occurs for a unit viscosity ratio droplet at
Ca = 0.45 and 0.37 ≤ 2R/H ≤ 0.45, where our simulations produce a ternary breakup. In addition,
the previous experimental study indicates that the lowest Cacr for all of viscosity ratios (0.3 ≤ λ ≤ 5)
and confinement ratios (0.1 ≤ 2R/H ≤ 0.9) is around 0.4 [28]. However, in our simulations with
a Newtonian fluid matrix, this value is slightly lower (0.35), clearly seen in Figure 4.

Similar to the Newtonian case, when the droplets are immersed in a shear-thinning or thickening
fluid, the critical capillary number does not seem to vary significantly with confinement ratio for
λPL = 1, despite it being smaller than that in the Newtonian case.

3.2. Non-Newtonian Droplets under Shear

For droplets made of power–law fluid, they are now referred to as “power–law droplets”.
The viscosity, consistency index and the exponent of a power–law droplet are noted with ηd, kd
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and nd, respectively. Note that, in all cases, the matrix fluid is Newtonian; therefore, the respective
systems are referred to as “Power–law–Newtonian”, denoted as “PL–N”. In the distinct case of nd = 1,
the respective system is referred to as “Newtonian–Newtonian”, denoted as “N–N”.

Using the imposed shear rate magnitude, γ̇0 = 2U/H, and the single phase power–law
formulation, ηd = kdγ̇

nd−1
0 , the so-called equivalent viscosity ratio of a Newtonian–Newtonian system

is calculated as:
λeq = λPLγ̇

nd−1
0 , (27)

which is correlated to N–N system: a Newtonian–Newtonian with characteristic parameter λ to
a Power–law–Newtonian with characteristic parameter nd. This correlation is possible because, in both
systems, the stresses exerted on the surface of the droplet depend on the term ηcγ̇0.

In our simulations, the shear rate magnitude is much lower than unity, i.e., γ̇0 = 5× 10−5. Hence,
the aforementioned correlation leads to two most important assumptions:

1. shear-thinning droplets, i.e., nd < 1, would behave like higher-viscous ratio Newtonian droplets,
i.e., λ > 1;

2. shear-thickening droplets, i.e., nd > 1, would behave like lower-viscous ratio Newtonian droplets,
i.e., λ < 1.

First, the impact of the power–law viscosity ratio is examined, i.e., λPL = 0.5, 1, 2, at Ca = 0.2, 0.4,
and nd = 0.75, 1, 1.25. The deformation parameters and orientation angles are plotted in Figure 5, which
is based on 2D simulation results (all the other simulations are 3D). When Ca increases from 0.2 to 0.4,
the droplet deforms to a greater extent and orients more to the direction of the flow. In comparison
with the Newtonian droplet, shear-thinning droplets deform less, and shear-thickening droplets exhibit
an opposite deformation trend. However, both Newtonian and shear-thickening droplets orient more
to the direction of the flow with increasing λPL. Moreover, shear-thinning droplets show the lowest
orientation angles. This finding confirms that high-viscous droplets align more to direction of the flow.

0.5 1.0 1.5 2.0
0.00
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0.15

0.20

0.25
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0.35
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 Ca=0.4

nd=1
 Ca=0.2
 Ca=0.4

nd=1.25
 Ca=0.2
 Ca=0.4
 

D

(PL)
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0
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10

15

20

25

30

35

40
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(

)

Figure 5. (Left) droplet deformation; and (right) orientation angle as a function of the power–law
viscosity ratio, λPL = kd/ηc, for power–law exponents nd = 0.75, 1, 1.25, with confinement ratio,
2R/H = 0.4.
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The behaviour of power–law droplets for nd = 0.75, 1, 1.25 is studied with λPL = 1,
and 2R/H = 0.18, 0.4, 0.7 (see Figure 6a,b). Thus, these simulations compare a shear-thinning,
a Newtonian and a shear-thickening droplet, i.e., nd = 0.75, 1, 1.25 in very weak, moderate and
highly confined cases, i.e., 2R/H = 0.18, 0.4 and 0.7, respectively, where the capillary numbers range
from 0.1 to 0.5. At Ca = 0.5, the correlations between power–law exponents and equivalent viscosity
ratios are

• shear-thinning: nd = 0.75→ λeq ≈ 13,
• shear-thickening: nd = 1.25→ λeq ≈ 0.08.

The critical capillary numbers in N–N systems of such viscosity ratios exceed greatly the value
of 0.5, as reported in [28], and, therefore, no breakups are expected. However, some droplets deviate
from the ellipsoid shape, e.g., for the case of nd = 1.25.

Figure 6a,b show the deformation parameters and the orientation angles as a function of Ca.
The droplets deform to higher extents and turn more to the orientation of the flow with increasing
capillary numbers and confinements. In particular, the Newtonian droplets present the biggest
deformation, and their orientation angle trend lines lie between those for nd = 0.75 and 1.25.
Furthermore, droplets with nd = 0.75 show the smaller values of both deformation and orientation
angles, while droplets with nd = 1.25 depict the highest orientation angle values, even though they
deform less than the Newtonian ones.
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0.0
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0.3
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 0.75
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Ca

(a) (b)

Figure 6. (a) droplet deformation and (b) orientation angle as a function of the capillary number, Ca,
for exponents nd = 0.75, 1, 1.25, in various confinement ratios, 2R/H.

The deformation parameter trend lines indicate that the wall approximation has a weak influence
on the deformation up to the confinement 2R/H = 0.4. More specifically, the increase of confinement
ratio from 2R/H = 0.18 to 0.4 affects the droplets with nd = 0.75 mildly, and the ones with nd = 1.25
even more insignificantly. However, upon further increase to 2R/H = 0.7, the droplets with nd = 0.75
deform considerably more. The specific droplets are subjected to high built-up stresses on the surface
due to a lack of further tumbling, as indicated from the orientation angle values, in a similar mechanism
for the highly-viscous Newtonian droplets [4]. On the other hand, the droplets with nd = 1.25 intensify
their tumbling, i.e., decreasing θ in Figure 6, hence the built-up stresses have a moderate impact on the
deformation. This behaviour is also illustrated by a low-viscous Newtonian droplet. Interestingly, in
the case of Ca = 0.5, increasing confinement of droplets with nd = 1.25 leads to smaller deformations.
This can be linked to the finding that increasing confinement suppresses breakup for low viscosity
Newtonian droplets [28,30].

Figure 7 shows the deformation and the orientation angle as a function of the confinement ratio.
The insets compare the results from the PL–N/nd = 1.125 and the N–N/λ = 0.3 systems. In general,
increasing confinement ratios lead to increasing deformation parameters and decreasing orientation
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angles. Similar to the findings in Figure 5, the Newtonian droplet deforms the most, while it turns
less than the shear-thinning droplets and more than the shear-thickening ones. More interestingly,
power–law droplets with different exponents behave similarly. For example, shear-thinning droplets
with nd = 0.75 and nd = 0.875 show a moderate increase of deformation rate when 2R/H increases to
0.4 and a more significant increase afterwards. In addition, their orientation is weakly affected by the
presence of the walls, as seen in Figure 7. Meanwhile, the deformation of shear-thickening droplets
present considerably less variations.
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Figure 7. (a) droplet deformation and (b) orientation angle as a function of the confinement ratio,
2R/H, for various power–law exponents, nd, at Ca = 0.2. Insets: comparison of droplet characteristics
for nd = 1.125 and the Newtonian droplet of λ = 0.3 (magenta-triangle).

Finally, we consider equivalent systems including the N–N/λ = 0.3 and PL–N/nd = 1.125 systems,
where the capillary number, Ca, is 0.5, and the confinement ratio 2R/H = 0.37. Notice that the
Newtonian droplet undergoes a binary breakup in these conditions (see Figure 4). To achieve
an equivalent viscosity ratio λeq = 0.3, nd ≈ 1.2747. Therefore, the system PL–N/nd = 1.2747 is
also included in this comparison. Hence, three systems are evaluated at Ca = 0.5, 2R/H = 0.37.

Figure 8 shows the shape evolution of the droplets at three time instants: t∗ = 1, 5, 15,
where t∗ = γ̇0t and t is the time step. The droplets deform to an identical ellipsoidal shape first,
which is similar to a small deformation in a steady state. At a later time instant, i.e., t∗ = 5, the droplet
shapes are slightly different and they deviate from ellipsoidal. Specifically, in PL–N/nd = 1.125,
the droplet has elongated less compared to the one in N–N/λ = 0.3, while the opposite is observed
in PL–N/nd ≈1.2747. Finally, at t∗ = 15, a long neck and differently oriented curvatures have been
formed in all systems, where the droplet shapes differ considerably more than those in time instant
t∗ = 5.

Figure 9 illustrates the shape evolution of the droplets close to breakup at Ca = 0.5, 2R/H = 0.7.
Contrary to the previous observations regarding the low-viscous and shear-thinning droplets,
the elongation does not cease due to the effects from the high approximation of the walls. Additionally,
two regions between the centre and the two edges of the drop become very thin at t∗ = 27.
These regions produce two pinch-off points at later times, leading to ternary breakups.
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Figure 8. Transient droplet shapes, in the x-z middle plane, in systems N–N/λ = 0.3 (solid-black),
PL–N/nd = 1.125 (dashed-blue), and PL–N/nd ≈1.2747 (dashed-red lines), at time instants t∗ = 1, 5, 15.
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Figure 9. Transient droplet shapes close to the critical breakup time, in the x-z middle plane, in systems
(a) N–N/λ = 3 and (b) PL–N/nd ≈ 0.8837.

4. Conclusions

Dynamical behaviour of droplets under simple shear has been systematically studied under
a broad range of confinement and viscosity ratios. Depending on viscosity ratios, confinement ratios
have different effects on the critical capillary number: as the confinement increases, the critical capillary
number increases for λ < 1 but decreases for λ > 1, and, for λ = 1, the critical capillary number is kept
at a value of around 0.4, regardless of the confinement ratio.

For Newtonian droplets in power–law matrix fluid, increasing confinement leads to an increase in
droplet deformation for a wide range of viscosity ratios. The orientation angle of the deformed droplet
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decreases with increasing confinement or viscosity ratio. Meanwhile, the shear-thinning droplets
behave similarly to highly-viscous Newtonian droplets, which are affected more significantly by
confinement when compared to the shear-thickening.

The present work is the first step towards understanding how simple power–law fluids will
respond to a shear flow in confinement. Experimental validation and extension to more realistic
microfluidic geometries will be required to make the conclusions more useful for design of microfluidic
devices. The code we used has been validated previously for Newtonian fluids in complex flow
geometries e.g., [18]. As most available experimental data deal with viscoelastic fluids, we would be
keen to extend our work from power–law fluids to viscoelastic ones, which will be a major step for
code development.
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