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Abstract: In this paper, the design and real time implementation of a Nonlinear Minimum Variance 
(NMV) estimator is presented using a laboratory based ball and beam system. The real time 
implementation employs a LabVIEW based tool. The novelty of this work lies in the design steps and the 
practical implementation of the NMV estimation technique which up till now only investigated using 
simulation studies. The paper also discusses the advantages and limitations of the NMV estimator based 
on the real time application results. These are compared with results obtained using an extended Kalman 
filter. 
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1. INTRODUCTION 

In control and signal processing community the linear 
filtering and estimation problem using least squares methods 
are well known. There are well established linear estimators 
like Wiener (Wiener, 1949) and Kalman filters (Kalman 1960, 
1961). Up till now there are no well established simple and 
practical techniques for nonlinear estimation.  The solution of 
the Nonlinear Minimum Variance estimation problem is an 
attempt to provide a simple nonlinear estimator suitable for 
systems with nonlinear channel dynamics.  

In Nonlinear Minimum Variance estimation the nonlinear 
operator is used to represent the channel dynamics and derive 
the estimator.  This is instead of the use of linearization for 
deriving an approximate nonlinear estimator algorithm. The 
nonlinear operator may be a set of nonlinear equations or 
could be a black box model containing unknown code and 
look-up tables. There may only be a limited number of 
applications but it is a powerful technique for systems that 
can be represented in the assumed structure. The cost-
function to be minimized involves the variance of the 
estimation error (Åström,, 1979) and a relatively simple 
optimization procedure and solution follows. 

 

 

 

 

 

Fig. 1:  Ball and Beam System 

The system selected for this study is a ball and beam system 
which is one of the popular test rigs used in laboratories for 
feedback control studies and education. The system itself is 
very simple, a ball is placed on a straight beam and rolls back 
and forth as the beam is raised and lowered by a gear system, 
as illustrated in Fig. 1. The position of the ball is controlled 
by changing the angular position of the beam regulated by a 
DC servo motor. The position of the ball can be measured by 
using a potentiometer embedded in the beam. The system is 
open loop unstable (Virseda, 2004 and Olfati-Saber et al, 
1998), because the output that represents the ball position 
tends to infinity for a fixed input. The system is also highly 
non-linear for large changes in the magnitude of the angle 
and rate.  

In the following study, the position of ball will be estimated 
using the Nonlinear Minimum Variance estimation algorithm. 
The paper is organized as follows.  In section 2, the theory of 
Nonlinear Minimum Variance estimation algorithm is 
discussed. Section 3 illustrates the experimental framework 
and results. Conclusions are presented in section 4. 

2. NONLINEAR MINMIUM VARIANCE ESTIMATION 

The Nonlinear Minimum Variance Estimation technique 
involves the estimation of a signal that passes through a 
communications channel having nonlinearities and 
communication/transport delays (Grimble 1995, 2006).  The 
measurements are assumed to be corrupted by a noise signal, 
which is correlated with the signal to be estimated. Signal 
and noise models are assumed to be linear and time-invariant. 
The NMV derivation is based on the minimization of the 
error variance criterion. Consider the system shown in Fig.2, 
which includes the nonlinear signal channel model and linear 
measurement noise and signal models.  
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Fig. 2:  Signal & Noise Model and Communication Channel Dynamics 

The signal channel model includes the nonlinearities that 
may involve both linear and nonlinear dynamics. The 
signal channel dynamics with a delay can be expressed as:                                      

( )( ) ( )( )0
01c c cf t z W f t

−Λ
=

�
� �     (1) 

The parallel path dynamics shown in Fig. 2, by a dotted 
line, can be expressed as. 
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This is a fictitious channel that can be used to represent 
uncertainties in channel knowledge, which provides 
additional design freedom. The combined signal source 

and noise signal ( ) rf t R∈  is given as:  

( ) ( ) ( )f t y t n t= +       (3)                                

The signals shown in the closed-loop system model of Fig. 
2 may be listed as follows: 

Noise:                              ( ) ( )nn t W t= ε  

Input signal:                 ( ) ( )sy t W t= ε                                                                      

Channel input:   ( ) ( ) ( )f t y t n t= +                                                                

Linear channel subsystem:  ( ) ( )( )o cos t W f t=                                                                

Channel interference:    ( ) ( )( )c cn t t= ε�                                                                                    

Nonlinear channel:                ( )( )1c( )c ds t s t= �  

Nonlinear channel input:                 ( ) 0
0 ( )ds t z s t

−Λ
=       

Observations signal:            ( ) ( ) ( )c cz t n t s t= +    

Message signal to be estimated:      ( )c c( ) ( ) ss t W y t W W t= = ε  

Weighted message signal:            c( ) ( )q qs t W W y t=  

Estimation error signal:     ( ) ( ) ( )ˆs t t s t s t t= −ɶ  

Estimation error:                               ( | ) ( ) ( | )e t t l s t s t t l− = − −ɶ   
 
where ˆ( | 1)s t t − denotes the estimate of the signal s(t) at 

time t, given observations z(t) up to time t-1.   Value of  l  
may be positive or negative according to the following 

conditions: 0l = , for estimation; 0l > , for prediction and 
0l < , for fixed-lag smoothing. The optimality criterion of  

minimum variance is given below: 
 

{ { ( | )( ( | )) }}T
q qJ trace E W s t t W s t t= − −ɶ ɶℓ ℓ   (4) 

 
where {.}E denotes the expectation operator and qW  

(Grimble, 2005) denotes a linear strictly minimum-phase 
dynamic cost-function weighting function matrix which is 
assumed to be strictly minimum phase, square and 
invertible.  The estimate ˆ( )s t t − ℓ  is assumed to be 

generated from a nonlinear estimator of the form:  
 

1ˆ( ) ( , ) ( )fs t t H t z z t
−

− = −ℓ ℓ      (5) 

                 
where  

1 1 1
0 0 c1 0( , ) ( )f q fc ct z W G A W D

− − −
= +� � �

  (6) 
 

While 1( , )fH t z
−  denotes a minimal realisation of the 

optimal nonlinear estimator. Since an infinite-time 
( )ot = −∞  problem is of interest therefore no initial 
condition term is required. The block diagram 

representation of 1( , )fH t z
−  will be as shown in Fig.3. 
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Fig.3:  Implementation of the Nonlinear Estimator 
 

The terms , &o fG A D  used in equation (6) can be 

calculated by using the concept of power spectrum for the 

combined linear models using: * *( )( )ff s n s nФ W W W W= + + , 



 

     

where the notation for the adjoint of sW  implies: 
* 1( )sW z

− ( )T

sW z= , and in this case the z denotes the z-

domain complex number.  The generalized spectral-

factor: fY  may be computed using: *
f f ffY Y Ф= , where 

1 1
0 0f f fY A D D A
− −

= = .  The system models are assumed 

such that 0fD   is a strictly Schur polynomial matrix 

(Kucera 1979, 1980) satisfying:  
 

* * *
0 0 ( )( )f f s n s nD D C C C C= + +                                (7)  

 
The right-coprime polynomial matrix model can be 
defined as:       
                                                             

1
c[ ] [ ]f f q s fC D A W W W Y

−
=      (8) 

  
The polynomial operators 0G  now may be obtained 

from the minimal degree solution 0 0( , )G F , with respect 

to 0F , of the following Diophantine equation:                               

                                                                        
0

0 0 fF A G z C
−Λ −

+ =
ℓ      (9)  

                                                                              
The estimation error can be penalised in a particular 
frequency range by using a dynamic asymptotically stable 

weighting function: 1
W A B

−
=

Ω Ω Ω
 , where A

Ω
and B

Ω
 

are polynomial matrices. The modified cost function now 
will be as follows: 
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3. IMPLEMENTION & EXPERIMENTAL 

RESULTS  
 

The experiment was conducted using the equipment shown 
in Fig. 3. The signal to be estimated by NMV estimation 
algorithm is the position of ball on the beam.  
 

 
 

Fig. 3 Ball and Beam Setup 

The nonlinearities faced by the estimated signal in the 
transmitting channel path will be friction, saturation and 

quantization error as shown in Fig.4. The mathematical 
models used, during this implementation, are given below. 
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The real time implementation was carried out in LabVIEW 
while the LabVIEW code developed is shown in Fig.5. 
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Fig.4. Nonlinearities in measurement channel  
 

 
 

Fig. 5 Block Diagram of LabVIEW Code 

 
The measured and estimated signals are as shown in Fig.6 
and Fig. 7, respectively. The minimum variance for the 
NMV estimator is 8.73e-05 and for the extended Kalman 
filter (EKF) is 3.36e-02. The NMV filter does not involve 
linearization around a trajectory but does require a model 



 

     

which represents the global behaviour (at least within the 
operating regime) of the system.  It is not therefore 
surprising that if the system model matches the real 
situation that the NMV filter has the possibility of 
providing improved results relative to the extended 
Kalman filter. From Figures.6 and.7 we can also see that 
the performance of NMV estimation is good in 
comparison to the extended Kalman filter. 
 
There are few advantages which NMV estimation may 
have over the EKF.  There is no formal mechanism within 
the EKF to allow for uncertainty within the system 
model.   The   NMV filter does of course have a parallel 
path to represent interference or output measurement 
noise  and this may be used to compensate for 
uncertainties. Secondly one has to calculate the Kalman 
gain at each iteration, which is computationally quite 
costly for embedded systems whilst for the NMV filter 
there is no such requirement. It is true that the spectral 
factorisation which occurs within the NMV filter can be 
solved by a Riccati equation. This might suggest that the 
computations are about the same for both types of 
estimator. However, this is not correct.  The spectral 
factorisation which is involved is that for the constant 
coefficient linear models and it would therefore require an 
off-line (one off) calculation involving a steady state 
Riccati equation.  The EKF, on the other hand, involves 
what is equivalent to a time-varying Riccati equation 
solution which has to be performed at each sample instant 
on-line.  The conclusion is that the EKF is computationally 
more intensive than the NMV filter. Moreover the NMV 
estimator does not seem so sensitive to parameter tuning 
on for example the measurement noise covariance Q and 
process noise covariance R matrices as in the extended 
Kalman filter (Brown et al, 1992 and Grewal, 1993). 
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Fig. 6 Comparison Results Between NMV & EKF 
 

4. CONCULSION 

In this paper, the theory and practical implementation of 
NMV estimation has been investigated. It was shown that 
the NMV filter is relatively better than extended Kalman 
filter in three respects i.e. it requires less computational 
cost, easy to implement and requires no special tuning. 
The results obtained from these observations are 
encouraging which will lead us to investigate the real time 

implementation of the multi input and multi output 
(MIMO) NMV estimator. 
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Fig. 7 Comparison Results between NMV & EKF 
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