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1 Introduction

There are many applications in economics where an individual unit (e.g. a farm, firm,
country or individual) produces undesirable outputs such as pollution, in addition to desir-
able ones. As a leading example, note that the environmental problems caused by modern
agriculture present an increasingly worrying policy problem. In the application considered
in this paper, Dutch dairy farms produce not only good outputs (which we will informally
call “goods”), such as milk, but also undesirable outputs (or “bads”), such as excessive
nitrogen due to the creation of manure and application of chemical fertilizers. It is thus
important to understand the nature of the best-practice technology available to farmers for
turning inputs into good and bad outputs. Furthermore, it is important to see how indi-
vidual farms measure up to this technology. In other words, evaluation of farm efficiency,
both in producing as many good outputs and as few undesirable outputs as possible, is
crucial. In this paper, we describe how extensions of stochastic frontier models can be used
to shed light on these issues.

Stochastic frontier models are commonly used in the empirical study of efficiency and
productivity. Seminal papers in the field are Aigner, Lovell and Schmidt (1977) and
Meeusen and van den Broeck (1977), while a recent survey is provided in Bauer (1990).
An introductory survey of the use of Bayesian methods with stochastic frontier models is
given in Koop and Steel (2000). All of these papers assume that a single good output is
produced and ignore the possible presence of undesirable by-products. In the single output
case, a sensible definition of efficiency can be easily found (i.e. the ratio of actual output
produced to the maximum that could have possibly been produced with the inputs used).
The maximum possible output is estimated from a (single-equation) production frontier.
The extension to the case of multiple good outputs is more complicated since multivariate
distributions must be used and various ways of defining efficiency exist. Fernandez, Koop
and Steel (2000) provide a solution to these complications. The present paper builds on
our previous work to allow for some of the outputs to be bad. This extension involves not
only a careful discussion of how to define the production technology for turning inputs into
outputs, but also how to measure efficiency relative to this technology. We distinguish be-

tween technical and environmental efficiency. The former is the standard efficiency concept



which compares actual to maximum possible output, extended to a multi-output setting in
the way suggested by Ferndndez et al. (2000). Environmental efficiency is a new concept
we develop in an attempt to address the question “How much pollution reduction could be
achieved, without sacrificing good outputs, by adopting best-practice technology?”.

To fix some basic ideas, ¥y, b and = will, throughout the paper, denote vectors of good
outputs, bad outputs and inputs, respectively. The best-practice technology for turning
inputs into outputs is given by a relationship between the inputs and best-practice vectors

of good and bad outputs:
f(ybpubbpuaj) = 0. (11)

In the simplest case of a single good output and no bads, the relationship above is

typically assumed to allow for expressing the scalar y, as a function of x:
Yop = h<x)7

where h(z) is known as the production frontier and ¥, corresponds to the maximum output
level that can be obtained with input vector x. The technical efficiency of a firm producing
y with these inputs is then defined as:

v Y

Yop - hz)’
where 0 < 7 < 1. Statistical estimation of technical efficiency can be done by adding

T

measurement error to the model and making appropriate distributional and functional
form assumptions (see, e.g., Koop and Steel, 2000).

In the multiple good outputs case, still without bads, Ferndndez et al. (2000) also
assume that the relationship in (1.1) is separable, in the sense that there exist non-negative

functions 6(-) and h(-) such that:
6<ybp) = h('x)u

where ¥, is now a vector. 0(y) = constant maps out the output combinations that are
technologically equivalent, and is thus defined as the production equivalence surface. By
analogy with the single output case, h(z) defines the maximum output |as measured by
0(y)] that can be produced with inputs z and is referred to as the production frontier. For

a firm producing vy, technical efficiency is defined as:

0ly) _ 0y)

T = =




Fernéndez et al. (2000) provide a detailed justification for and illustration of this efficiency
definition. In essence, it corresponds to the usual definition of efficiency in the single output
case using the “aggregate output” 6(y) in place of the single output.

In the general multiple output case with both goods and bads, the present paper argues

for a relationship in (1.1) that can be written as:

0(yep) = M) and K(bey) = ho(Ysp),

for non-negative functions 0(-), hi(-), k(-) and hy(+). In other words, the general relationship
can be broken down into two equations involving the “aggregate goods” 6(y), the “goods’
production frontier” hi(z), the “aggregate bads” k(b), and the “bads’ production frontier”
ha(y). The assumption that the amount of good outputs produced depends only on the
inputs, while production of bad outputs depends on the amount of good outputs produced
is likely to be reasonable in many cases. If not, modifications of the present model can be
implemented with only slight alterations to the framework. For a firm producing (y,b), we
can define technical efficiency in the usual way:

0(y) _ Oy)
8<ybp) hl(‘x)’

™=

and environmental efficiency as:

ha(y)
K(b)
i.e. the minimum possible bad aggregate output divided by the actual one. Both 77 and

To =

Ty lie in the interval [0,1]. There is some earlier work in this area, which treats pollutants
as though they were inputs in the production process (see, e.g., Koop, 1998 or Reinhard,
Lovell and Thijssen, 1999). We argue that it is more sensible to treat them as outputs as we
do in our model, thus viewing them as by-products of the production process. Nevertheless,
below we discuss the relationship between our model and the alternative of simply treating
pollutants as an input. In essence, we find that our joint distribution for goods and bads
implies a conditional distribution for good outputs given bads which is quite similar to
the specification of, e.g., Koop (1998). Thus, in a sense, the previous work in this area
focusses only on certain aspects of our model (i.e. a certain conditional distribution), and

our approach encompasses others in the literature. A key issue in this respect, which



will be discussed in the paper, is how economic regularity conditions are imposed on the
production process.

The introduction has outlined the basic theoretical model we will use. The following
sections of the paper develop a statistical model, which is then used with both artificial
data and the empirical application involving Dutch dairy farms. In particular, in the next
section, we formally describe the sampling model used in this paper. In the third section
we look at various implications of our sampling model in terms of the underlying economic
theory. The fourth and fifth sections describe the prior and the algorithm used for posterior
inference. The sixth section discusses the performance of our methods using artificial data,
while the seventh presents our empirical application involving Dutch dairy farms. The final
section concludes. Details of the Markov chain Monte Carlo (MCMC) algorithm used for

computation are given in the appendix.

2 The Sampling Model

We begin by defining notation. The cross-sectional unit of analysis will generally be referred
to as a firm, which could be a farm, individual or country, etc. We have data from a panel
of i = 1,...,N firms, where the i"" firm has been observed for ¢t = 1,...,7; time periods.
For ease of presentation, the average period of observation is denoted by 1" = % | T; /N,
so that the total number of observations is NT. The i firm in the t** period produces p
good outputs and m bad outputs, respectively denoted as ¥ = (Y1), - -+ Yiep)) € WY
and by = (bn), - -, baem)) € R, using k inputs 26 = (ZG.41), - Tltx)) -

As already indicated in the Introduction, we require two major extensions with respect
to the usual single-output stochastic frontier model. One is that the model has to account
for more than one output, and here we follow the same strategy as in Ferndndez et al. (2000)
where we define production equivalence surfaces through a parametric aggregator function.
The second difficulty is that we need to distinguish between good and bad outputs, and
this is what constitutes the main value added of the present paper. Of course, there
are many ways of dealing with this issue and we could consider just treating the two
types of output differently in the same aggregator, thus effectively reducing the problem

to a unidimensional frontier. This would follow the line of reasoning suggested by the



deterministic Data Envelopment Analysis literature (such as in Pittman, 1983, and Fare,
Grosskopf, Lovell and Pasurka, 1989) and more recently by Koop (1998) and Reinhard et
al. (1999), who use a statistical approach but include bads as inputs in a stochastic frontier
for a single good. However, this does not allow for a natural separation of the efficiency of
technical aspects of production on the one hand and environmental aspects on the other.
Therefore, we propose separate modelling of goods and bads, with links provided through
the frontier for the bads and through correlations of both measurement and inefficiency
error terms. In addition, prior links will be introduced in Section 4.

First, let us model the production technology of the good outputs ;). As proposed
in Fernédndez et al. (2000), we extend the single output case to multiple outputs through
defining the goods aggregator:

P 1/q
Oy = (Z O‘? y(qi,t,j)) ; (2.1)
=1

with a; € (0,1) for all j = 1,...,p, Z?:l a; = 1 and with ¢ > 1 to ensure a negative
elasticity of transformation between any two outputs. The function in (2.1) is closely
related to the “constant elasticity of transformation” specification of Powell and Gruen
(1968), and implies an elasticity of transformation equal to 1/(1 — q). The role of the p
unknown parameters in « and ¢ is further discussed in Ferndndez et al. (2000).
Interpreting 0; ;) as aggregate good output, we define a production equivalence surface
as the (p—1)-dimensional surface with a constant value for 0(;,t)- Now that we have reduced

the problem to a unidimensional aggregate, we define the NT-dimensional vector
log 0 = (log 0 1y, log 09y, ..., logbu,my, - ., log 0wy, (2.2)
and we model log f through the usual stochastic frontier
logd =V5— Dz + ¢, (2.3)

In (2.3), thematrix V' = (v(2q1,1)), - .-, v(%v,1y))) groups a number of exogenous regressors,
where each v(x(; ) is a function of the inputs x(; 4. The particular choice of v(:) defines
the specification of the production frontier (e.g. Cobb-Douglas, translog, etc.). Typically,

we will want to impose regularity conditions on the frontier coefficients 3, which assign an



economic meaning to the surface V3 in (2.3) as a frontier (e.g. monotonicity conditions
ensuring that production does not decrease as inputs increase). In the empirical section
of this paper we use a Cobb-Douglas frontier (i.e. it contains an intercept and is linear in
the logs of the inputs) and, accordingly, all the elements of 3 except for the intercept are
restricted to be non-negative.

Another important element of (2.3) is the vector of technical inefficiencies Dz € RV,
where the matrix D is fixed. Choosing D gives some structure to the inefficiencies, as
explained in Ferndndez, Osiewalski and Steel (1997). In this paper we shall follow the usual
practice in assuming that inefficiencies for each firm are constant over time (i.e. a standard
individual effects setup). For a balanced panel (where T; = T for all i), this corresponds
to D = Iy @ tr, where @ denotes the Kronecker product and ¢ a T-dimensional vector
of ones. For an unbalanced panel (where T; varies with i, as is the case in our Dutch
dairy farm application), we take the obvious generalization of this. In both cases, z € R}
becomes a vector of firm-specific inefficiencies. Since the dependent variable in (2.3) has
been logged, it follows that technical efficiency for the i firm is defined as 19; = exp(—2;).
In the present paper we will assume that D has this individual effects form, but extensions
to more general structures can straightforwardly be implemented.

Now we turn to the analysis of the bads, b 4), for which we specify a very similar model.

First we aggregate the m components of b, into

m 1/r
Kt = ( ’Y; bzi,t,j)) ) (2.4)
=1

with v; € (0,1) for all j = 1,...,m and such that >ty =1and now with 0 <r < 1. In
the case of bads a positive elasticity of transformation is more appropriate on the basis of
economic theory considerations. We define log k analogously to log  [see (2.2)] and model

this through the following stochastic frontier:
logk =Ub+ Mv + &, (2.5)

where U = (u(ya,1)), - - -, w(yw,y))), i-e. the matrix U is a function of the good outputs.
This reflects the idea that the frontier for the bads should be measured relative to the
amount of goods produced. Note that we define U as a function of the p-variate ;)

rather than of the aggregated scalar counterpart 6, ;) alone, since the aggregation in (2.1)
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relates only to the production of the good outputs, and it may well be that the influence
of the various components of ;) on the production of unwanted outputs is very different
from how they appear in (2.1). It is quite likely that different technologically equivalent
Y@y vectors, i.e. situated on the same production equivalence surface corresponding to a
particular value of 0, ,, can have very different consequences for the minimal amount of
aggregated undesirable outputs we can achieve. As with (3 in the goods’ frontier, we shall
impose regularity conditions on 6, so that a larger amount of goods cannot be commensurate
with a smaller amount of bads. In the empirical section of this paper we use a Cobb-Douglas
specification and, accordingly, all the elements of § except for the intercept are restricted
to be non-negative.

U6 will define the smallest feasible (frontier) production of the aggregate undesirable
outputs for a given amount of desirable outputs. If there is any systematic (positive)
deviation, this is labelled environmental inefficiency, which is grouped in the vector Mwv €
RNT. Generally, we can impose different structures through choosing the fixed matrix M.
In this paper, we assume that firms have a constant environmental inefliciency over time
(i.e. individual effects), so that M = D is as described above, and the vector v € ¥
groups the environmental inefficiencies. The environmental efficiency of firm i is, thus,
Ty; = exp(—v;). Again, extensions to more general M, not necessarily equal to D, are
straightforward.

We still need to introduce stochastics into the sampling model. We shall consider the
distribution on the technical and environmental inefficiencies, (z,v), as part of the prior and
discuss it in the next section. Although non-Bayesian analyses that treat the inefficiencies
as part of the sampling model (by assigning a probability distribution to them) are not
equivalent to those that merely treat them as fixed unknown parameters, this distinction is
formally irrelevant in a Bayesian context, where any unknown quantity is made stochastic.
Fernéndez et al. (1997) argue that interpreting distributional assumptions on (z,v) as a
hierarchical prior is the most revealing way of thinking about the model.

The terms ¢, in (2.3) and &3 in (2.5) capture the usual measurement error and model
imperfections, and as such will be assigned a symmetric distribution. We allow for the two
error terms to be correlated for the same firm and time period, and assume a bivariate

Normal distribution. That is, if we let f#(s|a, A) denote the R-variate Normal p.d.f. with



mean a and covariance matrix A, evaluated at £, we can write:

£
plepal®) = 2 (2 10,30 1 | 26

where ¥ is a 2 X 2 P.D.S. matrix.

We note that (2.6) is not sufficient to define a probability distribution on all p + m
components of (g 4),bi,), as it merely specifies a joint distribution for the aggregated
goods and bads, (0(; ), k(). Since these aggregators, respectively defined in (2.1) and
(2.4), depend on unknown parameters, they can not constitute sufficient statistics and we
can not simply stop here. That is, a valid sampling model must be based on a (p + m)-
variate distribution for (y(; ), be.s), and basing the analysis on (2.6) alone is only enough
when p = m = 1, 7.e. when we have a single good and a single bad. Thus, we will complete
(2.6) with stochastic assumptions in the p + m — 2 remaining dimensions, along the lines
suggested by Ferndndez et al. (2000) for the multiple goods case with no bads (m = 0).
First, for the goods, when p > 1 we define the weighted output shares:

q,4
YY)

NG.tg) = ,7=1,...,p, (2.7)
e i?:1 a?yat,l)
group them into ¢4 = (Ni1), - - - Ntp)) s and assume independent sampling from
-1
P(1Gnls) =I5 (e ls), (2.8)

where s = (s1,...,8,) € R and fffl(-]s) is the p.d.f. of a Dirichlet distribution with

parameter s. Similarly, if m > 1 we define a weighted vector of shares for the bads:

Vi) .
i) = =m e J=1,...,m, (2.9)
(400 2t b(z‘,t,l)
stack them to form ;4 = (C41), - - - Cee,m)) s and assume independent sampling from
p(Canlh) = 157 (Canlh), (2.10)

where h = (hy,..., hy) € 7. Intuition for equations (2.7)-(2.10) can be obtained by
noting that the earlier part of this section only specified a model for aggregate good and
bad outputs. For instance, (2.3) models only the production equivalence surface, but (2.7)

and (2.8) model output components within a production equivalence surface.
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Now, (2.1) — (2.10) lead to a sampling distribution for Y, B which are matrices of
dimensions N'T' X p and N'T' X m, respectively, with elements ordered in the same manner
as logf in (2.2). Taking into account the Jacobian of the transformation, we obtain the

following sampling density:

logf V35— Dz
p<Y7B’ﬂ7Z767U7 E,Oé,’)/,q,T, 37h> = ]%/'NT ( 1Z§KZ ’ U?‘I‘ MU JE ® ]NT> (211)
_ P _1NGt _ i N
1| 75 "Omls) | TTa" 222 ) | TT [ £5 G lb) [ T+ Fea) ||
it j=1 Yotg) ) | i j=1 (4,t,5)

3 Implications of the Sampling Model

It is important to relate the statistical model specified in the previous section to the under-
lying economic theory. This we have partially done in the previous sections, the purpose
of the present section is to provide additional insight by looking at some implications of
the sampling model. In particular, we will examine the marginal distributions for the
goods and the bads, as well as the conditionals, derived from the sampling distribution in
(2.11). Examining these distributions is relevant because e.g. the marginal distribution of
the goods will relate to the common case where only the goods are modelled and the bads
are ignored, whereas the conditional distribution of the goods given the bads relates to the
models where the bads are treated as additional inputs in the production process.

Since the distribution in (2.11) assumes independent sampling across firms and time
periods, we will consider a single observation and suppress the (i, t) subscripts. In addition,
our individual effects setting implies that the inefficiencies are merely z and v. All of the
expressions in this section should be understood as conditioned on the model parameters
[as in (2.11)] but we will not explicitly indicate this.

Much of the intuitive motivation related to frontiers and inefficiencies can be obtained
by looking at the special case where there is only one good and one bad. Note that
in this case, logfd = logy, logk = logb and the shares n and ¢ do not enter the analysis.
Furthermore, economic intuition relates largely to the stochastic frontiers of equations (2.3)
and (2.5), which only involve log§ and log x instead of the entire vectors y and b. These

considerations suggest focussing on the marginal and conditional distributional properties



of log 0 and log k derived from the joint distribution of (log8,1,log k, (). Using (2.11) with
a Cobb-Douglas structure for the bads’ frontier [i.e. U = (1,logyy, .. .,logy,)] and making
a change of variables from (y,b) to (logf,n,logk, (), we obtain:

V3 —z

pliogtntons.) = (150150570 iy o0 W) B C. )

where § = Zg’ié 65, h(n) = 61 4+ X5_; 6511 log(ay T]J/q) and, denoting by oy, the (i, 7)™

element of Y, the elements of W are:

wi = 011, Wi2 = b0y + O12, We = [det(X) + w%Q]/O_ll'

3.1 Marginal distributions of (logf,n) and (logk, ()

Note that this is equivalent to examining the marginal distributions of y and b, which
respectively correspond to modelling the goods ignoring the bads and modelling the bads
ignoring the goods.

From (3.1) it is immediate that, in the marginal distribution, log  and 1 are indepen-

dent. The distribution of log # is Normal with,
E[log 8] = Vﬂ -z, V[log 8] = W11, (32)

whereas the distribution of 7 is given by the p.d.f. f&" ( |s). It is interesting to note that
this corresponds exactly to the specification in Ferndndez et al. (2000), who consider the
problem with multiple goods and no bads.

Marginally, log k and ( are also independent. The distribution of log  is a bit compli-
cated, due to the presence of the term h(7) in its mean. The conditional distribution of

log k given 7 is Normal with
Bllogkln] = 8(VB — z) + h(n) +v, Vlog kln] = wa, (3.3)

so that the marginal distribution of log k is a (continuous) location mixture of Normals,
each of them defined as in (3.3), with mixing distribution fffl (n]s). The mean and variance
of the resulting marginal distribution may not be very revealing since the latter need not
be unimodal. Nevertheless, it can be seen that

3 P
Ellog k] = 6E[log 0] + E[h(n)] +v =614+ > _ 6;11E[logy;] + v

i=1
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provided that the mean exists. The distribution of ¢ is given through the p.d.f. f' 1(C|h).

What economic insight can be obtained from the marginal distributions of log# and
log k7 Firstly, remember that in the specification in the previous section, we imposed
economic regularity conditions to ensure that the goods’ production frontier was non-
decreasing in inputs and the bads’ production frontier was non-decreasing in good outputs.
We now see that these conditions are identical to those required to impose regularity on
the marginal distributions.

Secondly, note that E[log x|n| implies that different output shares (i.e. different 7’s) can
lead to different amounts of bads. This seems quite reasonable as producing one of the good
outputs may well be more polluting than producing another one. In other words, whereas
the position of a firm on the goods’ production equivalence surface should, by definition,
not affect its technical efficiency, it can well affect its frontier for the bads. If we had just
allowed the amount of bads to depend on aggregate good output [i.e. U = (1,log8)], we
would not have obtained this degree of flexibility. As a hypothetical example, consider
cattle farms which produce meat and leather. Since production of leather is very polluting,
farms on the same good production equivalence surface which choose to produce more

leather relative to meat will cause more pollution.

3.2 Conditional distributions of logf and log s

Here we focus on the conditional distributions of log @ given (1, b) and of log k given ((, ).

From (3.1), it is immediate that both these distributions are Normal with means given by:

Ellog0ln,b] = V3 <1 - 3%> + 2 0e ke — h(n)] — [(1 _ 5%> S 020] (3.4)
Wa2 Wa2 Wa2 Wa2
Ellog|¢,y] = (5 - %> Fllog 0] + 22 10g 0 + () + .
w11 w11

These conditional properties illuminate some important features of our model:

Firstly, note that the conditional mean of log given (1,b) depends on log k. Such
an equation forms the starting point of analyses where bads are treated as inputs in the
production process (e.g. Koop, 1998 or Reinhard et al., 1999). A consideration of the
one good-one bad case is especially revealing in this regard. In this case, h(n) would not
be present and log6 and log k would simply be logy and logb. If V' contained the logs

of inputs, then we would obtain a Cobb-Douglas production frontier where b was simply
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treated as an input. In other words, the treatment of pollutants as inputs arises naturally
in our framework if we focus only on the conditional distribution of ¢ given b. In the general
setting with multiple goods and bads, using the variable log k as an input for the goods’
frontier requires correcting it to log k — h(n), to account for the fact that the aggregate
amount of bads depends on the position of the firm on the goods’ production equivalence
surface.

Similarly, although perhaps less interesting, the second equation in (3.4) shows the
implications of our model when only the bads are modelled stochastically and y is treated
as a fixed input.

In order to interpret the means in (3.4) as frontiers minus (or plus) an inefficieny term,
we need to impose economic regularity conditions, so that aggregate goods increase with
inputs and log k—h(n), and aggregate bads increase with F[log §] and goods. In the common
case where V corresponds to a Cobb-Douglas specification, these conditions simply amount

to requiring non-negative coeflicients for all the variables, which is equivalent to

— min <5011, %) < o9 < 0. (3.5)
In our empirical work, this regularity condition is imposed in addition to the ones discussed
in Section 2.

It is interesting to note that, if we impose the regularity condition in (3.5), the single
inefficiency term which appears when the bads are treated as an additional input [i.e. as
in the first equation in (3.4)] is a weighted average of the technical inefficiency z obtained
from the equation log @ = V3 — = (ignoring the symmetric error) and the “inefficiency” v/ )
obtained naively from the equation log x = Ué-+v (from which log 6 = [log k—h(n)]/6—v/$).

Finally, in this paper we treat the position of firms in the goods’ production equivalence
surface, i.e. the value of 7, as stochastic, with distribution given by f%fl(n]s), and we will
assume a weakly informative prior for s. However, if we had data on the prices of the
different goods we could take a more informative approach, since it is logical to assume
that firms will aim to be at the point on the goods’ production equivalence surface where
profit is maximised (this point will be given by n; o (p;/a;)¥@ Y, j =1,... p, if profit
is measured by 3_; p;y;, where pi, ..., p, denote the prices of the p different goods). Thus,

additional information on prices can be easily incorporated in our analysis. However, we
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can see from (3.3) that different values of 7 can lead to different amounts of pollution
and, generally, the profit maximising point will not be optimal from an environmental
point of view. It can be seen from the expression of h(n) that a way to achieve pollution
reduction is to decrease production of goods y; with a large value of 6,41 in favour of
goods with a smaller value of the corresponding 6 coefficient. These considerations mean
that inference on ¢ is of great potential relevance for policy development (e.g. for making
decisions on taxing or subsidizing outputs in order to ensure that the profit maximising
point is adequate from an environmental point of view). To provide a hypothetical example
of this, consider a farm which produces meat and leather, and assume leather production
yields more pollution than meat production. In this case, by concentrating mainly on
meat the farm will reduce the production of pollution. This, however, may not maximize
profit. A government interested in minimizing the pollution from leather tanning might
consider taxing leather and /or subsidizing meat in order to encourage firms to shift towards
less-polluting meat production.

In summary, an examination of certain conditional and marginal distributions provides
additional motivation for and insight into our model. Furthermore, this reveals an ad-
ditional economic regularity condition [i.e. (3.5)] that will be imposed on the production

technology.

4 The Prior

Given the relative complexity of the model, we shall not investigate the existence of the
posterior distribution under classes of improper priors. See Fernandez et al. (1997) for such
an analysis in the simpler standard stochastic frontier model (also covering a range of other
models with unobserved heterogeneity in the location). Thus, we shall assume a proper
prior from the start. We shall conduct a careful prior elicitation in some crucial dimensions
while being relatively flat in other, less crucial, dimensions. In Section 6, we will ascertain
the influence of the prior through simulation studies.

In particular, we shall use the following proper prior structure:

p(B3,6,%,2,v,a,7,q,7,8,h) = p(3,6,Z)p(z, v)p()p(v)p(@)p(r)p(s)p(h),  (4.1)

where independence is assumed between most parameters, but not necessarily between the
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parameters of both frontiers (# and §) and between the vectors of inefficiency terms (z
and v). In addition, restriction (3.5) links 3 and é. Building upon our earlier work with
stochastic frontiers (see e.g. Koop, Osiewalski and Steel, 1997) and using the intuition that
only T; observations are available for the inefficiency terms of firm i, it is the prior on
(z,v) that is most critical to the analysis. Thus, we shall spend considerable effort on the
elicitation of a reasonable prior for (z,v).

Prior for (z,v):

For eachi=1,..., N, we take a truncated Normal inefficiency distribution:

(2o, vilpi, Q) = fx (20 03) 10, QO (i, D)z (23,05) (4.2)

where f(;,(2) is the integrating constant of the truncated Normal, ]%i(-) is the indicator
function for #% and we assume independence between firms. The reason for taking a
truncated Normal is mainly the ease with which correlation can be handled. Applying a
Farlie-Gumbel-Morgenstern transformation to the Exponential distributions often used in
our previous, single-equation work, only allows for quite moderate correlations, namely in
the range from [-1/4,1/4]. Adopting more specific bivariate Exponential distributions leads
to serious restrictions, as e.g. in Gumbel’s (1960) analytic family or the empiric method by
Lawrance and Lewis (1983), where the sign of the correlation has to be pre-specified.

It is often desirable to allow for firms’ efficiencies to depend on their characteristics (e.g.
size, ownership, etc.). In order to incorporate this, we allow for the inefficiencies to depend

on d variables in g; = (1, g, . .., giq)’ through the mean of the underlying Normal in (4.2):
pi = (6, 0) g5, (4.3)

and assume the following prior on the parameters ¢ and :
plavie) = (4 oo aw), (11

with o
_(a-%t o
Ald) =¢ ( 0 I ) (4.5)

where we need to choose a > (d —1)/3 and ¢ > 0. We could easily generalize this to let

both elements of p; also depend on different explanatory variables. In that case, it might
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be preferable to use priors that assume independence between elements of ¢ and 1 that
correspond to different variables. The prior inefliciency distribution is now completed by

an Inverted Wishart prior on :

p(Q) = [T (U0, 0) , (4.6)

which has expectation equal to the matrix Qg/(vp — 3) if the number of degrees of freedom
vy > 3.

Some intuition and explanation of this prior is in order at this stage in order to help
in eliciting the prior hyperparameters a, ¢, Qg and v . Firstly, the specification in (4.5)
depends on a standardization of the variable g;, such that 0 <g,; <1for j=2,...,d. In
particular, from (4.3)-(4.5) we can obtain the prior for p;:

d—1 ¢
p(pi|) = f% (Mz‘!oac {a— — > 95
=2

Q) . (4.7)

Note that, because we have imposed that g;; € [0,1], Z?ZQ g?j is in the range [0,d — 1].
If g;; were Uniformly distributed, the expected value of the latter sum would be equal to

(d —1)/3. This suggests the following approximation:

Pl Q) = f3 (1:]0, acQ), (4.8)

which should be reasonably accurate if a is large w.r.t. | Z?:Q g?j —(d —1)/3] and is exact
when d = 1. Given that we want our prior elicitation to be applicable for any choice of
g; in the appropriate range, we want to choose a large enough. For (empirically relevant)
situations with small d (say, d < 3) we find that choosing a = 3 gives reasonable results.
This implies that we have a larger variance for the first element of ¢ and v than for
the others, which reflects a moderate prior belief that firm characteristics influence the
efficiency distributions less than the common intercept. In addition, the prior on the first
element of ¢ and 1 is then not much affected by the choice of (small) d. To accommodate
the case where d > 1, we also need to choose a value for ¢. This can be done on the basis
of comparing prior variances of the last d — 1 components of ¢ and v with those of the
underlying Normal on inefficiencies in (4.2). We feel that ¢ = 2 is a reasonable value as

it allows for sufficient prior uncertainty on ¢ and 1, given a prior efficiency distribution
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(obtained by simulation) that is roughly in line with our prior beliefs. Smaller values of ¢
led to a prior on the coefficients (¢,1/) that we found too tight. In addition, we choose a
diagonal y and we set vy = 6 which is the smallest (and hence least informative) integer
value for which the prior covariance of Q) exists. Thus, we are only left with the choice of
wi(i=1,2).

It is always desirable to elicit priors in terms of easily interpretable quantities. In the
present case, technical efficiency 71; = exp(—2z;) and environmental efficiency 7y; = exp(—uv;)
have a clear interpretation. Subsection 6.1 reports the results of a calibration exercise where
we investigate the implications of values for wf; on prior efficiencies.

Prior for other parameters:

All of the other parameters of the model (i.e. 3,6, %, a, 7y, 4,7, 8, h) are assigned relatively
flat, yet proper priors. In selecting these priors, we base ourselves on the experience gained
with the multiple good output analysis, with no bads, of Fernédndez et al. (2000). In

particular, we adopt the following structure for the rest of the prior:

p(3,6,%) o< fn ( ? ’607H01> fiw (2120, o) Irr (8,6, 2), (4.9)
p(a) = f5 Y (eao), (4.10)

p(v) = 5 (V90), (4.11)

p(q) < fa(qll, q0)La,00)(0), (4.12)

where fg(.|a,b) denotes a Gamma density function with shape parameter a and mean a/b

(if @ = 1, we have an Exponential),

p(r) o< fa(r|1,70)d0,1)(r), (4.13)

p(s) = f[lfa<sjrl,kj>, (4.14)

and, finally,
p(h) = [ fa(hy|1,ny). (4.15)
j=1

We make the relatively noninformative choices of by = 0, Hy equal to 0.0001 times the
identity matrix of the appropriate dimension, ¥y = Iy and A\g = 2. Igg(5,6,%) denotes

the indicator function for the region where economic regularity conditions are met. In
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the previous sections we have shown the form of this region when V and U are chosen
to imply Cobb-Douglas frontiers [note that, in this case, (3.5) means that the regularity
conditions also involve 3|. For the Dirichlet priors in (4.10) and (4.11) we set ag and gg to
appropriately dimensioned vectors of ones. For the truncated exponential priors in (4.12)
and (4.13) we set 79 = go = 1075, In (4.14) and (4.15) we set k; = n; = 1, thus centering
NG, and (i) at the equal output share values.

5 The Posterior MCMC Algorithm

The resulting posterior from combining the sampling model in (2.11) and the prior in
Section 4 does not lend itself to immediate analytical analysis. Instead, we shall use a
Markov chain Monte Carlo (MCMC) algorithm on the space of the original parameters
in (2.11) and the inefficiencies (z,v), augmented with ¢,1,Q, [i.e. the parameters of the
hierarchical prior of (z,v) in (4.2)-(4.3)]. The Markov chain will be constructed from Gibbs
steps for (z,v), (8, 6), &, where we can draw immediately from the conditionals, and Normal
random walk Metropolis samplers for Q. (¢,1), «,,q,7, s, h, since the conditionals for the
latter do not have a well-known form. We fine-tune results from preliminary runs in order
to select the variance for the increments in the random walk Metropolis samplers. The

relevant conditional posterior distributions are described in more detail in the appendix.

6 Simulation Experiments

In this section, we carry out simulation experiments in an attempt both to understand the
prior better and examine the performance of our posterior MCMC algorithm in controlled

circumstances.

6.1 Prior on Technical and Environmental Efficiencies

As discussed above, the prior on the efficiencies is most crucial in our analysis. Remember
that our recommended prior elicitation procedure uses parameters such as ¢,¢ and ()
which are difficult to interpret in an intuitive fashion. Accordingly, it is useful to examine
the implications of our prior given the prior hyperparameters selected in Section 4. We

concentrate here on the base case wherea = 3 and ¢ = 2 1in (4.5) and will examine the choice
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of w? for the specifications with d = 1 (no explanatory variables) and d = 2. Note that the
prior for the inefficiencies (and, hence, the efficiencies) depends on g; [see (4.3)]. Since our
standardization requires 0 < g;; <1 for j = 2,...,d, we will take g;» = 0.5 when d = 2.
The priors for other choices of g;5 are very similar to those reported here. Table 1 lists some
relevant prior marginal properties of the efficiency 7; for various choices of w)(i = 1,2).
Prior 2.5 and 97.5 percentiles are denoted by “2.5%” and “97.5%”. In addition, the column
“Corr.” indicates prior correlation between technical and environmental efficiencies. There
is always a small positive correlation and marginal prior p.d.f.’s for the efliciencies all have
a mode at one (full efficiency). For larger values of w). a secondary mode at zero appears.
Note that the priors for the efficiencies are very similar for both values of d. On the basis
of these simulation results, we will select the value w? = 0.65 for both technical (i = 1)
and environmental (i = 2) efficiencies.

The properties of the prior for Q, ¢ and 1, defined through (4.4)-(4.6), are analytically
known. For example, the marginal prior distributions of elements of ¢ and 1 are Student-¢
with vy — 1 degrees of freedom, location 0 and if vy > 3 we obtain for the variances

0 0

T Ai(d), V) = —22

I/0—3 o —

Vg, = 3Ajj(d)a (6.1)

where wi(i = 1,2) and A;;(d)(j = 1,...,d) are the diagonal elements of Qy and A(d),
respectively. Nevertheless, it is useful to present some prior properties of ¢ and 1 for
the chosen prior in Table 2. Since the prior we adopt treats technical and environmental
efficiencies in the same manner, Table 2 presents results only for ¢ = (¢4, ..., 4)". Results
for v are identical. It can be seen that the prior for ¢ is fairly non-informative. The prior
mean of the diagonal elements of € is 0.2167. The half-Normal inefficiency distribution
(i.e. ¢ = 0) is an extremely common one in the literature. By keeping the prior centered
over ¢ = 0, we allow some flexibility relative to this well-known benchmark. As remarked
in Section 4, the relative magnitudes of a and ¢ imply that we are more flexible on ¢, than
on ¢o.

The prior p.d.f. of the chosen efficiency distribution is plotted in Figures 1 through 4
below for the case d = 2. This prior on the efficiencies combines our desired prior median

with a reasonable spread.
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6.2 Artificial Data

Working with artificially generated data allows us to empirically investigate three crucial

1ssues:

e Whether reasonably precise inference can be conducted on the basis of a sample that

is of an order of magnitude likely to occur in practice.
e The degree to which the prior influences sample information.

e Whether the numerical properties of the MCMC algorithm used are satisfactory and

convergence is achieved with the number of draws used.

In this subsection, we present results for two different artificial data sets. One of these
is generated using parameter values that are in a region that our prior favours, the other
is generated with parameter values in a region that receives less prior support.

We generate both artificial data sets with T" = 5, N = 250, 2 good outputs, 2 bad
outputs, 1 input and 1 explanatory variable in the mean of the efficiency distribution.
Hence, p =2, m = 2, k = 1 and d = 2. Both frontiers are assumed to be Cobb-Douglas
(i.e. intercept plus log-linear), which implies that 3 is of dimension k 4+ 1 = 2 and § is of
dimension m + 1 = 3.

The input is generated in a simple manner. First we generate a draw from a N(0,0.04)
distribution for each of the N = 250 individuals and take the exponential. We treat the
resulting numbers as the initial levels of the variable for each of the NV individuals. Then
we assume, for each individual, that inputs evolve over time according to a Normal random
walk with standard deviation equal to 0.01. If negative values for inputs are obtained,
they are discarded and redrawn. In this way, we complete the matrix V. The explanatory
variable in the efficiency distribution, g;s, is drawn from the Uniform[0,1].

To complete the specification of our first data generating process we set:

08 =0.519;61 =0.2,09 = 63 = 0.5;011 = 099 = 1,019 = —0.25; Q2 = 0.251y;

=1 =0y9g=157r=0.75s=h =19, =7 = 0.509.

For the second data generating process, we set ¢ = 1) = 15 but otherwise leave all the other
parameters unchanged. The two data sets are based on different seeds for the random

number generators.
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Table 3 contains posterior results for the two artificial data sets. The columns labelled
“2.5%” and “97.5%” are the 2.5 and 97.5 percentiles of the posterior (i.e. the lower and
upper bounds of a 95% posterior probability interval). Of course, results based on only two
artificial data sets should be treated as suggestive rather than definitive. Nevertheless, the
general message of Table 3 is encouraging. The fact that all except one of the 95% posterior
probability intervals contain the true values used to generate the artificial data indicates
that our Bayesian approach is reliable. An examination of posterior results for different
starting values and different length runs indicate our MCMC algorithm works well if the
number of burn-in and included replications is sufficiently high. The results presented are
based on 55,000 drawings (40,000 for data set 1) with the initial 5,000 discarded.

However, Table 3 does reveal some findings which are worthwhile discussing in more
detail. Firstly, many of the 95% posterior probability intervals are quite wide. In particular,
comparing prior percentiles for ¢ and v with the posterior ones, it is clear the data have
been only somewhat informative. We have noted this in our previous work with stochastic
frontier models. In essence, stochastic frontier models ask the data to estimate a frontier
and then decompose each firm-specific deviation from the frontier into two parts. This is
quite difficult to do unless there is a great deal of data. Here we have set I" = 5 which
is quite small (although most applications will likely involve values of this magnitude).
Furthermore, we are working with a much more complicated multiple-output model which
requires the estimation of production equivalence surfaces in addition to frontiers and
decomposition of errors. In view of all these issues, we would argue that the 95% posterior
probability intervals are not unreasonably wide. Secondly, an examination of results for
the second data set reveals that the prior does not have a strong effect on posterior results,
even in cases where the likelihood and prior are located in rather different regions.

In order to further investigate how we learn about efliciencies, Figures 1 through 4
contrast the prior efficiency distribution with an out-of-sample predictive efficiency distri-
bution, obtained by integrating out (4.2) with the posterior distribution on (¢, 1, 2) and
transforming to efficiencies. This can be interpreted as reflecting our posterior knowledge
about the efficiency of an unobserved firm, say f, and will be denoted by 7,;(j = 1,2) in
the sequel. Formally, denote the inefficiency of a typical, unobserved firm by (z;,v;). We
then have 7y = exp(—z;) and 7oy = exp(—v;). The true efficiency distibution, obtained
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by fixing (¢, %, Q) at the values used to generate the data, is also plotted on these graphs.
In all of these figures, we have set g;» = 0.5.

It can be seen that the data does allow us to learn about the efficiency distribution of
an unobserved firm. That is, the densities labelled “Prior” and “Predictive” in the figures
are different from one another and the latter tends to be reasonably close to the density
labelled “True”.

The artificial data results suggest that, overall, our model and methods are reasonably
good at extracting the information from data sets of realistic size. The somewhat wide
posterior density intervals are an accurate reflection of the difficulty inherent in trying to
get precise estimates with small data sets in stochastic frontier models. It is worth stressing
that Bayesian stochastic frontier methods allow for the calculation of finite sample measures
of uncertainty (e.g. 95% posterior density intervals) for all parameters and the efficiencies
themselves. This is something that is very difficult to do reliably using non-Bayesian

statistical methods (see, e.g., Horrace and Schmidt, 1996).

7 Application to Nitrogen Surplus In Dairy Farms

The data set used in this paper was compiled by the Agricultural Economics Research
Institute in the Hague using data on highly specialized dairy farms that were in the Dutch
Farm Accountancy Data Network, a stratified random sample. Reinhard et al. (1999) and
Reinhard (1999) describe the data in detail. The panel is unbalanced and we have 1,545
observations on N = 613 dairy farms in the Netherlands for some or all of 1991-94. There
are no explanatory variables to be included in the efficiency distribution and we assume
Cobb-Douglas forms for both frontiers. The dairy farms produce three outputs, p = 2 of

these are good and m =1 is bad, using k = 3 inputs:
e Good outputs: Milk (millions of kg) and Non-milk (millions of 1991 Guilders).

e Bad output: Nitrogen surplus (thousands of kg).

e Inputs: Family labor (thousands of hours), Capital (millions of 1991 Guilders) and
Variable input (thousands of 1991 Guilders).
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Variable input includes inter alia hired labor, concentrates, roughage and fertilizer.
Non-milk output contains meat, livestock and roughage sold. The definition of capital
includes land, buildings, equipment and livestock.

Table 4 provides empirical results for this data set based on 55,000 drawings with a
burn-in of 5,000. Note that “RTS” means returns to scale, while 73y and 79, are the
technical and environmental efficiencies for an unobserved (typical) farm (see Section 6).

The posterior properties of these efficiency measures and some of the most important
parameters are given in Table 4. Most of the parameters are reasonably precisely estimated.
The production frontier for goods shows increasing returns to scale, while the production
frontier for bads shows slightly decreasing returns to scale. That is, it seems that increasing
good output production implies a less than proportionate increase in Nitrogen surplus. It is
interesting to note the relative magnitudes of the coeflicients in the production frontier for
Nitrogen surplus. These coefficients can be interpreted as elasticities, and the elasticity of
bad output production with respect to milk production is much greater than the elasticity
with respect to non-milk production. This finding indicates that it is the milk production
side of dairy farming that is most associated with the production of Nitrogen.

The shape of the production equivalence surface for the good outputs depends on the
parameters « and q. The values oy = a9 = % and ¢ = 1, imply a linear production
equivalence surface with a one-for-one tradeoff (in the units of measurement mentioned
above) between the two outputs (see Ferndndez et al., 2000, for details). Table 4 indicates
that we are not too far from this case.

With stochastic frontier models, interest typically centers on the efficiencies. Space
precludes the presentation of results on environmental and technical efficiency for each in-
dividual farm. The information in Table 4 about the posterior technical and environmental
efficiencies of a typical (unobserved) firm is supplemented by Figures 5 and 6 which plot
these posterior efficiency distributions along with those which correspond to the minimum,
median and maximum efficient farms. These latter firms are selected based on the posterior
mean efficiencies in a previous run.

The posteriors for 715 and 79 exhibit a high variance, indicating a great degree of spread
in efficiencies across farms. Some farms are much more efficient than others in terms of both

their production of good and bad outputs. Furthermore, these predictives are very different
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from the prior efficiency distribution (see Figures 1-4) so we have learned something from
the data.

It is also apparent that environmental efficiency tends to be lower than technical effi-
ciency. In fact, the posterior median of the environmental efficiency for a typical farm is
only 0.345, indicating that the typical farm is only 35% as efficient as the (hypothetical)
best-practice farm in terms of pollution control. Thus, the typical farm is producing three
times as much Nitrogen surplus than is consistent with best practice! This result seems
to be driven by a minority of farms who are leading the way in minimizing Nitrogen sur-
plus with a majority of farms falling far behind this lead. This finding seems less strange
when we consider the incentives farmers face. There is an incentive to eliminate technical
inefficiencies (i.e. profit maximization), and this is reflected in higher levels of technical
efficiency. However, there were, at the time this data was collected, no financial incen-
tives for farms to improve their environmental efficiency. Note that Reinhard et al. (1999)
also find lower environmental efficiencies than technical ones (although they use a different
definition of efficiencies in a classical framework with bads treated as inputs).

The posteriors for technical and environmental efficiency for the individual farms are less
dispersed, but still fairly wide. A key advantage of Bayesian methods is that they lead to
finite sample measures of uncertainty (e.g. 95% posterior density intervals) for firm-specific
efficiencies. In empirical work, it often turns out that such 95% posterior density intervals
are quite wide and the present application is no exception. Ranking farms in terms of their
efficiencies could be of interest for policy purposes. A naive use of such a ranking could
be highly misleading, in view of the posterior uncertainty in farm efficiencies. Perhaps a
more realistic use of efficiency results is to see whether different groups of farms can be
statistically distinguished from one another in terms of their efficiencies (e.g. can the best
and worst farms be reliably differentiated in terms of their 95% posterior density intervals?).
Figures 5 and 6 indicate that this is possible. That is, the efficiency distributions of the
minimum, median and maximum firms do not overlap much. Tables 5 and 6 present
additional evidence on this issue. Based on the posterior means in an earlier run, we rank
all farms in terms of their efficiency performance and select the five farms which are at
the quartiles and label these the minimum, 25th percentile, median, 75th percentile and

maximum eflicient farms. We then calculate the probability that, e.g., the farm we label the
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minimum eflicient really is less efficient than the farm that we label the median efficient. We
do this for every combination of farms. The tables indicate that we are able to distinguish
well between the various quartiles, particularly for the minimum and maximum farms.
Finally, the correlation between 7,y and 7y is 0.249, indicating that there is a slight
tendency for farms which are technically inefficient to also be be environmentally inefficient.
This result is reinforced by the fact that the correlation between the vectors of posterior
means of farm-specific technical and environmental efficiencies is 0.365. A somewhat similar

finding was reported by Reinhard et al. (1999).

8 Conclusion

In this paper we have introduced a framework for measuring environmental and technical
efficiency in the context of a model for multiple good and bad outputs. A Markov chain
Monte Carlo algorithm is developed to conduct Bayesian statistical inference. Results
using artificial and real data show that this algorithm is computationally practical and
yields reasonable results.

An application to Dutch dairy farms indicates that:

e Farms tend to be more efficient technically than environmentally.

e The (small) positive correlation between efficiencies indicates that farms which tend

to be less efficient technically also tend to be less efficient environmentally.

e However, there is a large spread of efficiencies. This manifests itself in large differ-
ences between the 2.5 and 97.5 percentiles of the posteriors for the technical and

environmental efficiencies of a typical farm.

e Increasing returns to scale seem to exist for good output production, while slightly

decreasing returns exists for bad output production.

We hesitate to draw policy conclusions based solely on this one set of empirical results
for one model specification. However, to illustrate the types of issues that our model can
be used to address, we offer the following comments. The relatively large degree of envi-

ronmental inefliciency indicates that pollution can be reduced in many farms at little cost
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in terms of foregone good output. That is, if inefficient farms were to adopt best-practice
technology and move towards their environmental production frontiers, production of pollu-
tants could be reduced at no cost to milk or non-milk production. The positive correlation
between the two types of efficiencies indicates that improving environmental efficiency could
be associated with improvements in technical efficiency. Hence, policies aimed at improving
efficiency (e.g. by educating farmers in best-practice technology) could have large payofTs.
Furthermore, the pattern of returns to scale results indicate that larger farms have ad-
vantages. Hence, policies which promote rationalization of farms (e.g. encouraging larger
farms to purchase smaller farms) could result both in more production of milk and non-milk
outputs (due to increasing returns in the good production frontier) and less pollution (due

to decreasing returns in the environmental production frontier).

Appendix: Posterior Conditional Densities

From combining (2.11) and the prior described in Section 4, we obtain the following
conditional posterior density functions:

Conditional for (z,v):

z
p<Z7U’Y7B7¢77‘/}7Q7/67 67 2704777 q7T7 s? h) X ]%[N ( v ’d7 R) ]%1N<Z7U)7 (A'l)
where, since D = M (otherwise a slight generalization is required),
1 (10 {1 0 p 1
R —(0 1 3 0 —1 @D'D+Q " @1y, (A.2)

and, defining G = (g1, ...,9n)’,

d=R K (1) 21 ) (xte D) ( g?__lljgg,f ) +(Q e ly) ( gi )] . (A.3)

If D'D is diagonal (as is the case for the “individual effects” option used here, which
corresponds to D'D = diag(Ty,...,Tn)), we have conditional independence across obser-
vational units and can draw (z;, v;) separately from a univariate truncated Normal for each
i=1,..., N, which greatly simplifies the numerical effort.

Conditional for (3,6):

p(ﬂa(S’YaB;Z;U7¢71/’797anéa%qara&h) X fN ( ? ’b*JH*1> ]RR<ﬂ767 E)? <A4)
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with

Vo _ V o
H*:H0+(0 U,>(21®]NT)(O U) (A.5)
_ Vo _ logb + Dz
b*:H*llHObOJr(O U’><E 1®]NT)(1O§I{—MU )] (A.6)

Conditional for ::
p<E’Y7 B7 Z,0, ¢71/’7 Q? ﬂ? 67 «,v,4,7, 8, h) X f?W(E’EO_I_A;A*J )‘O_I_NT)]RR(ﬂJ 67 E)? <A7)

where we have defined the NT' X 2 matrix

A, = (logd —V3+ Dz logk — U6 — Mwv). (A.8)
Conditional for Q:
(Q]YB z, ¢,1/),ﬂ,6,2,oz,’y,q,7",s,h) (A.9)
~ Hf (110, ) /20 ( T (2= G, v — G (= — G, v — G, vy + N).

Conditional for ¢,:
p<¢7w’YJB7Z7UJQJﬂ76727a777q7T7S h OC Hf ¢ 1/’ gl? ] <A10>

24 ( fz ) (Lo [6'G + A ()] ¢} ( : ) QO GG+ A )]

Conditional for a:

p<a’Y B7Z7U7 ¢77‘/}7 Q?/B767 2777 q7 T? s? h) (A.ll)
D 0i+gNT 1 p ¢ q 7Zl5l 1 Lo
qanteT . — 1AL A,
x []of 11 (ZZ; o y(z,t,l)) exp — 5t « s

j=1 2,t

: /
deﬁnlng ag = (CLOl, Ce ,aop) .

Conditional for ~:
p(v’YB7Z7U7 ¢77‘/}7Q7/67 67 E? a? q,T, 87 h) (A..12)

m m - Zl hl 1
x H 87 gotrivi H (Z o &m) exp —EtrEﬂA;A*,
=1

=1 2,t

defining g9 = (901, o Yom)'-
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Conditional for ¢:

p(qlY, B, z,v,$,1,Q, 8,6, %, o, 7y, 7, s, h) (A.13)
"V () exp — |ago + Zp; {sj Z;(lnlzp;a?y?i,t,l) —qln ajy(i,t,j))} + %trElAlA*
o ; -
Conditional for r:
p(r|Y, B, z,v,¢,1,Q, 8,6, %, «,7v,q, s, h) (A.14)
- TNT(mfl)](Oyl) (7") exp — |rrg + i {hj Z;anlin;%b&’t’l) —7rln fyjb(i,t,j))} + %trzlA;A* .
o ; -
Conditional for the elements of s:
p(s;|Y, B, z,0,¢,90,Q,8,6, 5, a,7,q,7, 55, ) (A.15)
NT
l%] exp —s; {k‘j + ;(111 i Yy — 40 Oéjy(i,t,j))} :

where s(_;) denotes the vector s without the 4" element.

Conditional for the elements of h:

p(hj’Y,B,Z,U,Qd),Q,ﬂ,&E,a,’y,q,r,s,h(,j)) <A16)
Tz, )™ moo
[ Péhl,) exp —h; nj"‘Z(an% Wiy — TInvibGes) ¢
J it =1

where h(_;) denotes the vector i without the 4" element.
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Table 1: Prior Elicitation (efficiency properties)

| | Mean | St.Dev. | Median | 2.5% | 97.5% | Corr. |
=1
wd =0.10 | 0.837 | 0.164 0.896 0.411 |1 0.997 | 0.107

=8

&

wd =0.30 | 0.752 | 0.226 0.827 0.211 | 0.995 | 0.083
wy =0.65 | 0.681 | 0.267 0.758 0.101 | 0.993 | 0.090
wy =1.00 | 0.635 | 0.287 0.704 0.058 | 0.991 | 0.069

€

9 =200 | 0.561 | 0.312 0.610 0.019 | 0.987 | 0.068
d=2
w =0.10 | 0.837 | 0.166 0.897 0.408 | 0.997 | 0.098
w =0.30 | 0.753 | 0.226 0.828 0.210 | 0.995 | 0.100
wy =0.65 | 0.679 | 0.267 0.754 0.103 | 0.993 | 0.082
wd =1.00 | 0.640 | 0.286 0.711 0.060 | 0.992 | 0.096
wy = 2.00 | 0.564 | 0.312 0.617 0.018 | 0.988 | 0.070

Table 2: Properties of Coefficients for the Chosen Prior

| | Mean | St.Dev. | Median | 2.5% | 97.5% |
d=1
P 0.000 | 1.140 0.000 -2.270 | 2.270
d=
D1 0.000 | 1.075 0.000 -2.141 | 2.141
O 0.000 | 0.658 0.000 -1.311 | 1.311
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Table 3: Posterior Results for Artificial Data Sets

Set 1 Set 2
Parameter | Actual | Median | 2.5% | 97.5% | Actual | Median | 2.5% | 97.5%
51 0.5 0.496 0.187 10.812 | 0.5 0.042 -0.365 | 0.509
6 0.5 0.544 0.280 |0.812 | 0.5 0.267 0.022 | 0.596
61 0.2 0.150 -0.240 | 0.493 | 0.2 -0.595 | -1.660 | 0.983
b9 0.5 0.481 0.366 | 0.603 | 0.5 0.461 0.370 | 0.559
O3 0.5 0.502 0.382 10.628 | 0.5 0.416 0.314 | 0.531
on 1.0 0.988 0.907 | 1.077 | 1.0 0.973 0.893 | 1.064
019 -0.25 -0.251 | -0.491 | -0.003 | -0.25 -0.141 | -0.339 | -0.008
099 1.0 1.030 0.907 | 1.211 | 1.0 0.967 0.878 | 1.088
w1 0.25 0.413 0.142 | 0.898 | 0.25 0.341 0.241 | 0.622
W12 0.0 -0.115 | -0.456 | 0.105 | 0.0 -0.074 | -0.231 | 0.032
Wo9 0.25 0.217 0.077 | 0.715 | 0.25 0.235 0.166 | 0.509
03 0.0 -0.170 | -1.102 | 1.036 | 1.0 0.140 -0.949 | 0.771
O 0.0 -0.411 -1.425 1 0.194 | 1.0 1.140 0.699 | 2.088
U 0.0 0.353 -0.717 | 0.911 | 1.0 1.855 -0.287 | 2.951
Py 0.0 0.258 -0.199 | 1.186 | 1.0 0.847 0.444 | 1.507
q 1.5 1.288 1.027 | 1.685 | 1.5 1.819 1.367 | 2.446
r 0.75 0.676 0.563 | 0.862 | 0.75 0.751 0.617 | 0.926
oy 0.5 0.478 0.436 | 0.521 | 0.5 0.488 0.455 | 0.526
Y 0.5 0.504 0.459 |0.552 | 0.5 0.504 0.460 | 0.544
S1 1.0 1.299 0.843 | 1.813 | 1.0 0.759 0.523 | 1.138
S9 1.0 1.385 0.906 |1.925 | 1.0 0.849 0.572 | 1.295
hy 1.0 1.156 0.800 | 1.485 | 1.0 1.013 0.768 | 1.391
ho 1.0 1.184 0.829 | 1.555 | 1.0 0.987 0.743 | 1.295
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Table 4: Posterior Results for Dutch Dairy Farm Data Set

Median | 2.5% | 97.5%

O1(Intercept) | -3.533 | -3.694 | -3.226
Bo(Labour) 0.120 0.090 | 0.150
O5(Capital) | 0.537 0.504 | 0.572
B4(Variable) | 0.487 0.463 | 0.509
RTS Goods 1.145 1.115 | 1.173
61(Intercept) | 2.578 2.262 | 2.890
8, (MIIK) 0.880 | 0.858 | 0.921
85(Non-milk) | 0.081 | 0.065 | 0.008
RTS Bads 0.971 0.940 | 1.001

Tif 0.620 0.415 | 0.880
Tof 0.345 0.198 | 0.599
q 1.004 1.000 | 1.019
o 0.534 0.510 | 0.565

Table 5: Probability that Farm in Column is Less Technically Efficient than

Farm in Row

Farm Min | 25th | Median | 75bth
25th 1.000
Median | 1.000 | 0.930
75th 1.000 | 0.996 | 0.861
Max 1.000 | 1.000 | 1.000 1.000

Table 6: Probability that Farm in Column is Less Environmentally Efficient

than Farm in Row

Farm Min | 25th | Median | 75bth
25th 1.000
Median | 1.000 | 0.821
75th 1.000 | 0.920 | 0.776
Max 1.000 | 1.000 | 1.000 1.000
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