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A B S T R A C T

A significant number of wind turbines will reach the end of their planned service life in the near future. A
decision on lifetime extension is complex and experiences to date are limited. This review presents the current
state-of-the-art for lifetime extension of onshore wind turbines in Germany, Spain, Denmark, and the UK.
Information was gathered through a literature review and 24 guideline-based interviews with key market
players. Technical, economic and legal aspects are discussed. Results indicate that end-of-life solutions will
develop a significant market over the next five years. The application of updated load simulation and inspections
for technical lifetime extension assessment differs between countries. A major concern is the uncertainty about
future electricity spot market prices, which determine if lifetime extension is economically feasible.

1. Introduction

In 2016, 12% of the installed wind turbine capacity in Europe was
older than 15 years. This share increases to 28% by 2020 [1]. These
wind turbines will soon reach the end of their designed service life,
which is typically 20 years. As a consequence, the wind industry needs
to prepare for upcoming challenges, such as maintenance of aging as-
sets, assessment of structural integrity, lifetime extension decision
making, and decommissioning of turbines. Lifetime extension is ap-
pealing in that it can increase returns on investment of existing projects,
but experiences to date are limited.

Operators must decide which option is best for their aging wind
farms; options include: i) lifetime extension, ii) repowering, and iii)
decommissioning of the site. Technical, economic and legal aspects
drive the decision-making process. For lifetime extension, wind tur-
bines must have sufficient structural life remaining that their safety
level is not compromised. In addition, wear-out of components trans-
lates into higher operation and maintenance (O &M) costs and turbine
downtime. Wind farm operators must sell the produced energy at the
spot market or find bi-lateral agreements if no governmental subsidies
exist. Changes in legislation prohibit repowering of some existing wind
farm sites. Uncertainties make the decision process complex and only

very limited literature is presently available.
On the technical side, recommendations for lifetime extension as-

sessment were recently published by DNV GL [2], UL [3], Megavind
[4], and the German Association of Wind Energy [5]. Holzmüller [6]
applied generic aero-elastic models of onshore wind turbines to reassess
fatigue loading in line with site-specific conditions. Ziegler and Musk-
ulus [7] performed fatigue reassessment for offshore wind turbines.
Loraux and Brühwiler [8] analysed two years of strain gauge mea-
surements from a wind turbine tower and estimated the remaining fa-
tigue life with this data set. The importance of load measurement
campaigns to accurately depict the effect of wakes from neighboring
turbines on the remaining fatigue lifetime was stressed by Karlina-
Barber et al. [9]. On the economics side, drivers of lifetime extension
were discussed by Rubert et al. [10]. Luengo and Kolios [11] review
different end-of-life scenarios. A decision model on the optimal time to
switch from lifetime extension to repowering was presented by Ziegler
et al. [12]. To the knowledge of the authors, no study on the interaction
of technical, economic, and legal aspects has so far been published.

The objective of this paper is to investigate the current trends,
challenges, and research needs relating to lifetime extension of wind
turbines. In order to achieve this goal, this paper reviews the current
state-of-the-art for lifetime extension of onshore wind turbines based on
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available scientific literature, standards and guidelines, together with
qualitative interviews with key market players. A comprehensive
overview of the market as well as technical, economic, and legal aspects
of lifetime extension is presented for the selected countries of Germany,
Spain, Denmark, and the UK. Furthermore, the practice of technical
assessment and decision-making is compared between the countries.
Five challenges and further needs for research are derived from the
results.

The remainder of this paper is organised as follows. Section 2 de-
scribes the research methodology combining literature review and ex-
pert interviews with country-specific market players. Background in-
formation on the wind energy market is presented in Section 3 for each
country. Section 4 presents results on lifetime extension as an outcome
of the review of scientific literature and standards; technical, economic,
and legal aspects are discussed. The design of the expert interviews and
achieved results are presented in Section 5. Results are discussed in
Section 6 and conclusions presented in Section 7.

2. Research methodology

Publicly accessible sources like standards, scientific articles, and
reports contain limited information on the current lifetime extension
practice within the wind industry. To overcome this shortcoming, fur-
ther data is gathered through the consultation of experts in the field
using a consistent interview template. Fig. 1 illustrates the research
approach, which combines a thorough literature review with expert
interviews in order to collect information on the state-of-the-art of
lifetime extension.

Germany, Spain, Denmark, and the UK were selected for the study
since lifetime extension is either important for them today due to the
age of the fleet (Denmark, Germany, Spain) or will be in the near future
(UK). In addition, these countries have rather different contexts in
terms of their subsidy schemes, legislation, market structure and scar-
city of sites, which is expected to influence the application of lifetime
extension. Further information on the market characteristics of these
countries is given in Sections 3 and 4.

3. Background on wind turbines at end-of-life

In 2015, Germany, Spain, and the UK had the largest cumulative
installed wind capacity in Europe [1]. In Denmark, the installed wind
capacity is comparatively less due to its smaller geographical area.
Denmark, however, is leading in terms of the wind energy contribution
to the national electricity consumption with 42.1% in 2015 [1]. Al-
though the countries selected for this study are pioneers in wind energy,
their industry developed differently over the past years. The annual
installed capacity in Germany is still increasing, while in Denmark,

Spain and the UK it is decreasing [1]. This reduction is driven by
changes in political incentives, scarcity of sites for wind farm devel-
opment in the case of Denmark, and problems with public acceptance as
for example in the case of the UK [13]. In Spain, almost no new wind
turbines have been installed since 2013 due to a drastic change of
legislation, referred to as ‘Energy Reform’. The new regulation entailed
a complete removal of subsidies and incentives, such as the prior feed-
in tariff and feed-in premium schemes [14,15]. In summary, despite
Europe’s 2030 renewable energy targets, new installations are dropping
at a time when the fleet is aging.

Currently, Denmark, Germany and Spain have a significant capacity
of old wind farms connected to the grid that are now facing the end of
their planned service life. The situation is as follows:

– In 2016, roughly 3400 wind turbines had exceeded 20 years of
operational life in Germany [16].

– The situation in Denmark is similar with 1250 turbines being older
than 20 years in 2016 [17].

– More than 500 turbines had completed their 20-year lifetime in
Spain in 2016, and this will increase to more than 4200 turbines in
2020 [18].

– In the UK only 19 onshore wind farms have exceeded 20 years of
operation as of November 2016: of these eleven are still in operation
(through lifetime extension), two were decommissioned, and five
projects were repowered [19,20]. No public information was
available for the one remaining wind farm. In total fourteen re-
powering projects have been completed or approved in the UK since
2010 [21].

The future age distribution of installed wind capacity almost looks
dramatic. By 2020, 41% of the currently installed capacity in Germany
will be over 15 years old, 44% in Spain, and 57% in Denmark. The UK
has a comparatively younger fleet with a share of 10% of the current
installed capacity that will be older than 15 years in 2020. These
numbers refer to a scenario for 2020 projected from the installed ca-
pacity of the year 2016 without considering future installations.

Fig. 2 illustrates the annual number of wind turbines that will reach
the end of their planned service life in Germany, Spain, Denmark, and
the UK. It is clear that there is a significant market for end-of-life so-
lutions for Germany, Denmark and Spain over the next decade, fol-
lowed by the UK after 2024. For these countries, around 2000-4000
turbines per year will either need to be life extended, repowered or
decommissioned.

In addition, Fig. 3 illustrates the rated power of turbines that reach
their end of design lifetime at present and in near future. In 2016,
turbines considered for lifetime extension were rated below 1 MW.
From 2020 onwards, larger turbines will reach their 20th year of op-
eration. In the future, it is expected that technology will progress less
rapidly than over the past decades. Advances between existing and
potentially repowered turbines diminish as time progresses and make
lifetime extension more attractive.

Fig. 1. Research methodology. Information of the current status of lifetime extension is
gathered through a review of literature and qualitative expert interviews.

Fig. 2. Number of onshore wind turbines reaching 20-years of operation annually in
Denmark, Germany, Spain and the UK. Data sources [16–18,22].
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4. Literature review on lifetime extension

4.1. Key market players

Lifetime extension involves interests and competences of various
players within the industry. Operators see the potential to increase re-
turn on investments in existing wind parks. On the other hand, they are
responsible for the structural safety of their assets. Operators need to
mitigate risks of an increase of failure rates of aged wind turbines
causing additional downtime and expenses for repair. Wind turbine
manufacturers have detailed knowledge regarding turbine design and
share an interest in O &M strategies. They are able to execute site-
specific assessments during project development phases to estimate the
lifetime extension potential. Governmental organizations are concerned
with the health and safety of citizens and are further challenged with
implementation of renewable energy targets. Such institutions have to
choose which incentives are suitable to achieve objectives. Certifying
agencies provide security for investors and contribute to delivering op-
erational safety. There is an emerging service market aimed at pro-
viding expert reviews for technical lifetime extension assessments. The
safety reputation of wind energy technology is a major concern for the
entire industry.

4.2. Technical aspects

4.2.1. Design lifetime, structural safety and remaining useful lifetime
Wind turbines are designed to withstand operational and environ-

mental loading for a specified design lifetime with an appropriate
structural safety level. The design lifetime should be at least 20 years
according to the International Electrotechnical Commission (IEC)
standard [23]. Target safety levels specify an acceptable annual prob-
ability of structural failure. Safety levels are achieved by verification of
ultimate and fatigue strength of the material against loading. Both,
loading and material strength, are multiplied with partial safety factors
[23]. According to DNV GL [2] and UL [3] the focus for lifetime ex-
tension is on the fatigue limit state. It is not necessary to reassess ul-
timate limit states when site conditions are less harsh than design as-
sumptions.

Wind turbines are dynamic systems exposed to aerodynamic loading
and quasi-periodic excitation from the rotor. Structural components
typically face between 108 and 109 load cycles over their lifetime. Load
cycles are compared to material SN-curves for the design of load-car-
rying components of the wind turbine [24,25]. SN-curves specify the
number of cycles that a material can endure at a certain stress range
until failure. The failure criterion is typically defined when a fatigue
crack penetrates through the thickness of the specimen. Loading is
calculated using structural dynamics models of the wind turbine with
environmental conditions as input [23]. The operational environment
of wind turbines is complex with turbulent wind fields, wind shear,
wind veer, gusts, and wakes from surrounding turbines. Local condi-
tions can differ significantly from one site to another (e.g. terrain
complexity, neighboring wind farms, obstacles, atmospheric stability,
etc.). Wind turbines are type certified according to IEC classes in order
to simplify and standardize design and manufacture [23]. If a wind
turbine is installed at a specific site, local wind conditions are assessed
beforehand. The suitable wind turbine IEC class is determined so that
local conditions do not exceed those used for turbine certification.

If a wind turbine is operating under more benign environmental

conditions than defined in the corresponding IEC class, remaining
structural reserves can be left at the end of the design lifetime. In ad-
dition, structural reserves may arise if the capacity factor and opera-
tional hours of a turbine are below design assumptions. The time until
structural reserves are consumed while maintaining the target safety
level is denoted Remaining Useful Lifetime (RUL). As all load-carrying
components have different RULs, the lowest one defines the potential
for lifetime extension. Replacement of critical component may increase
the RUL of the overall system.

Non-load carrying components do not endanger structural safety
under the assumption that they do not cause critical cascade effects.
Nevertheless, wear out of these components can increase failure rates.
This results in higher costs for maintenance and repair in addition to
production losses from turbine downtime. Ziegler et al. [12] showed
that the business case for lifetime extension is very sensitive to mod-
elling of wear out and failure rates. Bathtub curve models divide the
operational life of repairable systems into early failures, constant failure
rates, and wear out [26]. These models have been applied to wind
turbines [27,28]; however, their applicability is questionable due to
complexity of the system [29].

4.2.2. Technical lifetime extension assessments
The option of lifetime extension must be based on the operating

conditions of the turbine during its design lifetime. Technical assess-
ments are needed to determine the RUL and ensure that target safety
levels for the wind turbine are maintained during lifetime extension. All
load-carrying components must be considered. Technical lifetime ex-
tension assessment can be analytical (simulation), practical (inspec-
tion), and/ or data-driven (measurements) [2,5].

The analytical assessment is typically an updated load simulation
undertaken using an aero-elastic model of the wind turbine [2]. Fatigue
assessments are made for the original design basis and also for site-
specific environmental conditions. The difference between these results
is an estimate of the RUL available for lifetime extension. Ideally, the
analytical assessment should use original design models calibrated with
on-site measurements. In practice, a generic turbine model is often used
because the original design assumptions are not available due to con-
fidentiality. A generic turbine model approximates the real structure
where design information is not available (e.g. rotor geometry, con-
troller settings, modal parameters) [5]. Cooperation from turbine
manufacturer is required for sharing of type certificates and other de-
sign information. The industry recognizes that generic models must

– use state-of-art for aero-elastic simulations,
– represent structural dynamics appropriately, and
– include uncertainty assessments and safety factors [3].

A reference project considered a 600 kW turbine assessed by eight
independent experts using generic models; it showed acceptable
agreement, however details were not disclosed [5]. On the other hand,
sensitivity studies have shown that changes to the control system of
wind turbines can significantly influence loading and fatigue life
[30–32]. An overview of the effect of control strategies on service
lifetime is given by Beganovic and Söffker [33]. Today, experimental
measurements are not performed to validate generic models due to cost
reasons. Large errors can occur in the calculation of RUL if model as-
sumptions are invalid, e.g. due to undetected rotor imbalances [32].
Short-term load measurement campaigns can help to reduce

Fig. 3. Rated power of turbines reaching 20-years
lifetime today and in the next five, ten and 15 years
in Denmark, Germany, Spain and the UK. Data
sources [16–18,22].
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uncertainty with limited expenditure [9,34].
Site-specific conditions needed as input for the analytical method

are

– environmental conditions: distribution of wind speed and direction,
turbulence intensity (ambient and wake), wind shear, air density,
and

– operational conditions: turbine availability, number of shut-downs
and start-ups [5].

If these data are not available, conservative assumptions can be
made [5]. Some of this data can be accessed from the Supervisory
Control And Data Acquisition (SCADA) system. SCADA systems are
used for control and performance monitoring of wind turbines [35]. For
modern turbines, SCADA data is readily available at no additional cost.
It must be used carefully as sensors might not be calibrated accurately
and are subject to degradation over time [36]. Measurements from
nacelle anemometers and power outputs are included in SCADA data by
default. This may be used to reconstruct operational conditions and the
wind history at hub height. However, nacelle anemometers are influ-
enced by the rotor and the reliability of the reproduction of free stream
wind velocities depends on the quality of its calibration [36,37]. The
accuracy of turbulence intensity data obtained from the nacelle an-
emometer is questionable [38]. Ambient turbulence intensity can be
determined from short-term meteorological mast data with long-term
corrections based on statistical analysis [39]. Wake-added turbulence
can be calculated using the Frandsen wake model [23,40]. Environ-
mental data is always affected by uncertainty. Toft et al. [41] estimate
the coefficient of variation for wind speed (3–7%), ambient turbulence
intensity (7–9%), wake effects (10–20%), and air density (3%). For the
5 MW National Renewable Energy Laboratory (NREL) turbine uncertain
wind conditions were found to contribute 1–3% to the total uncertainty
of fatigue damage equivalent loads [41]. Uncertainty in material re-
sistance and other factors were observed as more important. The source
code for the aero-elastic model from the 5 MW wind turbine developed
by NREL is publicly available and broadly accepted by the scientific
community for research purposes.

Practical assessment comprises a detailed inspection of the turbine
and review of its maintenance history. Details of components, failure
modes, and inspection methods are given in [4]. The analytical method
is able to quantify RUL, while practical methods can only confirm the
current health status and may predict near future failures. Assessments
using only practical methods must thus be repeated periodically [42].

The availability of data determines which assessment approach is
applicable for lifetime extension. MegaVind [4] outlines four scenarios:
(I) no design basis or operational measurements, (II) design basis but no
operational measurements, (III) design basis with operational mea-
surements, and (IV) design basis with operational and load measure-
ments. Data-driven assessments are important for lifetime extension in
categories III and IV. Data-driven assessments can be categorised into
approaches using data from the operational phase and approaches that
require temporary or permanent installation of additional sensors.
Operational measurements are typically represented in SCADA data,
such as turbine availability, power production, yaw direction, compo-
nent status, etc. Today's research focuses on the use of SCADA data for

condition monitoring and fault detection [43]. For example, Gonzalez
and Melero [44,45] scrutinised high-frequency SCADA data to monitor
the performance of wind turbines. Further studies are needed to address
the use of SCADA data in technical assessment of lifetime extension. In
order to measure loads or monitor the health of structural components,
additional sensors are required. Monitoring of load histories enables a
direct comparison between design loads and occurred loads in order to
calculate RUL [46]. Several techniques exist for structural health
monitoring which are either local (monitoring of a specific component)
or global (vibration-based monitoring of the entire structure). Struc-
tural health monitoring aims to fulfil four goals which are given in
ascending order of difficulty: detection, localization, quantification, and
prediction of damage. Further information on structural health mon-
itoring is given in [33,47,48].

4.3. Economic aspects

4.3.1. Operators and operational costs
In Germany and Denmark wind farms are generally owned by small

operators with few assets, whilst in Spain the majority of wind turbines
are owned by a handful of large operators, namely Iberdrola, Acciona
Energía, EDP Renováveis, and Enel Green Power [49]. This has a sig-
nificant impact on the lifetime extension strategy as larger operators
have more operational data available. Moreover, they have extensive
experience with older assets in their fleet and benefit from a holistic
fleet assessment approach. Danish operators have low costs for O &M
compared to the other countries [50]. This may be due to generally
good wind conditions of Danish sites and economies of scale, but also
due to low fixed and variable costs. In Germany, O &M costs in years
11–20 were approximately 10% higher than for years 1–10 according to
[51].

Important market characteristics for the four countries are sum-
marised in Table 1. O &M costs are given as a sum of fixed costs (ad-
ministration, insurance, maintenance contracts, grid fees, land lease,
etc) and variable costs (expenses for non-covered maintenance, repair,
material, labour) in agreement with [50].

4.3.2. Subsidy schemes
In Germany, wind energy subsidies are regulated by the Renewable

Energy Act [55]. Wind farms commissioned before April 2000 receive a
fixed feed-in tariff until 2020 regardless of the asset age. This means
that all wind farms operating in lifetime extension remain subsidised by
the fixed feed-in tariff until 2020. After 2020, all lifetime extended
wind farms are required to sell their electricity at the spot market.
Turbines commissioned after 2000 are guaranteed a fixed feed-in tariff
for only 20 years. Thus, they are dependent on the energy spot market
as soon as they enter lifetime extension (or even before if the design
lifetime is above 20 years). Since January 2016 the subsidy depends on
the amount of newly installed capacity in order to limit annual growth
to 2.8 GW [55]. The latest change of the Renewable Energy Act in-
troduces a tender model starting in 2017 [56].

At present, the wind industry in Spain is subject to a significant
degree of uncertainty. In 2012, the Spanish government suspended
previous economic incentives by abolishing the remuneration scheme
applied for ‘Special Regime’ production facilities (including

Table 1
Characteristics of the wind energy market in Germany, Spain, Denmark, and the UK.

Parameter Sources Germany Spain Denmark UK

Installed capacity [GW] (2015) [1] 45 23 5.1 13.6
% of electricity consumption (2015) [51,52] 9.7% 17.9% 42.1% 13.3%
O&M costs [cent/kWh] (2013–14) [50,53] 3.1 2.9 1.7 2.8
Operators [54] Many/ small Few/ large Many/ small Many/ small-large
Site availability – Limited Many Limited Many
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cogeneration, waste and renewable energy plants) [14,57]. This re-
sulted in stagnation of the wind industry (cf. Section 3). Spain’s current
remuneration scheme is set in the Law 24/2013 [58]. This scheme
retroactively modified the remuneration of existing and future projects,
based on a theoretical concept of ‘reasonable profit’; the profitability is
fixed by law at 7.5% throughout the whole regulated lifetime of the
project. According to this scheme, energy is sold at the spot market and
might be supplemented if the level of ‘reasonable profit’ is not reached.
Each regulatory period lasts for 6 years, but estimates of revenues and
profitability might be revised every 3 years. In practice, lifetime ex-
tension, repowering and investments in new wind farms face the same
economic environment. In each scenario, the investor/operator has to
cope with the uncertainty of the spot market price.

In Denmark, wind turbines commissioned after January 2014 are
guaranteed a bonus payment per kWh on top of the market price
(‘premium tariff’) [59]. The regulation for turbines commissioned be-
fore 2014 depends on the date of connection and turbine size. In gen-
eral, the premium tariff is either limited to 10 years or a pre-defined
number of full load hours [59]. Entering lifetime extension does not
change the economics of aging turbines in Denmark as their electricity
is sold on the spot-market beforehand.

In the UK, fixed feed-in tariffs are only applicable for wind farms with
a total capacity of less than 5 MW. Feed-in tariffs are guaranteed for 20
years but rates have been decreasing constantly since 2012 [60]. Wind
farms above 5 MW are subsidised under the renewable obligation (RO)
scheme introduced in 2002. For onshore wind farms the RO scheme was
terminated in 2016 with a grace period active until 2019 [10,61]. Sub-
sidies for existing wind turbines under the RO scheme will potentially
continue until 2037 (independent of turbine age). A change towards a
fixed RO pricing is agreed by the government and scheduled for market
introduction in 2027 [62]. A contract for difference (CfD) regime was
introduced in 2015 which is comparable to the future auctions in Ger-
many [10,63]. Subsidies from the tender system are only guaranteed for
15 years; lifetime extension and repowering are not considered.

In summary, electricity generation during lifetime extension is not
subsidised in Denmark and Spain. Germany will face the same situation
from 2020 onwards. In these cases, the electricity spot market de-
termines the revenue during lifetime extension. Fig. 4 shows the de-
velopment of spot prices in Germany, Spain, Denmark, and the UK over
the past four years. Markets in Germany and Denmark experienced a
decrease in price level. Yearly average spot prices changed up to
15€/MWh between 2012 and 2015. These fluctuations make the busi-
ness case uncertain. A fixed-price for the next ten years is estimated
as 22€/MWh in Denmark [4]. This is below the current price level
and shows that market players are pessimistic about future price de-
velopments.

4.4. Legal aspects

4.4.1. Legal requirements for lifetime extension
Requirements for lifetime extension are country-specific as there is

no international regulation in place. Wind turbines are type certified for
their design lifetime [23]. Once this type certification expires, turbines
are governed by country-specific regulations to ensure structural safety
during any period of lifetime extension (if available). Fig. 5 illustrates
legal requirements for Germany, Spain, Denmark and the UK.

In Denmark, certification of wind turbines is regulated in Executive
Order No. 73 [42]. It requires that wind turbines subjected to lifetime
extension must receive extended service inspections from certified
companies. Such inspections must consider all structural components
and cover at minimum:

– annual inspections of the machine frame, tower, foundation for
cracks, main shaft for dents and rust, yaw bearing for wear, and
inspection and tightening of bolts, as well as

– a visual inspection of rotor blades every three years [42].

In Germany, wind turbines are classified as fixed structures and
require certification of structural safety. This is regulated in the stan-
dard for wind turbines by the German institute for construction tech-
nology (DIBt) [71]. This standard requires an assessment of structural
stability for lifetime extension and refers to the Germanische Lloyd
‘Guideline for the Continued Operation of Wind Turbines’ [72]. The
Germanische Lloyd guideline is now replaced by [2] but the link to it in
the DIBt document remains valid. In addition, DIBt requires that an
independent, qualified expert performs the lifetime extension assess-
ment based on an analytical as well as practical approach [72].

In contrast to Denmark and Germany, there is no official guidance
that regulates lifetime extension in Spain and the UK. The general
regulatory framework for industrial safety applies, independent of the
age of the wind farm.

4.4.2. Regulations for repowering
The goal of repowering is to replace old wind turbines with a new

generation that have higher energy yields and improved ancillary ser-
vices such as frequency response that can contribute to the stability of
the power system. Repowering is important if a country faces a scarcity
of sites with suitable wind conditions, such as in Germany and Denmark
(cf. Section 3). This was part of the political motivation for repowering
subsidies. However, today no political repowering subsidies exist in
Germany, Spain, Denmark, and the UK. Repowering bonuses were re-
moved in Germany in 2014 [73] and 2016 in the UK (grace period until
2019) [10]. In Spain, repowering bonuses were announced in the Re-
newable Energy Plan PER 2011–2020 [74], but never materialised due
to subsequent suspension of the plan. Repowering projects are similar
to new projects apart from the available grid connection and historical
records of wind conditions. Repowering projects require the same detail
of documentation and due diligence, such as environmental impact
assessments, legal consent, and public acceptance.

Sites with existing wind farms are often impossible to repower due
to lack of availability of the site, legal consent, changes in subsidies,
environmental protection, public acceptance, or insufficient wind con-
ditions. From the technical side, new turbines may result in modified
spacing to accommodate wakes. In Germany, the state of Bavaria in-
troduced in 2014 a regulation that sets a new minimum distance of ten
times the tip-height between a wind turbine and the closest residential
areas [75]. In the UK, the repowering market is now ‘more or less gone’
[21] due to the termination of the RO scheme (although the RO scheme
is still open until 2019 for sites with planning permission received prior
to the 18th of June 2015). Repowering was discussed as an alternative
in Spain by Colmenar-Santos et al. [76], leading to the conclusion that
it appears to be a feasible option within a specific technical and re-
munerative framework. Repowering needs long-term financial stability
and legal security to justify investment. Unfortunately, Spain presently
suffers from significant political instability and uncertainty that in
practice undermines repowering as an option [15,54].

Fig. 4. Development of spot prices at the electricity market for Germany, Spain, Denmark
and the UK in €/MWh [64–70].
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5. Expert interviews

5.1. Design of interviews

Expert interviews were used to supplement information gathered
from literature review presented in the previous section. Guideline-
based expert interviews were chosen as a qualitative research method.
Qualitative research is commonly applied in social sciences if quanti-
tative methods are not feasible due to the lack of available data and
their representativeness [77,78]. Lifetime extension is still an immature
industry and sufficient data to allow statistical analysis is not yet
available.

Bogner et al. [79] grouped expert interviews into three categories:
exploratory, systemizing, and theory generating. Exploratory inter-
views are guided openly and aim to provide a framework of a new
research field. Systemizing interviews use structured guidelines to re-
construct knowledge with the target to be comparable, repeatable, and
complete. Theory generating interviews collocate specialised knowl-
edge from highly experienced professionals [79]. The reader is referred
to [77,79] for details on qualitative research and expert interviews.

In this study, the interviews were designed following the steps il-
lustrated in Fig. 6 (left). The research question was to compare the
current industrial practice of lifetime extension in the wind industry
between Germany, Spain, Denmark, and the UK. Therefore, the objec-
tive of the interviews was to identify motivations for lifetime extension,
technical assessments, activities to understand the health status of the
asset, and decision making and uncertainties for each country.

This study applies systemizing expert interviews so that results are
comparable between countries. An interview guideline was developed
consisting of introductory questions, filtering questions, and key ques-
tions [80]. Each question is followed-up with a specified question in
order to systemize participant’s responses while keeping the interview
adaptable to the expert’s specialization area. Table 2 presents the in-
terview guideline and exemplar responses from an expert. The inter-
view guideline was summarised into keywords for a comprehensive
overview in this paper.

In this study, wind energy experts are defined to have more than
three years of working experience. Experts must currently be working
in an organization that deals with an aspect of lifetime extension such
as remaining useful lifetime calculations, inspection, monitoring, fi-
nancing, and certification. A list of potential interview partners was
developed with the goal to cover different market players.

Overall, 36 suitable candidates were contacted via email, telephone
and one to one meetings. The initial contact introduced the research
objectives, use of data, a summarised interview guideline, as well as the
partners and funding bodies of the study. As an incentive for partici-
pation, the interviewed experts were promised a report of the study and
an executive summary containing relevant results. The response rate
was 66.7%, hence 24 experts agreed to be interviewed. The interviewed
experts worked in the following sectors: operators (8), developers and
independent experts (6), wind turbine manufacturers (4), certifying

agencies (2) and other institutions (4). In total 22 of the interviewed
candidates are currently involved in projects dealing with lifetime ex-
tension. The companies of the remaining two interviewees have no
projects on lifetime extension so far. However, they have run case
studies and consider this as a field for future business development.
Project experiences of the selected experts included operation and
maintenance of lifetime extended wind turbines, technical assessments,
commercial evaluation of business cases, and the development of
guidelines and standards. Fig. 6 (right, top) shows the distribution of
the working experience; on average, participants have worked 10.5
years in the wind industry. 23 out of 24 interviewees (96%) have a
Master of Science or Master of Engineering degree (or equivalent); one
interviewee has a Bachelor degree. Although having a technical back-
ground, the majority of interviewees work now in high-level manage-
ment. The remaining participants were senior engineers, project man-
agers, and advisors. Statistics for job categories of the interviewees are
presented in the bottom right of Fig. 6.

The interviews took on average 45 min. 71% of the interviews were
conducted via phone and 29% through one to one meeting. The inter-
views were transcribed by handwritten notes into a structured template
according to the interview guideline. Interview results were compared
with data from literature and standards or guidelines whenever pos-
sible. Results of the interviews were sent back to all interviewed experts
for feedback.

5.2. Interview results

5.2.1. Motivation for lifetime extension
The interviews revealed two settings for which lifetime extension is

relevant: (I) for existing wind farms approaching the end of their design
lifetime and (II) for new projects.

Overall, the motivation for existing wind farms is similar for all
countries:

1. Interviewees agreed that the driving motivation for lifetime exten-
sion is to maximize the return on investment.

2. Lifetime extension is mainly performed when the site is impossible
or uneconomic to repower (cf. Section 4.4.2).

3. Public acceptance for lifetime extension of existing wind farms is
perceived to have less local opposition than repowering with larger
rotors and hub heights. This argument was mainly stressed by par-
ticipants from the UK.

4. Refinancing of wind projects was mentioned to ensure pay back of
borrowed capital by modification of interest rates.

In Germany, the guaranteed feed-in tariff until 2020 is a large
motivation for lifetime extension. This is similar for British wind farms
under the RO scheme until 2027/2037. In Spain, wind farms are not
governed under any form of subsidy during lifetime extension but the
situation is comparable to new wind farms. Since new wind projects are
more capital intensive than lifetime extension, the latter was stated as

Fig. 5. Legal requirements for lifetime extension in Germany,
Denmark, Spain, and the UK.
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the preferred option in the interviews. Scarcity of available sites with
good wind conditions in Germany and Denmark is a driver for repow-
ering, while there are still suitable sites available in Spain and the UK.

Regarding new wind farms, the majority of interviewees stated that
it is important to know the total service life possible for their assets in
order to fit contracts for financing of capital, land lease, and grid con-
nection. The turbine manufacturer may offer an estimation of the total

operational time at a specific site. Planning for extended service dura-
tion is also seen as a competitive advantage for lowering the price bid in
tender systems, in agreement with previous publications [10].

5.2.2. Lifetime extension assessment performed in Germany, Spain,
Denmark, and the UK

The interviews revealed large differences on how lifetime extension

Director
Head of Department
Project Manager
Senior Engineer
Advisor

Fig. 6. Left: Flowchart of the design of expert interviews. Right, top: Years of working experience of interviewed experts in the wind industry. Right, bottom: Distribution of job categories
of participants.

Table 2
Interview guideline, paired with an example of participants' responses that are transformed into keywords. The guideline consists of introductory questions (intro), filtering questions
(filter), key questions (key), and follow up questions.

Type Content Follow-up questions Exemplar responses

Intro Name, country, job title Focus on technical or commercial aspects John Doe, Germany, Senior Engineer
Filter Role of company in lifetime

extension
Selection from list of 10 categories Operator, OEM, certification body

Filter Motivation for lifetime extension Focus on operating assets or future projects Increase return on investment of operating assets
Filter Experience with lifetime extension Technical assessments, internal decisions, financial

transactions, or due diligence
Internal decision of an operator for an aging wind park

Key Maintenance Preventive, predictive, corrective maintenance Preventive and corrective maintenance
Full or partial service contracts Full service contract with OEM
Record of O &M history Logbook available for every turbine

Key Monitoring Type and target values SCADA, no load or vibration monitoring
Key Assessment of RUL Parties involved Independent expert, OEM

Data used, data sources, uncertainty Wind conditions, SCADA, logbook
Models used Design model not available, use of generic turbine model
Costs 10000€ for single turbine

Key Retrofit Critical components Tightening of bolts required
Key Certification Application Report for structural stability, no certification

Motivation Certification not required
Use of standards/ guidelines Application of DNV GL guideline required through DIBt

Key Decision making Factors in decision making RUL, site impossible to repower
Selection of three most important uncertainties from list of 12 Future market price electricity, performance degradation,

availability of spare parts
Difficulties and concerns Access to design information

Key Investments Technical, commercial, legal Report for structural stability
Key Outlook Developments needed Data-driven assessments
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assessments are performed. The differences are driven by country-spe-
cific regulations (cf. Section 4.3 and 4.4), policies of operators, as well
as the extent of their assets. Key findings are summarised in Table 3.

The assessment structure in Germany is set by legal requirements.
For Spain, a similar assessment approach was reported which is moti-
vated by (I) reduction of risk on structural safety and (II) more certainty
for financial planning as the total RUL is obtained from analytical as-
sessment. Interview partners stated that the use of original design
models for analytical assessments is not feasible due to confidentiality
of turbine manufacturers. The common approach was to consult an
independent expert who does the assessment using a generic model of
the turbine. Verification and validation of the generic models are still
unsolved issues in practice.

Feedback from the UK was scattered as some parties use load re-
assessment. The majority, however, seem to focus on practical assess-
ment supported by analysis of the history of environmental condition
and maintenance incidents. In Denmark, it is common practice to use
only practical assessments for cost reasons. Practical inspections cannot
confirm that target safety levels are maintained during lifetime exten-
sion. A comparison of loads and material properties is needed for this.
According to the interview feedback, inspections are repeated periodi-
cally if no analytical assessment is made.

Experimental measurements are rarely performed, as this is hardly
cost-effective. The interviewees confirmed that the level of data avail-
able for lifetime extension projects today is typically either category (I)
no design basis or operational measurements or category (II) design
basis but no operational measurements (cf. Section 4.2.2). Small-size
wind turbines (below 1 MW rated power) approaching lifetime exten-
sion today often have no continuous backup of SCADA data. Partici-
pants from Germany stated that data-driven assessments do not play a
role in practice up to now as insufficient data is available.

5.2.3. Health status and maintenance of assets
The health status of wind turbines depends critically on both site

environmental conditions and maintenance strategy. Interviewees
confirm a good knowledge of asset health after 15 years of operation.
Turbine and site specific issues are well known and prognosis of future
O &M costs is not seen as a major challenge. Interviewed operators
estimate slightly increasing O &M costs for aging assets, in agreement
with published data [51] and bathtub curve models [26].

Maintenance of wind turbines is either performed by the original
turbine manufacturer, a maintenance provider or directly in-house by
the operator. Maintenance contracts may consist of full or partial cov-
erage. No clear trend towards either type could be identified between
the interview participants. Interviewees stated, however, that standard
full maintenance contracts are not affordable for lifetime extension.
Suggested alternatives are to exclude the guarantee for large compo-
nents and make the contract terminable at any point in case a major
investment is needed. Maintenance audits are uncommon; operators

rely on their O &M contracts.
Typical maintenance activities include performance monitoring

using SCADA data, preventive maintenance with routine inspections,
and corrective maintenance after failure. One interviewee used high-
frequency SCADA data (sampling interval between 1 and 10 s). The
remaining interviewees either had only access to 10-min statistics or no
SCADA data at all for turbines below 1 MW rated power. Predictive
maintenance based on operational data is desirable but still in the early
stages of commercialization. A good record of O &M including failure
occurrences is understood as an advantage for faster, cheaper and more
reliable lifetime extension assessment.

5.2.4. Decision and uncertainties
The decision on lifetime extension is influenced by (I) the technical

asset health status, (II) requirements for lifetime extension, (III) reg-
ulations for repowering, and (IV) subsidy schemes for existing as well as
new wind farms. The end-of-life situation requires a decision between
lifetime extension of the old wind farm, repowering with a new set of
wind turbines, and decommissioning of the site. If the site is suitable for
repowering (cf. Section 4.4.2), the optimal point in time to replace old
turbines has to be determined. If repowering is not possible, lifetime
extension should be assessed. The key questions is whether operational
costs are balanced by revenues for the produced energy assuming that
capital costs are paid back at the end of the design lifetime. Revenues
either come from subsidies or the electricity market directly (cf. Section
4.3.2).

The technical assessment indicates the possible period for lifetime
extension from a structural safety point of view (cf. Section 4.2). In-
terview partners emphasised the following uncertainties on the tech-
nical side amongst others: original design assumptions and on-site wind
conditions (turbulence intensity, wind speed). Increase of failure rates
of non-load carrying components can make lifetime extension un-
economic. Uncertainty about future failure rates was not a major con-
cern of operators. Since lifetime extension requires only low invest-
ments, a common approach is to terminate turbine operation if costly
repairs become necessary.

On the economic side, large uncertainty regarding electricity market
prices was seen as most critical. Uncertainty in annual energy produc-
tion was stated to be well below market price uncertainties. If the
market price is below 3 cent/kWh, continued operation of small wind
turbines is considered infeasible by the majority of interviewed parties.
Concerns of the interview participants regarding lifetime extension are
summarised in Table 4.

6. Discussion

The executed study revealed a lack of certainty regarding lifetime
extension decision making. German interviewees see a potential for
lifetime extension until 2020. However, they are sceptical what

Table 3
Lifetime extension assessments performed in industry today (compiled from interviews).

Parameter Germany & Spain Denmark UK

Analytical assessment Use of generic aero-elastic turbine models to reassess fatigue loading
for specific sites

– Assessment of wind history; occasionally load
analysis

Practical Assessment Extended inspection; O &M history
Approach Individual assessment of every turbine
Monitoring SCADA; No short-term load measurements or monitoring, (few exceptions)
Assayer Independent expert (DE: legally required, ESP: voluntary) Maintenance provider certified In-house quality assurance
Frequency Analytical part performed once; Inspection scope may be

periodically
Annually Every 3–5 years

Advantages Analytical part gives long-term RUL Avoid costs of load analysis
Limitations Estimated costs 5000–15000€ for single turbine (DE); no cost data

available for Spain
Estimated costs 1500€ per
turbine

No cost data available

Assessment cannot predict long-term RUL
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happens to the market after subsidies vanish. Lifetime extension is
primarily important for sites without the ability to repower since sub-
sidies for new wind farms remain economically attractive today. The
situation is the opposite in Spain, where lifetime extension is labelled as
‘the only option’ due to a lack of incentives for new wind farms. In the
UK, repowering is not considered as a viable future option due to the
termination of the RO scheme, and hence wind farms which are already
subsidised under the RO scheme are attractive for lifetime extension.

This leads to the conclusion that countries with favourable legal and
economic conditions for repowering (e.g. profitable subsidy schemes
for new wind farms, scarcity of sites, etc.) and with market prices of
electricity uneconomic for small wind turbines are likely to experience
less interest in lifetime extension in the next years. On the other hand,
interest in lifetime extension is expected to increase in countries where
conditions for new wind parks are unfavourable. Technical assessments
performed for lifetime extension vary across the countries investigated.
The form of assessment used is either determined by legal requirements
(Germany, Denmark) or by the internal motivations of market players
regarding risk management and financial planning if legal requirements
are absent (Spain, UK). It is expected that there will be further con-
solidation of the industry towards consistent assessment methods as
more guidelines are emerging.

6.1. Limitations

The main limitation of the current study is the lack of quantitative
data. Quantitative results could not be presented since limited experi-
ence in the field does not offer sufficient data for statistical analysis. In
addition, technical and economic project performance is often con-
fidential, highly case-specific and cannot be generalised. The study
showed that there is no clear approach for lifetime extension; concepts
differ considerably in their details. This made it impossible to quantify
existing concepts. Literature on the topic of lifetime extension was very
limited making it necessary to supplement this review with information
gathered by qualitative expert interviews. A weakness of the executed
interviews is that only a small database of experts was interviewed due
to the limited availability of suitable experts. Once the lifetime exten-
sion market matures, a larger database may be established by trans-
forming the personal interviews into online surveys. In addition, in-
terviews are prone to response bias, interaction between interviewer
and interviewee, and communication difficulties. The interview
guideline was designed to overcome these weaknesses. For example,
filtering questions were used to identify subjectivity of the experts due
to their job positions and interests of the companies.

The study is limited to the status of lifetime extension in Germany,
Spain, Denmark, and the UK. Results show that the motivation and
assessments for lifetime extension are strongly linked to country-spe-
cific aspects, such as the subsidy scheme, repowering characteristics,
and legal requirements. Care must be taken when generalizing the re-
sults to other countries not investigated in this study.

6.2. Challenges and research needs

Results from literature and interviews indicate that there are still
significant challenges regarding lifetime extension of wind turbines.

The key challenges identified are uncertainties regarding lifetime ex-
tension assessments and market prices (cf. Section 5.2.4). This leads to
several research needs as discussed in the following.

1. What level of detail is needed in technical lifetime extension as-
sessment in order to balance costs and benefits? This study revealed
that there is no consensus at present. Lifetime extension requires a
precise business case considering the expected revenues of less than
3 cent/kWh in future electricity markets. Sophisticated assessments
might not be economically feasible. Future research should address
the question of how target safety levels can be maintained with
minimum expenditure. Can inspection-only strategies fulfil this
goal? Must generic models be validated? How accurate are lifetime
extension estimates taken in the pre-build phase by manufacturers?

2. How are long-term site conditions obtained reliably and cost-effec-
tively? Methodologies to determine site conditions from long-term
operational turbine data should be improved. SCADA data is at-
tractive for this as it is readily available. Further research is needed
to assess the potential of new measurement devices such as lidar
[81] and spinner anemometers [82].

3. How should a data-driven approach to lifetime extension assessment
best be undertaken? Data-driven assessment can be favourable if
cost-effective or if analytical approaches do not provide sufficiently
accurate estimates of RUL. This is the case when large safety factors
are required due to uncertainties in the analytical assessment.
Structural health monitoring can help to identify additional struc-
tural reserves.

4. How can lifetime extension be profitable if wind farms are exposed
to the electricity market without subsidy? Both levers – decreasing
operational costs and increasing revenues – should be addressed
here. The optimization of maintenance concepts for aging turbines is
an identified key aspect where predictive maintenance has a key
role. Future research should examine operational strategies that
optimize the economic value of produced power rather than simply
maximizing power production. Examples are preferential operation
of turbines during high market prices, or load reduction strategies.

5. How are future experiences with lifetime extension to be used ef-
fectively? Current as well as upcoming lifetime extension experience
may help to reduce uncertainty on the degradation and failure rates
of aging turbines. Ideally, these experiences will be well docu-
mented in a database. Furthermore, international standardization of
methodologies for lifetime extension assessment is important to
promote its practice.

7. Conclusions and outlook

The market for end-of-life solutions is still in its infancy, but is ex-
pected to grow significantly in the next five years. Germany and
Denmark are leading the consolidation of industry towards a consistent
technical lifetime extension assessment process initiated by legal re-
quirements. The German procedure (analytical and practical assess-
ment) is costlier than the Danish inspection based approach.

Analytical assessment is performed using structural models and real
site conditions in order to verify the safety level of turbine components.
The use of generic models is problematic if calibration data is missing.

Table 4
Concerns of interviewees regarding lifetime extension projects.

Technical Economic Others

• Missing documentation

• Access to design information

• Wind history

• Change of wind conditions due to new surrounding wind farms and
other changes in the neighbourhood

• Uncertainty in electricity market
price

• Unavailability of spare parts

• Costs of non-load carrying parts

• Unclear authority requirements

• Extension of land lease

• Security of maintenance technicians

• Negative image for wind industry from potential failure
due to low-quality assessments
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Real site conditions are difficult to obtain using cost-effective methods.
Data-driven methodologies can complement or even substitute for
analytical models but more research is needed to obtain low-cost so-
lutions. The practical approach can only confirm the current health
status of the wind turbine but not the level of structural safety or RUL.

Standardised procedures to document the operational history of the
wind turbine and site conditions, access to design data (e.g. inclusion in
purchase agreement), and stable and clear legal frameworks would help
in deciding on lifetime extension of aging wind farms. The business case
of lifetime extension is driven by the electricity spot market price,
which is uncertain. This is a major concern of the interview partici-
pants. New O&M strategies are needed to maintain turbines at their
optimal health and to reduce loads on turbine components during op-
eration.

Today’s procedure for lifetime extension assessment suits smaller
turbines (less than 1 MW) with limited monitoring data, and large
structural reserves. Future wind turbines reaching their end of life will
increase in size as time progresses, and are part of larger wind farms.
This may increase the attractiveness of lifetime extension since opera-
tional costs can be reduced due to economies of scale. On the other
hand, new challenges will arise, since:

• Modern turbine are more optimal due to improved design.
Consequently, these turbines have reduced structural margins. The
search for RUL will require increasingly detailed and accurate
analysis.

• It is doubtful that design information will be available for large-scale
turbines in order to calibrate generic models. Larger turbines are
more sensitive to dynamic excitation from the rotor and settings of
the controller, which increases the importance of validation of
generic models. Both matters complicate analytical assessments.

• Detailed operational data is readily available for modern wind tur-
bines. New methodologies to process this data for lifetime extension
purposes are needed.

• The individual assessment approach is not cost-effective as new
wind farms increase in size. Data-driven approaches may be able to
reduce costs of lifetime extension assessments. The importance of
data-driven approaches increases further when operators have a
larger number of similar assets.
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