Optimising hybrid systems design and performance

Michaël Kummert

SESG / BRE seminar – Electric heating: yesterday’s villain, tomorrow’s saviour? 17 April 2008
Outline

- Who am I?
- Hybrid systems
 - What is a hybrid system?
 - Types of hybrid systems
 - Importance of control strategies
 - Hybrid systems on the rise
 - Hybrid systems and electricity
- Optimisation problem
 - Design, operation, lifetime performance
 - The role of simulation
- Case studies
 - Design optimisation: NZEH
 - Design and control: hybrid GSHP system
 - Design, control and lifetime performance: GSHP + resistance
- Conclusions
Michaël Kummert

PhD in environmental sciences
- Passive/active solar buildings
- Model-based optimal control

Consulting engineer
- Low energy buildings, solar thermal systems

TRNSYS coordinator
- Modelling, simulation software development

Post-doc researcher / lecturer
- Net-zero energy houses, solar thermal, ground source heat pumps
· Who am I?

· Hybrid systems
 · What is a hybrid system?
 · Types of hybrid systems
 · Importance of control strategies
 · Hybrid systems on the rise
 · Hybrid systems and electricity

· Optimisation problem
 · Design, operation, lifetime performance
 · The role of simulation

· Case studies
 · Design optimisation: NZEH
 · Design and control: hybrid GSHP system
 · Design, control and lifetime performance: GSHP + resistance

· Conclusions
What is a hybrid system?

“Something (as a power plant, vehicle, or electronic circuit) that has two different types of components performing essentially the same function”

(Merriam Webster dictionary)

2 (or more) ways to perform the same task
⇒ control decision

Some examples (building services)

- Hybrid heating system
 - Radiant underfloor heating + radiators
 - Radiators (gas boiler) + wood stove
 - Underfloor heating + electric baseboard
 - Etc.
Basic control problem

- Which one of the 2, 3, ... components to use and when?
 - Meet demand
 - Maximise efficiency
 - Cost
 - Environmental impact (CO₂, etc.)
 - Ensure sustainability and long-term performance

⇒ Predictive control (optimal, near-optimal, rule-based, etc.)
Energy storage

- Options
 - Meet load directly
 - Meet load from storage
 - Recharge storage

- Constraints
 - Manage storage state of charge
 - Maximise efficiency (minimise cost)

⇒ Similar control problem
Types of hybrid systems

- Multiple energy sources
 - Gas / oil / etc. + electric
 - Renewables
 - Biomass + backup
 - Solar + backup
 - Heat pump + backup

- Storage
 - DHW storage
 - Buffer storage (building thermal mass!)
 - Ground source systems
 - Seasonal storage

- Multiple source / sink
 - Hybrid ground-source + boiler / cooler

- Multiple secondary systems
 - Undefloor + convectors, etc.
 - Desiccant / conventional AC systems
• Higher energy prices and climate change concerns
 • Renewable energy systems requiring backup
 • Intermittent supply
 • Economic or technical constraints
 • Encouraged by policies
 • “Merton rule”: 10, 20% renewable
 • Grants for heat pumps up to x kW
 • Interest in micro-generation
 • Economic optimum often includes backup
 • Net-zero energy or carbon neutral buildings
 • Only realistic solutions involve hybrid systems
 • Storage systems
 • Reduce cost
 • Time-of-Use electricity rates
 • Free cooling

⇒ These systems need to be optimised
⇒ Importance of predictive control strategies
Most hybrid systems involve electricity

- Heat pumps
- Small backup system
- Storage
 - Time-of-Use pricing
 - Cooling system performance (free cooling)

Future electric systems

- Will be hybrid systems
 - Heat pump / resistance
 - Solar / immersion
 - Microgeneration
- Will include storage
 - Off-peak rates / TOU

⇒ will require advanced control strategies
Outline

- Who am I?
- Hybrid systems
 - What is a hybrid system?
 - Types of hybrid systems
 - Importance of control strategies
 - Hybrid systems on the rise
 - Hybrid systems and electricity
- Optimisation problem
 - Design, operation, lifetime performance
 - The role of simulation
- Case studies
 - Design optimisation: NZEH
 - Design and control: hybrid GSHP system
 - Design, control and lifetime performance: GSHP + resistance
- Conclusions
What do we want to optimise?
- Design
- Operational costs (control strategies)
- Lifetime performance
- The 3 are interrelated
The role of simulation: combined optimisation

- Optimised design parameters
- System configurations
- Control strategies (sets of rules)
- Control setpoints, thresholds

→ Performance simulation

- Investment cost
- Operational costs
- Occupant satisfaction
- Life cycle performance

Weather
Occupancy
Fixed design parameters
Energy rates
Etc.
Outline

- Who am I?
- Hybrid systems
 - What is a hybrid system?
 - Types of hybrid systems
 - Importance of control strategies
 - Hybrid systems on the rise
 - Hybrid systems and electricity
- Optimisation problem
 - Design, operation, lifetime performance
 - The role of simulation
- Case studies
 - Design optimisation: NZEH
 - Design and control: hybrid GSHP system
 - Design, control and lifetime performance: GSHP + resistance
- Conclusions
The path to net-zero

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating</td>
<td>18000</td>
<td>10000</td>
<td>4500</td>
<td>5000</td>
<td>2900</td>
<td>1300</td>
<td>18000</td>
<td>18000</td>
<td>18000</td>
<td>7500</td>
<td>18000</td>
<td>18000</td>
<td>18000</td>
<td>2900</td>
</tr>
<tr>
<td>Cooling</td>
<td>3500</td>
<td>4000</td>
<td>4000</td>
<td>1400</td>
<td>1500</td>
<td>1500</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
<td>4000</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
<td>1500</td>
</tr>
<tr>
<td>Appliances</td>
<td>20000</td>
<td>13000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>DHW</td>
<td>11000</td>
<td>11000</td>
<td>11000</td>
<td>11000</td>
<td>11000</td>
<td>3300</td>
<td>2200</td>
<td>1100</td>
<td>11000</td>
<td>11000</td>
<td>11000</td>
<td>11000</td>
<td>11000</td>
<td>11000</td>
</tr>
<tr>
<td>total kWh</td>
<td>54500</td>
<td>47000</td>
<td>41500</td>
<td>39900</td>
<td>37700</td>
<td>36000</td>
<td>46800</td>
<td>45700</td>
<td>44600</td>
<td>43500</td>
<td>47500</td>
<td>44500</td>
<td>16800</td>
<td>15100</td>
</tr>
<tr>
<td>%</td>
<td>100%</td>
<td>86%</td>
<td>76%</td>
<td>73%</td>
<td>69%</td>
<td>66%</td>
<td>86%</td>
<td>84%</td>
<td>82%</td>
<td>80%</td>
<td>87%</td>
<td>82%</td>
<td>31%</td>
<td>28%</td>
</tr>
<tr>
<td>Extra cost</td>
<td>0</td>
<td>5000</td>
<td>20000</td>
<td>22000</td>
<td>23000</td>
<td>35000</td>
<td>8000</td>
<td>12000</td>
<td>18000</td>
<td>23250</td>
<td>3000</td>
<td>10000</td>
<td>37000</td>
<td>51000</td>
</tr>
<tr>
<td>$/kWh saved, 25 y</td>
<td>N/A</td>
<td>0.027</td>
<td>0.062</td>
<td>0.060</td>
<td>0.035</td>
<td>0.076</td>
<td>0.042</td>
<td>0.055</td>
<td>0.073</td>
<td>0.085</td>
<td>0.017</td>
<td>0.040</td>
<td>0.039</td>
<td>0.052</td>
</tr>
<tr>
<td>Required PV (m³)</td>
<td>363</td>
<td>313</td>
<td>277</td>
<td>266</td>
<td>251</td>
<td>240</td>
<td>312</td>
<td>305</td>
<td>297</td>
<td>317</td>
<td>297</td>
<td>172</td>
<td>112</td>
<td>101</td>
</tr>
<tr>
<td>PV Cost ($)</td>
<td>381500</td>
<td>329000</td>
<td>290500</td>
<td>279500</td>
<td>264000</td>
<td>252000</td>
<td>327500</td>
<td>320000</td>
<td>312000</td>
<td>304500</td>
<td>332500</td>
<td>313500</td>
<td>117500</td>
<td>105500</td>
</tr>
<tr>
<td>PV cost savings ($)</td>
<td>0</td>
<td>52500</td>
<td>91000</td>
<td>102000</td>
<td>117500</td>
<td>129500</td>
<td>54000</td>
<td>61500</td>
<td>69500</td>
<td>77000</td>
<td>49000</td>
<td>70000</td>
<td>264000</td>
<td>276000</td>
</tr>
<tr>
<td>Total savings</td>
<td>47500</td>
<td>71000</td>
<td>80000</td>
<td>94500</td>
<td>94500</td>
<td>46000</td>
<td>49500</td>
<td>51500</td>
<td>53750</td>
<td>46000</td>
<td>60000</td>
<td>227000</td>
<td>225000</td>
<td></td>
</tr>
</tbody>
</table>
Design and control: Hy-GSHP
System performance

Energy input [kWh/day]

Time

Building 1, 1st year of operation
Design, control and lifetime performance

- GSHP system + backup resistance
Heating setpoint controller

- Orange line: Heat pump setpoint
- Red line: Backup resistances setpoint

Heating setpoints [°C]

Time of day [h]
Short time-step simulation (for 20 years!)

![Graph showing temperatures and heating power over time]

- **Tset**: Set temperature
- **Tdb,house**: Building temperature
- **Qheat,hp**: Heating power from Hot Water
- **Qheat,tot**: Total heating power
Life cycle analysis

Rule-of-thumb designs

- 3.5 kW heat pump
- 5.3 kW heat pump

Borehole depth [m]

Life-cycle cost [k$]
Conclusions

- Hybrid systems are on the rise
 - Renewable energy + backup
 - Net-zero energy or carbon neutral
 - Storage (time varying electricity pricing)

- Optimisation:
 - Design
 - Operation (control)
 - Lifetime performance

- Simulation can play a key role
 - Testing design configurations and variables, control strategies and setpoints/thresholds

- Electricity will play a key role in hybrid systems

- Future electric systems will be hybrid / have storage
15% renewable energy in dwellings

Grid
15% renewable

Heat pump
COP = 3

DHW
25
Sp heating 75

Solar 60%

Total renewable fraction = 15 + 56 + 0.15*29 = 75%

If 20% of dwellings, overall percentage = 15%