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Abstract—A number of algorithms for the iterative calculation
of a polynomial matrix eigenvalue decomposition (PEVD) have
been introduced. The PEVD is a generalisation of the ordinary
EVD and will diagonalise a parahermitian matrix via paraunitary
operations. This paper addresses savings — both computationally
and in terms of memory use — that exploit the parahermitian
structure of the matrix being decomposed, and also suggests an
implicit trimming approach to efficiently curb the polynomial
order growth usually observed during iterations of the PEVD
algorithms. We demonstrate that with the proposed techniques,
both storage and computations can be significantly reduced,
impacting on a number of broadband multichannel problems.

I. INTRODUCTION

Broadband multichannel problems can be elegantly ex-

pressed using polynomial matrix formulations. This includes

polyphase analysis and synthesis matrices for filter banks [1],

channel coding [2], [3], broadband MIMO precoding and

equalisation [4], optimal subband coding [5], broadband angle

of arrival estimation [6], [7], broadband beamforming [8],

[9], and multichannel factorisation [10] to name but a few.

These problems generally involve parahermitian polynomial

matrices, where R(z) is identical to its parahermitian R̃(z) =
R

H(z−1), i.e. a Hermitian transposed and time-reversed ver-

sion of itself [1].

Similar to the way the eigenvalue decomposition (EVD)

presents an optimal tool for many narrowband problems

involving covariance matrices, a factorisation for parahermi-

tian polynomial matrices is required for the broadband case.

Therefore as an extension of the EVD, a polynomial matrix

EVD (PEVD) has been defined in [11], [12] for space-time

covariance matrices which can be approximately diagonalised

and spectrally majorised [13] by finite impulse response (FIR)

paraunitary matrices [14].

PEVD algorithms include the original second order sequen-

tial best rotation (SBR2) algorithm [12], sequential matrix

diagonalisation (SMD) [15] and various evolutions of the

algorithm families [16]–[18]. All of these algorithms approx-

imately diagonalise the parahermitian matrix in an iterative

manner, stopping when some suitable threshold is reached.

Both SBR2 and SMD are computationally costly to compute,

and any cost savings that can be applied to these algorithms

will provide an advantage for applications.

Efforts to reduce the algorithmic cost have mostly been

focused on the trimming of polynomial matrix factors to curb

growth in order [12], [19]–[21], which translates directly into

a growth of computational complexity and memory storage

requirements. Recent efforts [19], [21] have been dedicated

to the paraunitary matrices whilst [12], [15] consider the

parahermitian matrices after every iteration.

Here we exploit the natural symmetry of the parahermitian

matrix structure and only store one half of its elements, and

show how this can be reconciled with the required row- and

column shift operations in PEVD algorithms. Trimming of the

parahermitian matrix is integrated into every iteration, such

that no matrix multiplications are executed on terms that will

subsequently be discarded.

Below, Sec. II will provide a brief overview over the SMD

method as a representative example of PEVD algorithms. The

proposed approach for storing and operating on a reduced

parahermitian matrix, including an integrated trimming strat-

egy, are outlined in Sec. III. Simulation results demonstrating

the savings are presented in Sec. IV with conclusions drawn

in Sec. V.

II. SEQUENTIAL MATRIX DIAGONALISATION

This section reviews aspects of the SMD algorithm [15]

as a representive of iterative PEVD schemes in Sec. II-A,

with an assessment of the main algorithmic cost and memory

requirements in Sec. II-B.

A. Algorithm Overview

The SMD algorithm approximates the PEVD using a series

of elementary paraunitary operations to iteratively diagonalise

a parahermitian matrix R(z). Note that R(z) is the z-

transform of a set of coefficient matrices relating to different

lags, R[τ ]. Each elementary paraunitary operation consists of

two steps: first a delay step is used to move the column with

the largest energy in its off-diagonal elements to the zero lag;

then an EVD diagonalises the zero lag matrix, transferring the

shifted off-diagonal energy onto the diagonal.



The SMD algorithm is initialised with a diagonalisation of

the lag-zero coefficient matrix R[0] by means of its modal

matrix Q(0) from S
(0)(z) = Q(0)

R(z)Q(0)H. Note that the

unitary Q(0) - which is obtained from the EVD of the lag-zero

slice R[0] - is applied to all coefficient matrices R[τ ] ∀ τ .

In the ith step, i = 1, 2, . . . L, the SMD algorithm calculates

a transformation of the form

S
(i)(z) = U

(i)(z)S(i−1)(z)Ũ
(i)
(z) , (1)

in which

U
(i)(z) = Q(i)Λ(i)(z) . (2)

The product in (2) consists of an elementary paraunitary delay

matrix

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)−1

z−τ (i)

1 . . . 1
︸ ︷︷ ︸

M−k(i)

} , (3)

and a unitary matrix Q(i), with the result that U (i)(z) in (2)

is paraunitary by construction. It is convenient for subsequent

discussion to define an intermediate variable S
(i)′(z) where

S
(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃

(i)
(z) , (4)

and

S
(i)(z) = Q(i)

S
(i)′(z)Q(i)H . (5)

The selection of Λ(i)(z) and Q(i) in the ith iteration de-

pends on the position of the dominant off-diagonal column in

S
(i−1)(z) •—◦ S(i−1)[τ ], as identified by the parameter set

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖2 , (6)

where

‖ŝ
(i−1)
k [τ ]‖2 =

√
√
√
√

M∑

m=1,m 6=k

|s
(i−1)
m,k [τ ]|2 (7)

and s
(i−1)
m,k

[τ ] represents the element in the mth row and kth

column of the coefficient matrix at lag τ , S(i−1)[τ ].
Due to its parahermitian form, the shifting process in (4)

moves both the dominant off-diagonal row and the dominant

off-diagonal column into the zero-lag coefficient matrix and

so the modified norm in (7) serves to measure half of the total

energy moved into the zero-lag matrix S(i)′[0]. This energy

is transferred onto the diagonal by the unitary modal matrix

Q(i) in (5) that diagonalises S(i)′[0] by means of an ordered

EVD.

The iterative process — which has been shown to con-

verge [15] — continues for I steps, say, until S(I)(z) is suf-

ficiently diagonalised with the dominant off-diagonal column

norm

max
k,τ

‖ŝ
(I)
k [τ ]‖2 ≤ ρ , (8)

where the value of ρ is chosen to be arbitrarily small. This

completes the SMD algorithm and generates an approximate

PEVD given by

S
(I)(z) = H

(I)(z)R(z)H̃
(I)

(z) . (9)

Concatenation of the elementary paraunitary matrices

H
(I)(z) = U

(I)(z)U (I−1)(z) · · ·U (1)(z)U (0)(z)

=

I−1∏

i=0

U
(I−i)(z) (10)

extracts the PU matrix H
(I)(z) for (9).

B. Complexity and Memory Requirements

If at the ith iteration S(i−1)[τ ] = 0 ∀ |τ | > N (i−1), the

memory to store S
(i−1)(z) must hold (2N (i−1)+1)M2 coef-

ficients. The maximum column search requires the calculation

of (M−1)M(2N (i−1)+1) multiply accumulates (MACs) for

the modified column norms according to (7).

During the ith iteration, the polynomial order growth leads

to N (i) = N (i−1) + |τ (i)|, and the calculation of (4) is

implemented as a combination of two block memory moves:

one for the rows of S(i−1)[τ ], and one for the columns. The

number of coefficients of S(i−1)[τ ] ∈ C
M×M , S(i−1)[τ ] =

0 ∀ |τ | > N (i−1), to be moved can therefore be approximated

by 2(2N (i−1)+1)M ≈ 4N (i−1)M , assuming N (i−1) is large.

For (5), every matrix-valued coefficient in S
(i)′(z) must be

left- and right-multiplied with a unitary matrix. Accounting

for a multiplication of 2 M × M matrices by M3 MACs,

a total of (2(2N (i) + 1)M3) ≈ 4N (i)M3 MACs arise to

generate S
(i)(z) from S

(i)′(z). It is therefore this latter cost

that dominates the computational cost of the ith iteration step.

III. REDUCED PARAHERMITIAN MATRIX

REPRESENTATION

Based on the reduced matrix representation of a parahermi-

tian matrix defined in Sec. III-A, Sec. III-B outlines modifica-

tion to the parameter search, which is then applied for modified

shifts in Sec. III-C. Rotation with an integrated truncation

is proposed in Sec. III-D, and the resource requirements are

compared to the previous standard approach in Sec. III-E.

A. Matrix Structure

By segmenting a parahermitian matrix R(z), it is possible

to write

R(z) = R
(−)(z) +R[0] +R

(+)(z) , (11)

where R[0] is the zero lag matrix, R
(+)(z) contains terms

for positive lag elements only, and R
(−)(z) = R̃

(+)
(z). It is

therefore sufficient to record half of R(z), which here without

loss of generality is R[0] +R
(+)(z). As an example, Fig. 1

demonstrates the reduction of a 5 × 5 matrix with maximum

lag N = 3.

In the initialisation step of SMD, the matrix R[0] would

be diagonalised, and in every subsequent step, S(i)(z) is split

analogously to (11) such that only its causal part is recorded.
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Fig. 1. (a) Full and (b) reduced representation of the parahermitian matrix
R(z) for N = 3.

B. Modified Search Strategy

To find the correct shift parameters for the SMD algorithm,

(6) can be used directly but with a restriction of the search

space for column norms to τ ≥ 0, such that τ (i) ≥ 0
is also imposed as a constraint. This requires only half the

search space of the standard SMD approach, but neglects to

search column norms for negative time lags, hence yielding

a solution that is equivalent to the causally-constrained SMD

algorithm [18].

If column norms for negative lags values τ < 0 are to be

included in the search, then due to its parahermitian structure,

searching column norms of S(i−1)[τ ] for τ < 0 is equivalent

to searching row norms for τ ≥ 0. If a modified row norm for

the kth row is defined as

‖ŝ
(i−1)
(r),k [τ ]‖2 =

√
√
√
√

M∑

m=1,m 6=k

|s
(i−1)
k,m [τ ]|2 , (12)

then the modified parameter search is

{k(i), τ (i)} = argmax
k,τ

{

‖ŝ
(i−1)
k [τ ]‖2 , ‖ŝ

(i−1)
(r),k [−τ ]‖2

}

,

(13)

whereby both ‖ŝ
(i−1)
k [ν]‖2 and ‖ŝ

(i−1)
(r),k [ν]‖2 are only evaluated

for arguments ν ≥ 0 . If (13) returns τ (i) > 0, then as

previously the k(i)th column is to be shifted. If τ (i) < 0, it

is the k(i)th row that requires shifting by −τ (i); alternatively

due to the parahermitian property, the k(i)th column can also

be shifted by τ (i), thus covering both cases of positive and

negative shifts.

C. Shifting Approach

The delay step (4) in the SMD algorithm can be performed

with the reduced parahermitian matrix representation in the

ith iteration by shifting either the k(i)th column or row —

whichever has the greater modified norm according to (7) or

(12) — by |τ (i)| coefficients to the zero lag. Elements that

are shifted beyond the zero lag, i.e. outside the recorded half-

matrix, have to be stored as parahermitian (i.e. Hermitian

transposed and time reversed) and appended onto the k(i)th

row or column of the shifted matrix at lag-zero. The concate-

nated row or column is then shifted by |τ (i)| elements towards

increasing τ .

An example of the shift operation is depicted in Fig. 2 for

the case of S
(i−1)(z) ∈ C5×5 with parameters k(i) = 2 and

τ = 3
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Fig. 2. Example for a matrix where in the ith iteration a modified row norm
is maximum: (a) the row is shifted, with non-diagonal elements in the k(i)th
row past the zero lag (b) extracted and (c) parahermitian transposed; (d) these
elements are appended to the k(i)th column at zero-lag and (e) shifted in the
opposite direction with all off-diagonal column elements.

τ (i) = −3. Because of the negative sign of τ (i), it is here

the 2nd row that has to be shifted first, followed by the 2nd

column shifted in the opposite direction. Note that because

the row and column shifts operate in opposite directions , the

polynomial in the k(i)th position along the diagonal remains

unaltered. An efficient implementation will therefore exclude

this polynomial from otherwise spurious shift operations, as

shown in the example of Fig. 2.

D. Truncation and Rotation

Following this shifting procedure, for the 2nd step of the

SMD iteration an ordered EVD of the lag-zero matrix S(i)′[0]
is perfomed, yielding the modal matrix Q(i) that has to be

applied to all lags 0 ≤ τ ≤ N (i).

To curb the growth in order of S
(i)(z) at every iteration,

trimming of matrices S(i)[τ ] for outer lag values has been

advocated previously [12], [15], [20]. This trimming is based

on a threshold ǫ applied to the Frobenius norm ‖·‖F, whereby

S
(i)(z) is reduced to an order Ñ (i) such that

‖S(i)[τ ]‖F < ǫ ∀ τ > Ñ (i) . (14)

Since Q(i) is unitary, ‖S(i)[τ ]‖F = ‖S(i)′[τ ]‖F. Truncation

can therefore be performed on S
(i)′(z) prior to the computa-

tionally expensive rotation to create S
(i)(z).

There is also an option to combine the calculation of

the Frobenius norm at the ith iteration with the calculation

of column and row norms, which will be required for the

parameter search of {k(i+1), τ (i+1)} at the (i+1)th iteration.

By keeping a record of these modified norms and tracking

column and row shifts, every modified norm according to (7)

and (12) only changes in a single coefficient. Tracking norms



TABLE I
APPPROXIMATE RESOURCE REQUIREMENTS.

Method Complexity Storage Memory Moves

standard 4N(i)M3 (2N(i) + 1)M2 (4N(i−1) + 2)M

proposed 2N(i)
M

3 (N(i) + 1)M2 (2N(i−1) + 2)(M − 1)

therefore is particular advantageous for larger dimensions M

when factorising R(z) ∈ CM×M .

E. Reduction in Memory and Computational Cost

The memory required to store the causal part of S
(i)(z)

at the ith iteration is equal to (N (i) + 1)M2 coefficients,

and therefore approximately half of what a full storage

needs. During the ith iteration, the first delay step involves

2(N (i−1)+1)(M−1) coefficients to be shifted in memory, as

opposed to 2(2N (i−1)+1)M for a full matrix representation.

Therefore, the number of coefficient moves during the shift

step is also halved using the proposed approach.

In terms of multiply-accumulates, the rotation operation

with Q(i) during the 2nd step of the ith iteration re-

quires 2M3(Ñ (i) + 1) MACs, saving more than half of the

operations executed during the standard approach outlined in

Sec. II-B. The various aspects of resource requirements are

summarised in Tab. I.

For i ≫ 1, simulations in [15] indicate that the order of the

parahermitian matrix S
(i)(z) does no longer increase when

trimmed after every iteration. Therefore,

Ñ (i) ≈ N (i) − |τ (i)| (15)

and the additional cost reduction due to trimming S
(i)′(z)

prior to the 2nd iteration step saves an additional 2M3|τ (i)|
MACs.

IV. RESULTS

To benchmark the proposed approach, this section first

defines the performance metric for evaluating differently im-

plemented SMD algorithms before setting out a simulation

scenario, over which an ensemble of simulations will be

performed.

A. Performance Metric

Since SMD iteratively minimises off-diagonal energy, a

suitable normalised metric defined in [15] is

E(i)
norm =

∑

τ

∑M

k=1 ‖ŝ
(i)
k [τ ]‖22

∑

τ ‖R[τ ]‖2F
, (16)

which divides the off-diagonal energy at the ith iteration by

the total energy. Since the total energy remains unaltered under

paraunitary operations, the normalisation is performed by

R(z) which can be calculated once, rather than by evaluating

S
(i)(z) at every iteration. The definition of ŝ

(i)
k [τ ] is given

in (7). For a logarithmic metric, the notation 5 log10 E
(i)
norm

reflects that quadratic covariance terms are squared once more

for the norm calculations in (16).
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Fig. 3. Diagonalisation metric vs. algorithm execution time for the proposed
reduced and standard SMD implementations for M ∈ {5; 10}.

B. Simulation Scenario

The simulations below have been performed over an en-

semble of 103 instantiations of R(z) ∈ CM×M , M ∈
{5; 10}, based on the randomised source model in [15]. This

source model generates R(z) = Ũ(z)D(z)U(z), whereby

the diagonal D(z) ∈ C
M×M contains the power spectral

densities (PSDs) of M independent sources. These sources

are spectrally shaped by innovation filters such that D(z) has

an order of 120, with a restriction on the placement of zeros to

limit the dynamic range of the PSDs to about 30dB. Random

paraunitary matrices U(z) ∈ CM×M of order 60 perform a

convolutive mixing of these sources, such that R(z) has a full

polynomial rank and an order of 240.

During iterations, a truncation parameter of µ = 10−6 and

a stopping threshold of ρ = 10−6 were used. The standard

and proposed SMD implementations are run over I = 200
iterations, and at every iteration step the metric defined in

Sec. IV-A is recorded together with the elapsed execution time.

C. Diagonalisation

The ensemble-averaged diagonalisation according to (16)

was calculated for both the standard and reduced SMD imple-

mentation. While both algorithms are functionally identical

and exhibit the same diagonalisation performance over algo-

rithm iterations, the cost per iteration step for both methods

is shown in Fig. 3. The curves demonstrate that for M ∈
{5; 10}, the lower complexity associated with the reduced

SMD implementation translates to a faster diagonalisation

than observed for the standard SMD realisation. Using a

matrix with a larger spatial dimension of M = 10 versus

M = 5 results in poorer diagonalisation for both algorithms,

but the same relative performance increase is still seen for the

proposed reduced approach.

Simulated in Matlab, the results in Fig. 3 are not as impres-

sive as the computational savings suggested by Tab. I. This

is partially due to the fact that both the reduced and standard

implementation still have to update and maintain a record of
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the paraunitary matrix as iterations proceed, requiring costly

convolutions of paraunitary polynomial matrices. If these pa-

raunitary matrices do not need to be extracted, then eliminating

the cost for the paraunitary matrix update will widen the

performance gap between the methods in Tab. I. Using the

Matlab profiler further shows that the execution time for matrix

multiplications (i.e., the number of matrix multiplications) has

been substantially reduced by the proposed method; while

Matlab is optimised for such matrix multiplication, its shifting

of memory is as not efficient and dominates the execution time.

Despite this, Tab. I indicates a 20% reduction in cost when

using the proposed over the standard SMD implementation.

D. Truncation of Parahermitian Matrix

When using the proposed reduced representation, the impact

of parahermitian matrix truncation according to (14) on the

matrix order can be seen in Fig. 4. Note, the first two iterations

have been omitted for clarity. By moving the truncation step to

before the rotation stage in the proposed approach, it is clear

that a significant number of redundant MAC operations have

been avoided.

V. CONCLUSION

The symmetry in the parahermitian matrix has been ex-

ploited when calculating a polynomial EVD, which has been

exemplified here by a focus on the SMD algorithm. We have

proposed a reduced matrix representation which only records

its causal part; this approach can produce the same accuracy

of decomposition as a standard matrix representation in the

SMD algorithm, but with increased efficiency with respect to

memory use and computational complexity. Simulation results

underline that the same diagonalisation performance can be

achieved by both methods, but within a shorter execution time

for the approach based on a reduced representation.

When designing PEVD implementations for real applica-

tions, the potential for the proposed techniques to reduce

complexity and memory requirements therefore offers benefits

without deficits w.r.t. important performance metrics such

as the diagonalisation of the SMD algorithm. The reduced

representation of parahermitian matrices proposed here can be

extended to any PEVD algorithm by adapting the shift and

rotation operations accordingly.
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