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Abstract. Superselection rules (SSRs) constrain the allowed states and
operations in quantum theory. They limit preparations and measurements and
hence impact our ability to observe non-locality, in particular the violation of
Bell inequalities. We show that a reference frame compatible with a particle
number SSR does not allow observers to violate a Bell inequality if and only
if it is prepared using only local operations and classical communication. In
particular, jointly prepared separable reference frames are sufficient for obtaining
violations of a Bell inequality. We study the size and non-local properties of such
reference frames using superselection-induced variance. These results suggest
the need for experimental Bell tests in the presence of superselection.
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1. Introduction

Symmetries impose powerful constraints on physics, leading Wick et al to suggest that the
associated conserved quantities lead to additional restrictions on quantum theory, the so-called
superselection rules (SSRs) [1]. They conjectured that superselection prevents the existence of
coherent superpositions of charge, for example. However, Aharonov and Susskind [2] showed
that the ability to observe superpositions depends on having a shared reference frame relative to
which the system can be prepared and measured. More generally, elements of quantum theory
require reformulation in the presence of SSRs. Quantum entanglement and various forms of
non-locality are particular examples of phenomena that are affected by the presence of SSRs,
and a vast body of literature already exists on these topics [3]–[22].

Here, we focus on Bell inequality violation in the presence of SSRs. We concentrate on the
bi-partite case where both the entangled principal system and any ancilla/reference frame are
subject to particle-number superselection. In particular, we examine the role of the measurement
apparatus or reference frame used by the two observers (our prototypical Alice and Bob). We
find that reference frames prepared using only local operations that satisfy SSRs and classical
communication (SSR-LOCC) cannot reveal the non-locality of an entangled system. However,
jointly prepared but separable reference frames can be used to violate a Bell inequality with an
entangled principal system. By imposing separability of the reference frame, we deduce that
violation is due to the measured entangled state; the reference allows the observers to carry out
measurements that lead to a violation of the Bell inequality. In such cases, the reference is said
to activate Bell violation.

Previous work has explored the issue of Bell inequality violation in the presence of SSRs,
given suitable reference frames [15]–[20]. In contrast to some previous works, here the reference
frame is both explicitly separable and compliant with the SSRs. We show in general that
all references prepared jointly, and only such references, can activate Bell violation. We find
minimal reference frames and relate the degree of Bell violation to the ‘non-locality’ in the
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Figure 1. The Bell experiment in the presence of particle-number SSR. Two
observers share in advance a reference system in a separable state ρA′ B ′ .
The experiment begins with an emission of a principal system in a state
ρAB . According to the SSR both ρA′ B ′ and ρAB are incoherent mixtures of
states with well-defined total number of particles. Alice (on the left) has now
access to subsystems A and A′ and similarly Bob (on the right) has access
to B and B ′. Both local subsystems are next measured by superselection-
constrained observables, described by projections onto states with well-defined
total number of particles in the subsystems. In a given experimental run, one
of many observables is measured at each site, the choice of which is depicted
by a tuneable knob (arrow) on the measuring device. Finally, one of many
measurement results is obtained as depicted by a number on the yellow screen
(e.g. −1 for Alice, +1 for Bob). In short, for this scenario a violation of a Bell
inequality can be observed if and only if the reference state ρA′ B ′ is prepared
jointly, and the more particles in the reference state the larger the violation.

reference as measured by superselection-induced variance (SIV) [5, 6]. This holds in particular
for measurements of single-particle states and is a clear proof that such states can exhibit non-
locality [7]–[18]. We also discuss related single-photon experiments [21, 22] and conclude that
there is still the need for new experiments.

2. Scenario

We begin with the description of a Bell experiment in the presence of particle-number
superselection. Consider the situation as shown in figure 1. A source distributes to Alice and
Bob an entangled pure state of N particles,

|ψ〉AB =

N∑
n=0

cn |n〉A |N − n〉B, (1)

where |cn|
2 is the probability that Alice finds that she has n particles. Under particle-number

superselection, all states and measurements commute with the particle-number operator N̂ .
Ordinarily, all that Alice and Bob can do is simply count the number of particles each receives.
In order to do more than this, they share in advance a joint reference frame in the state
ρA′ B ′ , assumed to be separable and also obeying particle-number superselection. Therefore,
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before state (1) is distributed to Alice and Bob they share no entanglement. By making joint
SSR respecting measurements on each of their respective halves of the entangled system and
reference frame ({A, A′

} for Alice, {B, B ′
} for Bob), they hope to be able to demonstrate a Bell

inequality violation.

3. Reference frames prepared locally

We first show that reference frames prepared using only local operations satisfying SSRs and
classical communication (SSR-LOCC) cannot activate violation of any Bell inequality. The
proof is straightforward.

All such reference states commute with local particle-number operators and therefore are
of the form

ρSSR−LOCC
A′B′ =

∑
k,l

pkl |k〉A′〈k| ⊗ |l〉B′〈l| , (2)

where k (l) counts particles in the reference frame of Alice (Bob). These states contain only
classical correlations between fixed local number of particles as measured by quantum discord
and similar quantities [23]–[26].

Consider for the moment that the reference frame is in the pure state |k〉A′|l〉B′ . We can
express the initial joint state of the system and reference frame as

∑
ncn |n, k〉AA′ |N − n, l〉BB′

grouping subsystems accessible to Alice and Bob, respectively. Note that every term of this
superposition contains a different number of local particles, i.e. n + k for Alice and N − n + l for
Bob. As local SSR observant measurements project onto states with a well-defined number
of local particles, only one term in the superposition can contribute to the probability of
a corresponding result. This, however, is exactly the same as making the measurements on
a state in a mixture of |n, k〉AA′|N − n, l〉BB′ with probability |cn|

2, and this separable state
clearly admits a local hidden variable model. If one replaces |cn|

2 in this model with |cn|
2 pkl

all measurement results obtained with a general mixed reference state (2) are reproduced.
Therefore, no Bell inequality can be violated.

4. Reference frames prepared jointly

We now show that all reference frames that cannot be prepared via SSR-LOCC are useful
for Bell violation. We begin with the characterization of such references. We can express all
reference states in the general form

ρA′B′ =

∑
N ′

pN ′ρN ′, (3)

where pN ′ is the probability of N ′ particles in the reference frame and ρN ′ is any state with a
fixed total number of particles N ′, i.e. ρA′ B ′ is an arbitrary mixture of pure states of the form
|φ〉A′B′ =

∑N ′

i=0 ri |i〉A′ |N ′
− i〉B′ . Since we assume that ρA′B′ cannot be prepared via SSR-LOCC,

it necessarily contains off-diagonal elements in the particle-number basis. All such states have
a non-vanishing expectation of

V = Re[Tr(R+ ⊗ R−ρA′B′)], (4)
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where R+ =
∑N−1

a=0 |a +1〉〈a| and R− =
∑N

b=1 |b −1〉〈b| for some1> 1. To see this, note that
V is proportional to the average value of the sum

∑N ′
−1

i=0 r∗

i+1ri over the pure states |φ〉A′ B ′ in
the decomposition of ρA′B′ . Therefore, V vanishes if the sums vanish for all the pure states. For
states |φ〉A′B′ that have coherences in the particle-number basis, this only occurs if the signs of
the products ri+1 ∗ ri alternate for some values of i leading to cancellation in the sum. In such a
case however, we can always choose a larger 1 to skip the terms that lead to the cancellation.
Thus, a state ρA′B′ can be prepared via SSR-LOCC if and only if V = 0 for all values of 1> 1.

As we now show, all reference states with the non-vanishing coherence parameter V enable
observers to choose measurements that lead to a violation of the Clauser–Horne–Shimony–Holt
(CHSH) inequality [27]. Consider an entangled principal system in the state

|ψ〉AB =
1

√
2
(|2〉A |2 +1〉B + |2 +1〉A |2〉B). (5)

We show in appendix that there always exist dichotomic local measurements compatible with
the SSR whose outcomes on the joint state of the principal system and reference frame are
correlated as

E(αk, βl)= − cos(2αk) cos(2βl)+V sin(2αk) sin(2βl), (6)

where the angle αk (βl) parameterizes the kth (lth) setting of Alice (Bob). We insert this
expression into the CHSH parameter

S ≡ E(α1, β1)+ E(α1, β2)+ E(α2, β1)− E(α2, β2), (7)

and find values of αk and βl for which S is higher than the local realism bound S 6 2.
Namely, we choose α1 = 0, α2 = π/4, and parameterize the settings of Bob by a single angle
β ≡ β1 = −β2, leading to

S = −2 cos(2β)+ 2V sin(2β). (8)

To find its maximum, note that S has the form of a scalar product between the vector Ew =

(−2, 2V) and an arbitrary normalized vector Ev = (cos(2β), sin(2β)). Therefore, there always
exists an angle β such that Ev is parallel to Ew and the maximum of the scalar product is given by
the length of Ew:

S = 2
√

1 +V2. (9)

To summarize, all reference frames that cannot be prepared via SSR-LOCC have a non-
vanishing coherence parameter V and consequently allow observers to carry out measurements
on entangled states that lead to a violation of the CHSH inequality:

S > 2 for all V 6= 0. (10)

An identical conclusion holds for the single-particle entangled principal system. The
calculations are the same as long as the reference frame does not contain any vacuum.

5. Minimal separable reference frames

We have derived conditions for violating the CHSH inequality in the presence of particle-
number SSR and we further study the properties of reference frames activating the violation. We
show here that the minimal separable reference frame allowing violation contains two particles
in total.
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Relaxing for a moment the separability requirement, equation (4) shows that the minimal
reference has only one particle in total. Namely, any state |φ〉A′ B ′ = r0|0〉A′|1〉B′ + r1|1〉A′|0〉B′

with r1r0∗ 6= 0 has a non-vanishing parameter V . However, the application of the PPT criterion
for entanglement [28, 29] reveals that |φ〉A′B′ is entangled for all r1r0∗ 6= 0. When entangled
states are used as references, it is unclear whether the violation of a Bell inequality is due to the
entanglement of the principal system or the reference frame.

For this reason we consider a reference frame with at most two particles:

ρA′ B ′ = p00 |00〉A′B′〈00| + p11 |11〉A′B′〈11| + pφ |φ〉A′B′〈φ| , (11)

where as before |φ〉A′B′ = r0|0〉A′|1〉B′ + r1|1〉A′|0〉B′ . Since the definition of equation (4) involves
only the real part of the off-diagonal elements, we choose the coefficients r0 and r1 to be real,
i.e. V = pφr0r1, and we have used 1= 1 in equation (4). The application of the PPT criterion
reveals that the state ρA′B′ is separable if and only if

p00 p11 > p2
φr 2

0r 2
1 = V2. (12)

Therefore, for all separable reference frames activating the violation, V 6= 0, there must be some
mixture of the two-particle state (p11 > 0). Note that the same argument applies to p00 and one
concludes that separable reference states of the form (11) enabling the violation must contain
some vacuum. This is a consequence of the fact that an arbitrary mixture of any pure two-qubit
entangled state with ‘colored noise’ |11〉〈11| is always entangled [30, 31].

6. Local and global twirling

A useful mathematical tool that illustrates and generalizes the results presented so far is the
twirling operation. Twirling T eliminates the coherences that are not compatible with SSR:

T (ρ)≡

∑
n

5nρ5n, (13)

where 5n is a projector on a subspace with a fixed number of particles n. This operation
describes the lack of a reference frame enabling access to the phase information of the
probability amplitudes.

The usefulness of twirling is best illustrated by considering states that can be prepared
via SSR-LOCC. A simple proof demonstrates that they cannot activate CHSH violation.
A SSR-LOCC reference frame commutes with local particle number operators and therefore it is
invariant under the action of local twirlings, ρSSR−LOCC

A′B′ = (TA′ ⊗ TB ′)(ρSSR−LOCC
A′ B ′ ). This implies

for the coherence parameter

V ∼ Tr
{

R+ ⊗ R−ρ
SSR−LOCC
A′B′

}
= Tr

{
(R+ ⊗ R−)(TA′ ⊗ TB′)ρSSR−LOCC

A′B′

}
= Tr

{
TA′(R+)⊗ TB′(R−)ρ

SSR−LOCC
A′B′

}
= 0, (14)

where the last equality follows from the fact that TA′B′(R±)= 0 because R± contain only off-
diagonal elements in the particle-number basis.

Note that the operator R+ ⊗ R− conserves total particle number and therefore is invariant
under global twirling, T (R+ ⊗ R−)= R+ ⊗ R−. All states satisfying SSR are of the form
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ρSSR
A′B′ = T (ρA′B′), where now ρA′B′ need not have a fixed number of particles. Therefore,

Tr{R+ ⊗ R−ρ
SSR
A′B′} = Tr{R+ ⊗ R−T (ρA′B′)} = Tr{T (R+ ⊗ R−)ρA′B′}

= Tr{R+ ⊗ R−ρA′B′}, (15)

where we have used the cyclic property of trace. This means that in order to calculate V for an
SSR respecting reference frame ρSSR

A′B′ , we can use in equation (4) any state ρA′B′ whose twirling
gives ρSSR

A′B′ .

7. Separable reference for maximal violation

Twirling allows further study of separable reference frames. Note that the minimal reference
frame of two particles we have derived in equation (11) activates the violation but does not lead
to maximal violation. Indeed, the highest value of V for entangled reference states (11) is 1

2 and
for separable reference states equation (12) implies V 6 1

4 , whereas the maximal violation of
the CHSH inequality allowed by quantum theory S = 2

√
2 [32] requires V = 1. Note also that

the Tsirelson bound of S = 2
√

2 implies that |V|6 1.
Here we show that there are separable reference frames allowing maximal violation of the

CHSH inequality with an entangled state. First note that all separable states satisfying SSR are
of the form ρSSR

sep = T (ρsep), with ρsep =
∑

j p j |a′

j〉〈a
′

j | ⊗ |b′

j〉〈b
′

j | where |a′

j〉|b
′

j〉 need not have a
fixed number of particles. This follows from the fact that global twirling is an LOCC operation
(but not SSR-LOCC) and as such cannot produce entanglement. We now derive the separable
reference frames that maximize the coherence parameter V . Since equation (4) is linear in ρA′B′ ,
V is maximal for a pure product state |a′

〉|b′
〉. Moreover, due to the fact that only the real

part enters (4), it is sufficient to consider states with real coefficients |a′〉 =
∑N

n=0 an |n〉 and
|b′〉 =

∑M
m=0 bm |m〉 with an, bm ∈ R. For such pure states V = fN gM where

fN ≡ 〈a′
|R+|a

′
〉 =

N−1∑
n=0

anan+1, (16)

gM ≡ 〈b′
|R−|b′

〉 =

M−1∑
m=0

bmbm+1, (17)

with N and M denoting the dimensionality of the reference frames of Alice and Bob,
respectively, i.e. the maximal number of particles in their reference frames, and we put 1= 1.
To find the maximum of V , it is now sufficient to optimize fN , because gM has the same form
and optimization over Bob’s state is independent of that over Alice’s. Note that for states with
real coefficients 〈a′

|R+|a′
〉 = 〈a′

|R−|a′
〉 and therefore fN =

1
2 〈a′| (R+ + R−) |a′〉. The only non-

vanishing elements of matrix R+ + R− are a strip of identities above and below its diagonal,
and therefore it is a Hermitian matrix. The maximal value of fN is attained for |a′

〉 being the
eigenvector of R+ + R− with the highest eigenvalue. The amplitudes of the optimal state read

an =

√
2

N + 2
sin

(
π(n + 1)

N + 2

)
, with n = 0, 1, . . . , N , (18)

and its maximal eigenvalue gives

max fN = cos
( π

N + 2

)
. (19)
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For small reference frames containing at most one particle on both sides N = M = 1, we find
V 6 1

4 in agreement with the results of section 5 on minimal reference frames. If the reference
frames of Alice and Bob are both unbounded, equation (19) implies that V→ 1 and the violation
of the CHSH inequality approaches its maximum. Practically, for N = M ≈ 30 particles in each
reference frame, V ≈ 0.99.

The reference frames for violation of Bell inequality were also studied in [33] in the context
of directional reference frames, finding that in the limit of unbounded reference frame, maximal
violation can be achieved. We stress that in our case the corresponding limit is twofold: to
maximally violate CHSH inequality the reference frame has to be prepared jointly, and it should
be unbounded.

8. Non-locality of reference states

Let us now discuss the relation between V and the non-locality of reference frames as captured
by SIV [5]. We show that violation of the CHSH inequality is a witness of non-zero SIV in the
reference frame and that the amount of SIV in small reference frames gives an upper bound on
the CHSH violation.

The SIV of a pure state |φ〉 is defined as the variance of local number of particles

1
4 V (φ)≡ 〈φ|N 2

A ⊗ I |φ〉 − 〈φ|NA ⊗ I |φ〉
2. (20)

The factor of 4 is introduced for normalization: one unit of SIV is defined for the state
1

√
2
(|n, n + 1〉 + |n + 1, n〉). Since SIV is symmetric with respect to permutation of the parties,

one can equally consider the variance of the local particle number on Bob’s side (NB). Pure
states that have non-zero SIV cannot be prepared via SSR-LOCC and this is the property of
reference frames we are interested in. However, such pure states are always entangled, whereas
we insist on separability of the reference frame. Therefore, we must consider mixed states.
Just like entanglement, for mixed states another measure of SIV is required. We shall use the
variance of formation defined as [5]

V SSR
F (ρ)= min

{pi ,φi }

∑
i

pi V (φi), (21)

where the ensembles of pure states {φi} obey SSRs. As a measure of the off-diagonal terms in
the density matrix, we can consider V , or equivalently Bell inequality violation, as a witness of
non-zero SIV. Moreover, it was shown in [6] that for states (11) the variance of formation reads
V SSR

F (ρ)> 4p2
φr 2

0r 2
1 = 4V2 with real r0 and r1. Accordingly, one can directly relate SIV to V as

|V|6

√
V SSR

F (ρ)

2
. (22)

Therefore, the corresponding states with vanishing SIV have also vanishing V .

9. Experiments

Our last topic is the experimental verification of Bell inequality violations under SSRs and the
need for new experiments. We relate this by commenting on current experiments related to the
Bell inequality and single-photon non-locality [7, 21, 22]. Although not intended to violate a
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Bell inequality under an SSR, these experiments may be seen as such for (an induced) photon-
number SSR [19]. In the proposal of [7], a single photon is directed onto a balanced beam-
splitter producing (it is hoped) a non-local state of one photon. In each output port of this first
beam-splitter there is another balanced beam-splitter with a (reference) coherent state directed
at its second input port (see figure 1 of [7]). One considers correlations between the number of
photons registered in detectors placed in the output ports of the second set of beam-splitters.

The experimental realizations [21, 22] differ from the proposal [7] in that the secondary
beam-splitters may be unbalanced. Note that in principle the possible measurement results
are unbounded, and therefore the CHSH inequality cannot be applied. It turns out that the
correlation functions violate the CHSH inequality only for a small mean number of photons
in the coherent states, in which case the events of having many photons in the detectors are rare
and the CHSH inequality becomes applicable. This, however, opens up an effective detection
loophole that allows for a local hidden variable model.

Let us denote by ra (rb) the reflectivity of the first (second) beam-splitter supplied with a
coherent state. The corresponding transmittances are: tn = 1 − rn with n = a, b. It is assumed
that both coherent states have the same mean number of photons n̄ and relative phase ϕ = α−β.
The correlation function between the number of photons measured behind the two beam-
splitters reads

Eϕ =
(ra − ta)(rb − tb)(n̄ − 1)+ 4

√
rarbtatb sinϕ

n̄ + 1
. (23)

Using this expression in the CHSH parameter, one finds that the proposal of [7] is optimal in the
sense that it is best to choose balanced beam-splitters ra = rb =

1
2 . Any other values of ra and rb

lead to smaller values of the CHSH parameter. In particular, the assumption of [21] that after the
beam-splitter a photon may have equal likelihood to have come from a single-photon ‘beam’
or a coherent state, i.e. r n̄ = t , leads to no violation for all values of n̄. For the balanced beam-
splitters the inequality is violated if n̄ <

√
2 − 1, which translates into the critical probability of

vacuum in the coherent state Pvac ≈
2
3 . Using such coherent states it is quite rare to measure two

photons in a setup and one may utilize this effective detection loophole to explain the observed
results with, e.g., the model of Gisin [34].

We therefore hope that this research will stimulate further experiments testing Bell
violation in the presence of SSRs. Ideally one would use systems with natural SSRs such as
massive particles or charges. However, studies of partial superselection can also be performed
through controlled decoherence, as decoherence between different subspaces can be seen as a
type of SSR.

10. Conclusions

We have studied the effects of restrictions imposed by SSRs on Bell inequality violation. We
found that the violation primarily depends on how a reference frame is prepared and only
secondarily on its size. Even unbounded reference frames do not lead to Bell violation if they are
prepared via SSR-LOCC and therefore are strictly classically correlated according to quantum
discord and similar measures. This condition was shown to be necessary and sufficient for the
violation; that is, reference frames enable the violation of a Bell inequality if and only if they
cannot be prepared via SSR-LOCC. The violation can be achieved with separable reference
frames explicitly consistent with particle-number superselection, the minimal such reference
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containing up to two particles. We linked the violation to the amount of non-locality in the
reference frame as captured by SIV. It would be interesting to study how other subfields of
quantum theory, e.g. quantum tomography, are modified in the presence of superselection.
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Appendix. Derivation of correlation formula (6)

Assume for the moment that the reference system is in a pure state

|φ〉A′ B ′ =

N ′∑
i=0

ri |i〉A′|N ′
− i〉B ′ . (A.1)

Since it cannot be prepared via SSR-LOCC, we have r∗

i+1ri 6= 0 for some i and 1> 1.
Consider the principal system in a state |ψ〉 =

1
√

2
(|2〉A |2 +1〉B + |2 +1〉A |2〉B) such that

the initial state of the principal system and reference together reads

|ψφ〉 =

∑
i

ri
√

2
(|2, i〉AA′|2 +1, N ′

− i〉BB′ + |2 +1, i〉AA′|2, N ′
− i〉BB′), (A.2)

where we grouped in kets subsystems accessible to Alice and Bob, respectively.
We present local dichotomic measurements compatible with particle-number SSR, which

lead to the correlation function (6) of the main text. Alice measures a local observable
parameterized by angle α:

A=

N ′∑
a=−1

|α(a)〉〈α(a)| −
N ′∑

a=−1

|ᾱ(a)〉〈ᾱ(a)| , (A.3)

where the eigenstates are defined as follows:

|α(a)〉 = cosα |1, a +1+ 1〉AA′ + sinα |2, a +1〉AA′ , (A.4)

|ᾱ(a)〉 = sinα |1, a +1+ 1〉AA′ − cosα |2, a +1〉AA′ (A.5)

for a = −1, . . . ,−1;

|α(a)〉 = cosα |2 +1, a〉AA′ + sinα |2, a +1〉AA′ , (A.6)

|ᾱ(a)〉 = sinα |2 +1, a〉AA′ − cosα |2, a +1〉AA′ (A.7)

for a = 0, . . . , N ′
−1;

|α(a)〉 = cosα |2 +1, a〉AA′ + sinα |3 +1, a − 1〉AA′ , (A.8)

|ᾱ(a)〉 = sinα |2 +1, a〉AA′ − cosα |3 +1, a − 1〉AA′ , (A.9)
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for a = N ′
−1+ 1, . . . , N ′. These observables are compatible with the SSR because all the

eigenstates contain a fixed total number of particles 2 + a +1. The reason behind the three
different cases is that the reference subsystem cannot contain more than N ′ particles and less
than zero. They are also chosen to form an orthonormal set of vectors. To obtain the observables
of Bob one just needs to replace A → B, A′

→ B ′, α → β and a → b.
We reverse the equations for the eigenvectors and write the initial state of the principal

system and the reference as

|ψφ〉 =

∑
i

ri
√

2
{(sinα|αi−1〉 − cosα|ᾱi−1〉)(cosβ|βN ′−i〉 + sinβ|β̄N ′−i〉)

+ (cosα|αi〉 + sinα|ᾱi〉)(sinβ|βN ′−i−1〉 − cosβ|β̄N ′−i−1〉)}. (A.10)

The probabilities of the results corresponding to different eigenvectors are

Pab ≡ |〈α(a)β(b)|ψφ〉|
2
=

1
2 |ra+1 sinα cosβ + ra cosα sinβ|

2δb,N ′−a−1,

Pab̄ ≡ |〈α(a)β̄(b)|ψφ〉|
2
=

1
2 |ra+1 sinα sinβ − ra cosα cosβ|

2δb,N ′−a−1,

Pāb ≡ |〈ᾱ(a)β(b)|ψφ〉|
2
=

1
2 | − ra+1 cosα cosβ + ra sinα sinβ|

2δb,N ′−a−1,

Pāb̄ ≡ |〈ᾱ(a)β̄(b)|ψφ〉|
2
=

1
2 | − ra+1 cosα sinβ − ra sinα cosβ|

2δb,N ′−a−1.

Note that for every a there is only one b for which the corresponding probability does not vanish,
and it is easy to verify that indeed

∑N ′

a,b=−1(Pab + Pab̄ + Pāb + Pāb̄)= 1. Finally, the correlation
function is the average of the product of dichotomic local results

Eφ(α, β)=

N∑
a,b=−1

(Pab + Pāb̄ − Pāb − Pab̄). (A.11)

Plugging in the formulae for the probabilities, we obtain

Eφ(α, β)= − cos(2α) cos(2β)+V sin(2α) sin(2β), (A.12)

where V =
∑N ′

−1

a=0 Re(r∗

a+1ra). Alternatively V can be expressed using operators R+ =∑N ′
−1

a=0 |a +1〉〈a| and R− =
∑N ′

b=1 |b −1〉〈b| with the help of which V = Re(〈φ| R+ ⊗ R− |φ〉).
This calculation holds for arbitrary pure state |φ〉A′ B ′ of the reference. Therefore, for the
reference in an arbitrary mixed state ρA′ B ′ =

∑
φ pφ |φ〉A′ B ′〈φ| the correlations formula reads

E(α, β)=

∑
φ

pφEφ(α, β), (A.13)

and therefore it is of the same form as equation (A.12), but with the modified coherence
parameter

V = Re[Tr(R+ ⊗ R−ρA′ B ′)]. (A.14)
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