% This programme will generate graphs for both the velocities and the
% signal amplitudes for the virgin samples
% Copyright David Paterson, University of Strathclyde, Glasgow, UK.
% Reuse or reuse with editing is permitted but must cite the author of this work.
% David A.P. Paterson, "Life Cycle and Ultrasonic Based Non-Destructive Analysis of Recycled and Remanufactured Carbon Fibre Reinforced Plastic Composite",
% Doctoral Thesis, Univeristy of Strathclyde, Glasgow, 2018
%======================== Velocities ======================================================================================================
%This part of the programme documents the sample velocities
%======================== Velocities ======================================================================================================
%This part of the programme will allow the user to select which sample velocities to use or even the average of all samples
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 1 %%%%%%%%%%%%%%%
Sample1_1_2_VL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample1_1_2_VT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment
%Incident Angle = [9,10,11,12,13,14,15,16 etc...]
Sample1_1_3_VL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample1_1_3_VT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 1 %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 2 %%%%%%%%%%%%%%%
Sample2_1_2_VL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample2_1_2_VT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment
%Incident Angle = [9,10,11,12,13,14,15,16 etc...]
Sample2_1_3_VL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample2_1_3_VT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 2 %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 3 %%%%%%%%%%%%%%%
Sample3_1_2_VL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample3_1_2_VT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment
%Incident Angle = [9,10,11,12,13,14,15,16 etc...]
Sample3_1_3_VL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample3_1_3_VT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 3 %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 4 %%%%%%%%%%%%%%%
Sample4_1_2_VL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample4_1_2_VT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment
%Incident Angle = [9,10,11,12,13,14,15,16 etc...]
Sample4_1_3_VL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample4_1_3_VT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 4 %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Average velocities %%%%%%%%%%%
AvgExp_VL_1_2 = ((Sample1_1_2_VL + Sample2_1_2_VL + Sample3_1_2_VL + Sample4_1_2_VL)/4); %Average velocites from all sample measurements
AvgExp_VT_1_2 = ((Sample1_1_2_VT + Sample2_1_2_VT + Sample3_1_2_VT + Sample4_1_2_VT)/4); %Average velocites from all sample measurements
AvgExp_VL_1_3 = ((Sample1_1_3_VL + Sample2_1_3_VL + Sample3_1_3_VL + Sample4_1_3_VL)/4); %Average velocites from all sample measurements
AvgExp_VT_1_3 = ((Sample1_1_3_VT + Sample2_1_3_VT + Sample3_1_3_VT + Sample4_1_3_VT)/4); %Average velocites from all sample measurements
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Average velocities %%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Velocity graph %%%%%%%%%%%%%%%%%%%%
% These graphs need to match the array sizes of the velocities recorded above in order for programme to execute correctly
NewIncident = 0:45;
%%%%%%%%%%%% 1-2 plane virgin sample 1 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(17)= Sample1_1_2_VT(1); % this gives VQT at incident angle of 16 degrees
ExpVqt(18)= Sample1_1_2_VT(2); % this gives VQT at incident angle of 17 degrees
ExpVqt(19)= Sample1_1_2_VT(3); % this gives VQT at incident angle of 18 degrees
ExpVqt(20)= Sample1_1_2_VT(4); % this gives VQT at incident angle of 19 degrees
ExpVqt(21)= Sample1_1_2_VT(5); % this gives VQT at incident angle of 20 degrees
ExpVqt(22)= Sample1_1_2_VT(6); % this gives VQT at incident angle of 21 degrees
ExpVqt(25)= Sample1_1_2_VT(7); % this gives VQT at incident angle of 24 degrees
ExpVqt(28)= Sample1_1_2_VT(8); % this gives VQT at incident angle of 27 degrees
ExpVqt(31)= Sample1_1_2_VT(9); % this gives VQT at incident angle of 30 degrees
ExpVqt(34)= Sample1_1_2_VT(10); % this gives VQT at incident angle of 33 degrees
ExpVqt(37)= Sample1_1_2_VT(11); % this gives VQT at incident angle of 36 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample1_1_2_VL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(4)= Sample1_1_2_VL(2); % this gives VQT at incident angle of 3 degrees
ExpVl(7)= Sample1_1_2_VL(3); % this gives VQT at incident angle of 6 degrees
ExpVl(10)= Sample1_1_2_VL(4); % this gives VQT at incident angle of 9 degrees
ExpVl(13)= Sample1_1_2_VL(5); % this gives VQT at incident angle of 12 degrees
ExpVl(15)= Sample1_1_2_VL(6); % this gives VQT at incident angle of 14 degrees
ExpVl(16)= Sample1_1_2_VL(7); % this gives VQT at incident angle of 15 degrees
figure (1) % graph of experimental transverse velocity
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 100 3500]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('Wave velocity'); % Labels the y axis
title('Experimental velocity against incident angle for plane 1-2 virgin CFRP sample 1') % Labels the graph
%%%%%%%%%%%% 1-2 plane virgin sample 1 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-3 plane virgin sample 1 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(6)= Sample1_1_3_VT(1); % this gives VQT at incident angle of 5 degrees
ExpVqt(7)= Sample1_1_3_VT(2); % this gives VQT at incident angle of 6 degrees
ExpVqt(9)= Sample1_1_3_VT(3); % this gives VQT at incident angle of 8 degrees
ExpVqt(11)= Sample1_1_3_VT(4); % this gives VQT at incident angle of 10 degrees
ExpVqt(13)= Sample1_1_3_VT(5); % this gives VQT at incident angle of 12 degrees
ExpVqt(15)= Sample1_1_3_VT(6); % this gives VQT at incident angle of 14 degrees
ExpVqt(17)= Sample1_1_3_VT(7); % this gives VQT at incident angle of 16 degrees
ExpVqt(19)= Sample1_1_3_VT(8); % this gives VQT at incident angle of 18 degrees
ExpVqt(21)= Sample1_1_3_VT(9); % this gives VQT at incident angle of 20 degrees
ExpVqt(23)= Sample1_1_3_VT(10); % this gives VQT at incident angle of 22 degrees
ExpVqt(25)= Sample1_1_3_VT(11); % this gives VQT at incident angle of 24 degrees
ExpVqt(27)= Sample1_1_3_VT(12); % this gives VQT at incident angle of 26 degrees
ExpVqt(29)= Sample1_1_3_VT(13); % this gives VQT at incident angle of 28 degrees
ExpVqt(31)= Sample1_1_3_VT(14); % this gives VQT at incident angle of 30 degrees
ExpVqt(33)= Sample1_1_3_VT(15); % this gives VQT at incident angle of 32 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample1_1_3_VL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(3)= Sample1_1_3_VL(2); % this gives VQT at incident angle of 2 degrees
ExpVl(4)= Sample1_1_3_VL(3); % this gives VQT at incident angle of 3 degrees
ExpVl(5)= Sample1_1_3_VL(4); % this gives VQT at incident angle of 4 degrees
%ExpVl(6)= Sample1_1_3_VL(5); % this gives VQT at incident angle of 5 degrees
figure (2)
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 100 3500]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('Wave velocity'); % Labels the y axis
title('Experimental velocity against incident angle for plane 1-3 virgin CFRP sample 1') % Labels the graphs
%%%%%%%%%%%% 1-3 plane virgin sample 1 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-2 plane virgin sample 2 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(17)= Sample2_1_2_VT(1); % this gives VQT at incident angle of 16 degrees
ExpVqt(18)= Sample2_1_2_VT(2); % this gives VQT at incident angle of 17 degrees
ExpVqt(19)= Sample2_1_2_VT(3); % this gives VQT at incident angle of 18 degrees
ExpVqt(20)= Sample2_1_2_VT(4); % this gives VQT at incident angle of 19 degrees
ExpVqt(21)= Sample2_1_2_VT(5); % this gives VQT at incident angle of 20 degrees
ExpVqt(22)= Sample2_1_2_VT(6); % this gives VQT at incident angle of 21 degrees
ExpVqt(25)= Sample2_1_2_VT(7); % this gives VQT at incident angle of 24 degrees
ExpVqt(28)= Sample2_1_2_VT(8); % this gives VQT at incident angle of 27 degrees
ExpVqt(31)= Sample2_1_2_VT(9); % this gives VQT at incident angle of 30 degrees
ExpVqt(34)= Sample2_1_2_VT(10); % this gives VQT at incident angle of 33 degrees
ExpVqt(37)= Sample2_1_2_VT(11); % this gives VQT at incident angle of 36 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample2_1_2_VL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(4)= Sample2_1_2_VL(2); % this gives VQT at incident angle of 3 degrees
ExpVl(7)= Sample2_1_2_VL(3); % this gives VQT at incident angle of 6 degrees
ExpVl(10)= Sample2_1_2_VL(4); % this gives VQT at incident angle of 9 degrees
ExpVl(13)= Sample2_1_2_VL(5); % this gives VQT at incident angle of 12 degrees
ExpVl(15)= Sample2_1_2_VL(6); % this gives VQT at incident angle of 14 degrees
ExpVl(16)= Sample2_1_2_VL(7); % this gives VQT at incident angle of 15 degrees
figure (3) % graph of experimental transverse velocity
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 100 3500]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('Wave velocity'); % Labels the y axis
title('Experimental velocity against incident angle for plane 1-2 virgin CFRP sample 2') % Labels the graph
%%%%%%%%%%%% 1-2 plane virgin sample 2 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-3 plane virgin sample 2 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(6)= Sample2_1_3_VT(1); % this gives VQT at incident angle of 5 degrees
ExpVqt(7)= Sample2_1_3_VT(2); % this gives VQT at incident angle of 6 degrees
ExpVqt(9)= Sample2_1_3_VT(3); % this gives VQT at incident angle of 8 degrees
ExpVqt(11)= Sample2_1_3_VT(4); % this gives VQT at incident angle of 10 degrees
ExpVqt(13)= Sample2_1_3_VT(5); % this gives VQT at incident angle of 12 degrees
ExpVqt(15)= Sample2_1_3_VT(6); % this gives VQT at incident angle of 14 degrees
ExpVqt(17)= Sample2_1_3_VT(7); % this gives VQT at incident angle of 16 degrees
ExpVqt(19)= Sample2_1_3_VT(8); % this gives VQT at incident angle of 18 degrees
ExpVqt(21)= Sample2_1_3_VT(9); % this gives VQT at incident angle of 20 degrees
ExpVqt(23)= Sample2_1_3_VT(10); % this gives VQT at incident angle of 22 degrees
ExpVqt(25)= Sample2_1_3_VT(11); % this gives VQT at incident angle of 24 degrees
ExpVqt(27)= Sample2_1_3_VT(12); % this gives VQT at incident angle of 26 degrees
ExpVqt(29)= Sample2_1_3_VT(13); % this gives VQT at incident angle of 28 degrees
ExpVqt(31)= Sample2_1_3_VT(14); % this gives VQT at incident angle of 30 degrees
ExpVqt(33)= Sample2_1_3_VT(15); % this gives VQT at incident angle of 32 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample2_1_3_VL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(3)= Sample2_1_3_VL(2); % this gives VQT at incident angle of 2 degrees
ExpVl(4)= Sample2_1_3_VL(3); % this gives VQT at incident angle of 3 degrees
ExpVl(5)= Sample2_1_3_VL(4); % this gives VQT at incident angle of 4 degrees
%ExpVl(6)= Sample2_1_3_VL(5); % this gives VQT at incident angle of 5 degrees
figure (4)
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 100 3500]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('Wave velocity'); % Labels the y axis
title('Experimental velocity against incident angle for plane 1-3 virgin CFRP sample 2') % Labels the graphs
%%%%%%%%%%%% 1-3 plane virgin sample 2 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-2 plane virgin sample 3 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(17)= Sample3_1_2_VT(1); % this gives VQT at incident angle of 16 degrees
ExpVqt(18)= Sample3_1_2_VT(2); % this gives VQT at incident angle of 17 degrees
ExpVqt(19)= Sample3_1_2_VT(3); % this gives VQT at incident angle of 18 degrees
ExpVqt(20)= Sample3_1_2_VT(4); % this gives VQT at incident angle of 19 degrees
ExpVqt(21)= Sample3_1_2_VT(5); % this gives VQT at incident angle of 20 degrees
ExpVqt(22)= Sample3_1_2_VT(6); % this gives VQT at incident angle of 21 degrees
ExpVqt(25)= Sample3_1_2_VT(7); % this gives VQT at incident angle of 24 degrees
ExpVqt(28)= Sample3_1_2_VT(8); % this gives VQT at incident angle of 27 degrees
ExpVqt(31)= Sample3_1_2_VT(9); % this gives VQT at incident angle of 30 degrees
ExpVqt(34)= Sample3_1_2_VT(10); % this gives VQT at incident angle of 33 degrees
ExpVqt(37)= Sample3_1_2_VT(11); % this gives VQT at incident angle of 36 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample3_1_2_VL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(4)= Sample3_1_2_VL(2); % this gives VQT at incident angle of 3 degrees
ExpVl(7)= Sample3_1_2_VL(3); % this gives VQT at incident angle of 6 degrees
ExpVl(10)= Sample3_1_2_VL(4); % this gives VQT at incident angle of 9 degrees
ExpVl(13)= Sample3_1_2_VL(5); % this gives VQT at incident angle of 12 degrees
ExpVl(15)= Sample3_1_2_VL(6); % this gives VQT at incident angle of 14 degrees
ExpVl(16)= Sample3_1_2_VL(7); % this gives VQT at incident angle of 15 degrees
figure (5) % graph of experimental transverse velocity
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 100 3500]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('Wave velocity'); % Labels the y axis
title('Experimental velocity against incident angle for plane 1-2 virgin CFRP sample 3') % Labels the graph
%%%%%%%%%%%% 1-2 plane virgin sample 3 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-3 plane virgin sample 3 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(6)= Sample3_1_3_VT(1); % this gives VQT at incident angle of 6 degrees
ExpVqt(7)= Sample3_1_3_VT(2); % this gives VQT at incident angle of 6 degrees
ExpVqt(9)= Sample3_1_3_VT(3); % this gives VQT at incident angle of 8 degrees
ExpVqt(11)= Sample3_1_3_VT(4); % this gives VQT at incident angle of 10 degrees
ExpVqt(13)= Sample3_1_3_VT(5); % this gives VQT at incident angle of 12 degrees
ExpVqt(15)= Sample3_1_3_VT(6); % this gives VQT at incident angle of 14 degrees
ExpVqt(17)= Sample3_1_3_VT(7); % this gives VQT at incident angle of 16 degrees
ExpVqt(19)= Sample3_1_3_VT(8); % this gives VQT at incident angle of 18 degrees
ExpVqt(21)= Sample3_1_3_VT(9); % this gives VQT at incident angle of 20 degrees
ExpVqt(23)= Sample3_1_3_VT(10); % this gives VQT at incident angle of 22 degrees
ExpVqt(25)= Sample3_1_3_VT(11); % this gives VQT at incident angle of 24 degrees
ExpVqt(27)= Sample3_1_3_VT(12); % this gives VQT at incident angle of 26 degrees
ExpVqt(29)= Sample3_1_3_VT(13); % this gives VQT at incident angle of 28 degrees
ExpVqt(31)= Sample3_1_3_VT(14); % this gives VQT at incident angle of 30 degrees
ExpVqt(33)= Sample3_1_3_VT(15); % this gives VQT at incident angle of 32 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample3_1_3_VL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(3)= Sample3_1_3_VL(2); % this gives VQT at incident angle of 2 degrees
ExpVl(4)= Sample3_1_3_VL(3); % this gives VQT at incident angle of 3 degrees
ExpVl(5)= Sample3_1_3_VL(4); % this gives VQT at incident angle of 4 degrees
%ExpVl(6)= Sample3_1_3_VL(5); % this gives VQT at incident angle of 5 degrees
figure (6)
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 100 3500]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('Wave velocity'); % Labels the y axis
title('Experimental velocity against incident angle for plane 1-3 virgin CFRP sample 3') % Labels the graphs
%%%%%%%%%%%% 1-3 plane virgin sample 3 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-2 plane virgin sample 4 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(17)= Sample4_1_2_VT(1); % this gives VQT at incident angle of 16 degrees
ExpVqt(18)= Sample4_1_2_VT(2); % this gives VQT at incident angle of 17 degrees
ExpVqt(19)= Sample4_1_2_VT(3); % this gives VQT at incident angle of 18 degrees
ExpVqt(20)= Sample4_1_2_VT(4); % this gives VQT at incident angle of 19 degrees
ExpVqt(21)= Sample4_1_2_VT(5); % this gives VQT at incident angle of 20 degrees
ExpVqt(22)= Sample4_1_2_VT(6); % this gives VQT at incident angle of 21 degrees
ExpVqt(25)= Sample4_1_2_VT(7); % this gives VQT at incident angle of 24 degrees
ExpVqt(28)= Sample4_1_2_VT(8); % this gives VQT at incident angle of 27 degrees
ExpVqt(31)= Sample4_1_2_VT(9); % this gives VQT at incident angle of 30 degrees
ExpVqt(34)= Sample4_1_2_VT(10); % this gives VQT at incident angle of 33 degrees
ExpVqt(37)= Sample4_1_2_VT(11); % this gives VQT at incident angle of 36 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample4_1_2_VL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(4)= Sample4_1_2_VL(2); % this gives VQT at incident angle of 3 degrees
ExpVl(7)= Sample4_1_2_VL(3); % this gives VQT at incident angle of 6 degrees
ExpVl(10)= Sample4_1_2_VL(4); % this gives VQT at incident angle of 9 degrees
ExpVl(13)= Sample4_1_2_VL(5); % this gives VQT at incident angle of 12 degrees
ExpVl(15)= Sample4_1_2_VL(6); % this gives VQT at incident angle of 14 degrees
ExpVl(16)= Sample4_1_2_VL(7); % this gives VQT at incident angle of 15 degrees
figure (7) % graph of experimental transverse velocity
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 100 3500]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('Wave velocity'); % Labels the y axis
title('Experimental velocity against incident angle for plane 1-2 virgin CFRP sample 4') % Labels the graph
%%%%%%%%%%%% 1-2 plane virgin sample 4 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-3 plane virgin sample 4 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(6)= Sample4_1_3_VT(1); % this gives VQT at incident angle of 6 degrees
ExpVqt(7)= Sample4_1_3_VT(2); % this gives VQT at incident angle of 6 degrees
ExpVqt(9)= Sample4_1_3_VT(3); % this gives VQT at incident angle of 8 degrees
ExpVqt(11)= Sample4_1_3_VT(4); % this gives VQT at incident angle of 10 degrees
ExpVqt(13)= Sample4_1_3_VT(5); % this gives VQT at incident angle of 12 degrees
ExpVqt(15)= Sample4_1_3_VT(6); % this gives VQT at incident angle of 14 degrees
ExpVqt(17)= Sample4_1_3_VT(7); % this gives VQT at incident angle of 16 degrees
ExpVqt(19)= Sample4_1_3_VT(8); % this gives VQT at incident angle of 18 degrees
ExpVqt(21)= Sample4_1_3_VT(9); % this gives VQT at incident angle of 20 degrees
ExpVqt(23)= Sample4_1_3_VT(10); % this gives VQT at incident angle of 22 degrees
ExpVqt(25)= Sample4_1_3_VT(11); % this gives VQT at incident angle of 24 degrees
ExpVqt(27)= Sample4_1_3_VT(12); % this gives VQT at incident angle of 26 degrees
ExpVqt(29)= Sample4_1_3_VT(13); % this gives VQT at incident angle of 28 degrees
ExpVqt(31)= Sample4_1_3_VT(14); % this gives VQT at incident angle of 30 degrees
ExpVqt(33)= Sample4_1_3_VT(15); % this gives VQT at incident angle of 32 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample4_1_3_VL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(3)= Sample4_1_3_VL(2); % this gives VQT at incident angle of 2 degrees
ExpVl(4)= Sample4_1_3_VL(3); % this gives VQT at incident angle of 3 degrees
ExpVl(5)= Sample4_1_3_VL(4); % this gives VQT at incident angle of 4 degrees
%ExpVl(6)= Sample4_1_3_VL(5); % this gives VQT at incident angle of 5 degrees
figure (8)
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 100 3500]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('Wave velocity'); % Labels the y axis
title('Experimental velocity against incident angle for plane 1-3 virgin CFRP sample 4') % Labels the graphs
%%%%%%%%%%%% 1-3 plane virgin sample 4 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-2 plane virgin average %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(17)= AvgExp_VT_1_2(1); % this gives VQT at incident angle of 16 degrees
ExpVqt(18)= AvgExp_VT_1_2(2); % this gives VQT at incident angle of 17 degrees
ExpVqt(19)= AvgExp_VT_1_2(3); % this gives VQT at incident angle of 18 degrees
ExpVqt(20)= AvgExp_VT_1_2(4); % this gives VQT at incident angle of 19 degrees
ExpVqt(21)= AvgExp_VT_1_2(5); % this gives VQT at incident angle of 20 degrees
ExpVqt(22)= AvgExp_VT_1_2(6); % this gives VQT at incident angle of 21 degrees
ExpVqt(25)= AvgExp_VT_1_2(7); % this gives VQT at incident angle of 24 degrees
ExpVqt(28)= AvgExp_VT_1_2(8); % this gives VQT at incident angle of 27 degrees
ExpVqt(31)= AvgExp_VT_1_2(9); % this gives VQT at incident angle of 30 degrees
ExpVqt(34)= AvgExp_VT_1_2(10); % this gives VQT at incident angle of 33 degrees
ExpVqt(37)= AvgExp_VT_1_2(11); % this gives VQT at incident angle of 36 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= AvgExp_VL_1_2(1); % this gives VQT at incident angle of 0 degrees
ExpVl(4)= AvgExp_VL_1_2(2); % this gives VQT at incident angle of 3 degrees
ExpVl(7)= AvgExp_VL_1_2(3); % this gives VQT at incident angle of 6 degrees
ExpVl(10)= AvgExp_VL_1_2(4); % this gives VQT at incident angle of 9 degrees
ExpVl(13)= AvgExp_VL_1_2(5); % this gives VQT at incident angle of 12 degrees
ExpVl(15)= AvgExp_VL_1_2(6); % this gives VQT at incident angle of 14 degrees
ExpVl(16)= AvgExp_VL_1_2(7); % this gives VQT at incident angle of 15 degrees
figure (9) % graph of experimental transverse velocity
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 500 3500]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('Wave velocity'); % Labels the y axis
title('Experimental velocity against incident angle for plane 1-2 virgin CFRP average') % Labels the graph
%%%%%%%%%%%% 1-2 plane virgin average %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-3 plane virgin average %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(6)= AvgExp_VT_1_3(1); % this gives VQT at incident angle of 6 degrees
ExpVqt(7)= AvgExp_VT_1_3(2); % this gives VQT at incident angle of 6 degrees
ExpVqt(9)= AvgExp_VT_1_3(3); % this gives VQT at incident angle of 8 degrees
ExpVqt(11)= AvgExp_VT_1_3(4); % this gives VQT at incident angle of 10 degrees
ExpVqt(13)= AvgExp_VT_1_3(5); % this gives VQT at incident angle of 12 degrees
ExpVqt(15)= AvgExp_VT_1_3(6); % this gives VQT at incident angle of 14 degrees
ExpVqt(17)= AvgExp_VT_1_3(7); % this gives VQT at incident angle of 16 degrees
ExpVqt(19)= AvgExp_VT_1_3(8); % this gives VQT at incident angle of 18 degrees
ExpVqt(21)= AvgExp_VT_1_3(9); % this gives VQT at incident angle of 20 degrees
ExpVqt(23)= AvgExp_VT_1_3(10); % this gives VQT at incident angle of 22 degrees
ExpVqt(25)= AvgExp_VT_1_3(11); % this gives VQT at incident angle of 24 degrees
ExpVqt(27)= AvgExp_VT_1_3(12); % this gives VQT at incident angle of 26 degrees
ExpVqt(29)= AvgExp_VT_1_3(13); % this gives VQT at incident angle of 28 degrees
ExpVqt(31)= AvgExp_VT_1_3(14); % this gives VQT at incident angle of 30 degrees
ExpVqt(33)= AvgExp_VT_1_3(15); % this gives VQT at incident angle of 32 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= AvgExp_VL_1_3(1); % this gives VQT at incident angle of 0 degrees
ExpVl(3)= AvgExp_VL_1_3(2); % this gives VQT at incident angle of 2 degrees
ExpVl(4)= AvgExp_VL_1_3(3); % this gives VQT at incident angle of 3 degrees
ExpVl(5)= AvgExp_VL_1_3(4); % this gives VQT at incident angle of 4 degrees
%ExpVl(6)= AvgExp_VL_1_3(5); % this gives VQT at incident angle of 5 degrees
figure (10)
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 500 3500]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('Wave velocity'); % Labels the y axis
title('Experimental velocity against incident angle for plane 1-3 virgin CFRP average') % Labels the graphs
%%%%%%%%%%%% 1-3 plane virgin average %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Velocity graph %%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Amplitude graph %%%%%%%%%%%%%%%%%%%%
%This part of the programme will allow the user to select which sample velocities to use or even the average of all samples%This part of the programme documents the sample velocities
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 1 %%%%%%%%%%%%%%%
Sample1_1_2_AL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample1_1_2_AT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment
%Incident Angle = [9,10,11,12,13,14,15,16 etc...]
Sample1_1_3_AL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample1_1_3_AT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 1 %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 2 %%%%%%%%%%%%%%%
Sample2_1_2_AL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample2_1_2_AT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment
%Incident Angle = [9,10,11,12,13,14,15,16 etc...]
Sample2_1_3_AL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample2_1_3_AT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 2 %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 3 %%%%%%%%%%%%%%%
Sample3_1_2_AL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample3_1_2_AT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment
%Incident Angle = [9,10,11,12,13,14,15,16 etc...]
Sample3_1_3_AL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample3_1_3_AT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 3 %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 4 %%%%%%%%%%%%%%%
Sample4_1_2_AL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample4_1_2_AT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment
%Incident Angle = [9,10,11,12,13,14,15,16 etc...]
Sample4_1_3_AL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
Sample4_1_3_AT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment
%Incident Angle = [0,1,2,3,4,5,6,7,8 etc...]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 4 %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Average velocities %%%%%%%%%%%
AvgExp_AL_1_2 = ((Sample1_1_2_VL + Sample2_1_2_VL + Sample3_1_2_VL + Sample4_1_2_VL)/4); %Average velocites from all sample measurements
AvgExp_AT_1_2 = ((Sample1_1_2_VT + Sample2_1_2_VT + Sample3_1_2_VT + Sample4_1_2_VT)/4); %Average velocites from all sample measurements
AvgExp_AL_1_3 = ((Sample1_1_3_VL + Sample2_1_3_VL + Sample3_1_3_VL + Sample4_1_3_VL)/4); %Average velocites from all sample measurements
AvgExp_AT_1_3 = ((Sample1_1_3_VT + Sample2_1_3_VT + Sample3_1_3_VT + Sample4_1_3_VT)/4); %Average velocites from all sample measurements
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Average velocities %%%%%%%%%%%%
% %===================================== AMPLITUDE GRAPHS ==================================
% These graphs need to match the array sizes of the amplitudes recorded above in order for programme to execute correctly
%%%%%%%%%%%% 1-2 plane virgin sample 1 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(17)= Sample1_1_2_AT(1); % this gives VQT at incident angle of 16 degrees
ExpVqt(18)= Sample1_1_2_AT(2); % this gives VQT at incident angle of 17 degrees
ExpVqt(19)= Sample1_1_2_AT(3); % this gives VQT at incident angle of 18 degrees
ExpVqt(20)= Sample1_1_2_AT(4); % this gives VQT at incident angle of 19 degrees
ExpVqt(21)= Sample1_1_2_AT(5); % this gives VQT at incident angle of 20 degrees
ExpVqt(22)= Sample1_1_2_AT(6); % this gives VQT at incident angle of 21 degrees
ExpVqt(25)= Sample1_1_2_AT(7); % this gives VQT at incident angle of 24 degrees
ExpVqt(28)= Sample1_1_2_AT(8); % this gives VQT at incident angle of 27 degrees
ExpVqt(31)= Sample1_1_2_AT(9); % this gives VQT at incident angle of 30 degrees
ExpVqt(34)= Sample1_1_2_AT(10); % this gives VQT at incident angle of 33 degrees
ExpVqt(37)= Sample1_1_2_AT(11); % this gives VQT at incident angle of 36 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample1_1_2_AL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(4)= Sample1_1_2_AL(2); % this gives VQT at incident angle of 3 degrees
ExpVl(7)= Sample1_1_2_AL(3); % this gives VQT at incident angle of 6 degrees
ExpVl(10)= Sample1_1_2_AL(4); % this gives VQT at incident angle of 9 degrees
ExpVl(13)= Sample1_1_2_AL(5); % this gives VQT at incident angle of 12 degrees
ExpVl(15)= Sample1_1_2_AL(6); % this gives VQT at incident angle of 14 degrees
ExpVl(16)= Sample1_1_2_AL(7); % this gives VQT at incident angle of 15 degrees
figure (11) % graph of experimental transverse velocity
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 50 2000]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('mV'); % Labels the y axis
title('Amplitude against incident angle for plane 1-2 virgin CFRP sample 1') % Labels the graph
%%%%%%%%%%%% 1-2 plane virgin sample 1 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-3 plane virgin sample 1 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(7)= Sample1_1_3_AT(1); % this gives VQT at incident angle of 6 degrees
ExpVqt(9)= Sample1_1_3_AT(2); % this gives VQT at incident angle of 8 degrees
ExpVqt(11)= Sample1_1_3_AT(3); % this gives VQT at incident angle of 10 degrees
ExpVqt(13)= Sample1_1_3_AT(4); % this gives VQT at incident angle of 12 degrees
ExpVqt(15)= Sample1_1_3_AT(5); % this gives VQT at incident angle of 14 degrees
ExpVqt(17)= Sample1_1_3_AT(6); % this gives VQT at incident angle of 16 degrees
ExpVqt(19)= Sample1_1_3_AT(7); % this gives VQT at incident angle of 18 degrees
ExpVqt(21)= Sample1_1_3_AT(8); % this gives VQT at incident angle of 20 degrees
ExpVqt(23)= Sample1_1_3_AT(9); % this gives VQT at incident angle of 22 degrees
ExpVqt(25)= Sample1_1_3_AT(10); % this gives VQT at incident angle of 24 degrees
ExpVqt(27)= Sample1_1_3_AT(11); % this gives VQT at incident angle of 26 degrees
ExpVqt(29)= Sample1_1_3_AT(12); % this gives VQT at incident angle of 28 degrees
ExpVqt(31)= Sample1_1_3_AT(13); % this gives VQT at incident angle of 30 degrees
ExpVqt(33)= Sample1_1_3_AT(14); % this gives VQT at incident angle of 32 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample1_1_3_AL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(3)= Sample1_1_3_AL(2); % this gives VQT at incident angle of 2 degrees
ExpVl(4)= Sample1_1_3_AL(3); % this gives VQT at incident angle of 3 degrees
ExpVl(5)= Sample1_1_3_AL(4); % this gives VQT at incident angle of 4 degrees
ExpVl(6)= Sample1_1_3_AL(5); % this gives VQT at incident angle of 5 degrees
figure (12)
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 50 2000]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('mV'); % Labels the y axis
title('Amplitude against incident angle for plane 1-3 virgin CFRP sample 1') % Labels the graphs
%%%%%%%%%%%% 1-3 plane virgin sample 1 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-2 plane virgin sample 2 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(17)= Sample2_1_2_AT(1); % this gives VQT at incident angle of 16 degrees
ExpVqt(18)= Sample2_1_2_AT(2); % this gives VQT at incident angle of 17 degrees
ExpVqt(19)= Sample2_1_2_AT(3); % this gives VQT at incident angle of 18 degrees
ExpVqt(20)= Sample2_1_2_AT(4); % this gives VQT at incident angle of 19 degrees
ExpVqt(21)= Sample2_1_2_AT(5); % this gives VQT at incident angle of 20 degrees
ExpVqt(22)= Sample2_1_2_AT(6); % this gives VQT at incident angle of 21 degrees
ExpVqt(25)= Sample2_1_2_AT(7); % this gives VQT at incident angle of 24 degrees
ExpVqt(28)= Sample2_1_2_AT(8); % this gives VQT at incident angle of 27 degrees
ExpVqt(31)= Sample2_1_2_AT(9); % this gives VQT at incident angle of 30 degrees
ExpVqt(34)= Sample2_1_2_AT(10); % this gives VQT at incident angle of 33 degrees
ExpVqt(37)= Sample2_1_2_AT(11); % this gives VQT at incident angle of 36 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample2_1_2_AL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(4)= Sample2_1_2_AL(2); % this gives VQT at incident angle of 3 degrees
ExpVl(7)= Sample2_1_2_AL(3); % this gives VQT at incident angle of 6 degrees
ExpVl(10)= Sample2_1_2_AL(4); % this gives VQT at incident angle of 9 degrees
ExpVl(13)= Sample2_1_2_AL(5); % this gives VQT at incident angle of 12 degrees
ExpVl(15)= Sample2_1_2_AL(6); % this gives VQT at incident angle of 14 degrees
ExpVl(16)= Sample2_1_2_AL(7); % this gives VQT at incident angle of 15 degrees
figure (13) % graph of experimental transverse velocity
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 50 2000]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('mV'); % Labels the y axis
title('Amplitude against incident angle for plane 1-2 virgin CFRP sample 2') % Labels the graph
%%%%%%%%%%%% 1-2 plane virgin sample 2 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-3 plane virgin sample 2 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(7)= Sample2_1_3_AT(1); % this gives VQT at incident angle of 6 degrees
ExpVqt(9)= Sample2_1_3_AT(2); % this gives VQT at incident angle of 8 degrees
ExpVqt(11)= Sample2_1_3_AT(3); % this gives VQT at incident angle of 10 degrees
ExpVqt(13)= Sample2_1_3_AT(4); % this gives VQT at incident angle of 12 degrees
ExpVqt(15)= Sample2_1_3_AT(5); % this gives VQT at incident angle of 14 degrees
ExpVqt(17)= Sample2_1_3_AT(6); % this gives VQT at incident angle of 16 degrees
ExpVqt(19)= Sample2_1_3_AT(7); % this gives VQT at incident angle of 18 degrees
ExpVqt(21)= Sample2_1_3_AT(8); % this gives VQT at incident angle of 20 degrees
ExpVqt(23)= Sample2_1_3_AT(9); % this gives VQT at incident angle of 22 degrees
ExpVqt(25)= Sample2_1_3_AT(10); % this gives VQT at incident angle of 24 degrees
ExpVqt(27)= Sample2_1_3_AT(11); % this gives VQT at incident angle of 26 degrees
ExpVqt(29)= Sample2_1_3_AT(12); % this gives VQT at incident angle of 28 degrees
ExpVqt(31)= Sample2_1_3_AT(13); % this gives VQT at incident angle of 30 degrees
ExpVqt(33)= Sample2_1_3_AT(14); % this gives VQT at incident angle of 32 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample2_1_3_AL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(3)= Sample2_1_3_AL(2); % this gives VQT at incident angle of 2 degrees
ExpVl(4)= Sample2_1_3_AL(3); % this gives VQT at incident angle of 3 degrees
ExpVl(5)= Sample2_1_3_AL(4); % this gives VQT at incident angle of 4 degrees
ExpVl(6)= Sample2_1_3_AL(5); % this gives VQT at incident angle of 5 degrees
figure (14)
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 50 2000]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('mV'); % Labels the y axis
title('Amplitude against incident angle for plane 1-3 virgin CFRP sample 2') % Labels the graphs
%%%%%%%%%%%% 1-3 plane virgin sample 2 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-2 plane virgin sample 3 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(17)= Sample3_1_2_AT(1); % this gives VQT at incident angle of 16 degrees
ExpVqt(18)= Sample3_1_2_AT(2); % this gives VQT at incident angle of 17 degrees
ExpVqt(19)= Sample3_1_2_AT(3); % this gives VQT at incident angle of 18 degrees
ExpVqt(20)= Sample3_1_2_AT(4); % this gives VQT at incident angle of 19 degrees
ExpVqt(21)= Sample3_1_2_AT(5); % this gives VQT at incident angle of 20 degrees
ExpVqt(22)= Sample3_1_2_AT(6); % this gives VQT at incident angle of 21 degrees
ExpVqt(25)= Sample3_1_2_AT(7); % this gives VQT at incident angle of 24 degrees
ExpVqt(28)= Sample3_1_2_AT(8); % this gives VQT at incident angle of 27 degrees
ExpVqt(31)= Sample3_1_2_AT(9); % this gives VQT at incident angle of 30 degrees
ExpVqt(34)= Sample3_1_2_AT(10); % this gives VQT at incident angle of 33 degrees
ExpVqt(37)= Sample3_1_2_AT(11); % this gives VQT at incident angle of 36 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample3_1_2_AL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(4)= Sample3_1_2_AL(2); % this gives VQT at incident angle of 3 degrees
ExpVl(7)= Sample3_1_2_AL(3); % this gives VQT at incident angle of 6 degrees
ExpVl(10)= Sample3_1_2_AL(4); % this gives VQT at incident angle of 9 degrees
ExpVl(13)= Sample3_1_2_AL(5); % this gives VQT at incident angle of 12 degrees
ExpVl(15)= Sample3_1_2_AL(6); % this gives VQT at incident angle of 14 degrees
ExpVl(16)= Sample3_1_2_AL(7); % this gives VQT at incident angle of 15 degrees
figure (15) % graph of experimental transverse velocity
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 50 2000]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('mV'); % Labels the y axis
title('Amplitude against incident angle for plane 1-2 virgin CFRP sample 3') % Labels the graph
%%%%%%%%%%%% 1-2 plane virgin sample 3 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-3 plane virgin sample 3 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(7)= Sample3_1_3_AT(1); % this gives VQT at incident angle of 6 degrees
ExpVqt(9)= Sample3_1_3_AT(2); % this gives VQT at incident angle of 8 degrees
ExpVqt(11)= Sample3_1_3_AT(3); % this gives VQT at incident angle of 10 degrees
ExpVqt(13)= Sample3_1_3_AT(4); % this gives VQT at incident angle of 12 degrees
ExpVqt(15)= Sample3_1_3_AT(5); % this gives VQT at incident angle of 14 degrees
ExpVqt(17)= Sample3_1_3_AT(6); % this gives VQT at incident angle of 16 degrees
ExpVqt(19)= Sample3_1_3_AT(7); % this gives VQT at incident angle of 18 degrees
ExpVqt(21)= Sample3_1_3_AT(8); % this gives VQT at incident angle of 20 degrees
ExpVqt(23)= Sample3_1_3_AT(9); % this gives VQT at incident angle of 22 degrees
ExpVqt(25)= Sample3_1_3_AT(10); % this gives VQT at incident angle of 24 degrees
ExpVqt(27)= Sample3_1_3_AT(11); % this gives VQT at incident angle of 26 degrees
ExpVqt(29)= Sample3_1_3_AT(12); % this gives VQT at incident angle of 28 degrees
ExpVqt(31)= Sample3_1_3_AT(13); % this gives VQT at incident angle of 30 degrees
ExpVqt(33)= Sample3_1_3_AT(14); % this gives VQT at incident angle of 32 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample3_1_3_AL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(3)= Sample3_1_3_AL(2); % this gives VQT at incident angle of 2 degrees
ExpVl(4)= Sample3_1_3_AL(3); % this gives VQT at incident angle of 3 degrees
ExpVl(5)= Sample3_1_3_AL(4); % this gives VQT at incident angle of 4 degrees
ExpVl(6)= Sample3_1_3_AL(5); % this gives VQT at incident angle of 5 degrees
figure (16)
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 50 2000]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('mV'); % Labels the y axis
title('Amplitude against incident angle for plane 1-3 virgin CFRP sample 3') % Labels the graphs
%%%%%%%%%%%% 1-3 plane virgin sample 3 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-2 plane virgin sample 4 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(17)= Sample4_1_2_AT(1); % this gives VQT at incident angle of 16 degrees
ExpVqt(18)= Sample4_1_2_AT(2); % this gives VQT at incident angle of 17 degrees
ExpVqt(19)= Sample4_1_2_AT(3); % this gives VQT at incident angle of 18 degrees
ExpVqt(20)= Sample4_1_2_AT(4); % this gives VQT at incident angle of 19 degrees
ExpVqt(21)= Sample4_1_2_AT(5); % this gives VQT at incident angle of 20 degrees
ExpVqt(22)= Sample4_1_2_AT(6); % this gives VQT at incident angle of 21 degrees
ExpVqt(25)= Sample4_1_2_AT(7); % this gives VQT at incident angle of 24 degrees
ExpVqt(28)= Sample4_1_2_AT(8); % this gives VQT at incident angle of 27 degrees
ExpVqt(31)= Sample4_1_2_AT(9); % this gives VQT at incident angle of 30 degrees
ExpVqt(34)= Sample4_1_2_AT(10); % this gives VQT at incident angle of 33 degrees
ExpVqt(37)= Sample4_1_2_AT(11); % this gives VQT at incident angle of 36 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample4_1_2_AL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(4)= Sample4_1_2_AL(2); % this gives VQT at incident angle of 3 degrees
ExpVl(7)= Sample4_1_2_AL(3); % this gives VQT at incident angle of 6 degrees
ExpVl(10)= Sample4_1_2_AL(4); % this gives VQT at incident angle of 9 degrees
ExpVl(13)= Sample4_1_2_AL(5); % this gives VQT at incident angle of 12 degrees
ExpVl(15)= Sample4_1_2_AL(6); % this gives VQT at incident angle of 14 degrees
ExpVl(16)= Sample4_1_2_AL(7); % this gives VQT at incident angle of 15 degrees
figure (17) % graph of experimental transverse velocity
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 50 2000]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('mV'); % Labels the y axis
title('Amplitude against incident angle for plane 1-2 virgin CFRP sample 4') % Labels the graph
%%%%%%%%%%%% 1-2 plane virgin sample 4 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-3 plane virgin sample 4 %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(7)= Sample4_1_3_AT(1); % this gives VQT at incident angle of 6 degrees
ExpVqt(9)= Sample4_1_3_AT(2); % this gives VQT at incident angle of 8 degrees
ExpVqt(11)= Sample4_1_3_AT(3); % this gives VQT at incident angle of 10 degrees
ExpVqt(13)= Sample4_1_3_AT(4); % this gives VQT at incident angle of 12 degrees
ExpVqt(15)= Sample4_1_3_AT(5); % this gives VQT at incident angle of 14 degrees
ExpVqt(17)= Sample4_1_3_AT(6); % this gives VQT at incident angle of 16 degrees
ExpVqt(19)= Sample4_1_3_AT(7); % this gives VQT at incident angle of 18 degrees
ExpVqt(21)= Sample4_1_3_AT(8); % this gives VQT at incident angle of 20 degrees
ExpVqt(23)= Sample4_1_3_AT(9); % this gives VQT at incident angle of 22 degrees
ExpVqt(25)= Sample4_1_3_AT(10); % this gives VQT at incident angle of 24 degrees
ExpVqt(27)= Sample4_1_3_AT(11); % this gives VQT at incident angle of 26 degrees
ExpVqt(29)= Sample4_1_3_AT(12); % this gives VQT at incident angle of 28 degrees
ExpVqt(31)= Sample4_1_3_AT(13); % this gives VQT at incident angle of 30 degrees
ExpVqt(33)= Sample4_1_3_AT(14); % this gives VQT at incident angle of 32 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= Sample4_1_3_AL(1); % this gives VQT at incident angle of 0 degrees
ExpVl(3)= Sample4_1_3_AL(2); % this gives VQT at incident angle of 2 degrees
ExpVl(4)= Sample4_1_3_AL(3); % this gives VQT at incident angle of 3 degrees
ExpVl(5)= Sample4_1_3_AL(4); % this gives VQT at incident angle of 4 degrees
ExpVl(6)= Sample4_1_3_AL(5); % this gives VQT at incident angle of 5 degrees
figure (18)
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 50 2000]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('mV'); % Labels the y axis
title('Amplitude against incident angle for plane 1-3 virgin CFRP sample 4') % Labels the graphs
%%%%%%%%%%%% 1-3 plane virgin sample 4 %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-2 plane virgin average %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(17)= AvgExp_AT_1_2(1); % this gives VQT at incident angle of 16 degrees
ExpVqt(18)= AvgExp_AT_1_2(2); % this gives VQT at incident angle of 17 degrees
ExpVqt(19)= AvgExp_AT_1_2(3); % this gives VQT at incident angle of 18 degrees
ExpVqt(20)= AvgExp_AT_1_2(4); % this gives VQT at incident angle of 19 degrees
ExpVqt(21)= AvgExp_AT_1_2(5); % this gives VQT at incident angle of 20 degrees
ExpVqt(22)= AvgExp_AT_1_2(6); % this gives VQT at incident angle of 21 degrees
ExpVqt(25)= AvgExp_AT_1_2(7); % this gives VQT at incident angle of 24 degrees
ExpVqt(28)= AvgExp_AT_1_2(8); % this gives VQT at incident angle of 27 degrees
ExpVqt(31)= AvgExp_AT_1_2(9); % this gives VQT at incident angle of 30 degrees
ExpVqt(34)= AvgExp_AT_1_2(10); % this gives VQT at incident angle of 33 degrees
ExpVqt(37)= AvgExp_AT_1_2(11); % this gives VQT at incident angle of 36 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= AvgExp_AL_1_2(1); % this gives VQT at incident angle of 0 degrees
ExpVl(4)= AvgExp_AL_1_2(2); % this gives VQT at incident angle of 3 degrees
ExpVl(7)= AvgExp_AL_1_2(3); % this gives VQT at incident angle of 6 degrees
ExpVl(10)= AvgExp_AL_1_2(4); % this gives VQT at incident angle of 9 degrees
ExpVl(13)= AvgExp_AL_1_2(5); % this gives VQT at incident angle of 12 degrees
ExpVl(15)= AvgExp_AL_1_2(6); % this gives VQT at incident angle of 14 degrees
ExpVl(16)= AvgExp_AL_1_2(7); % this gives VQT at incident angle of 15 degrees
figure (19) % graph of experimental transverse velocity
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 50 2500]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('mV'); % Labels the y axis
title('Amplitude against incident angle for plane 1-2 virgin CFRP average') % Labels the graph
%%%%%%%%%%%% 1-2 plane virgin average %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% 1-3 plane virgin average %%%%%%%%%%%%%%%%%%%
ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVqt(7)= AvgExp_AT_1_3(1); % this gives VQT at incident angle of 6 degrees
ExpVqt(9)= AvgExp_AT_1_3(2); % this gives VQT at incident angle of 8 degrees
ExpVqt(11)= AvgExp_AT_1_3(3); % this gives VQT at incident angle of 10 degrees
ExpVqt(13)= AvgExp_AT_1_3(4); % this gives VQT at incident angle of 12 degrees
ExpVqt(15)= AvgExp_AT_1_3(5); % this gives VQT at incident angle of 14 degrees
ExpVqt(17)= AvgExp_AT_1_3(6); % this gives VQT at incident angle of 16 degrees
ExpVqt(19)= AvgExp_AT_1_3(7); % this gives VQT at incident angle of 18 degrees
ExpVqt(21)= AvgExp_AT_1_3(8); % this gives VQT at incident angle of 20 degrees
ExpVqt(23)= AvgExp_AT_1_3(9); % this gives VQT at incident angle of 22 degrees
ExpVqt(25)= AvgExp_AT_1_3(10); % this gives VQT at incident angle of 24 degrees
ExpVqt(27)= AvgExp_AT_1_3(11); % this gives VQT at incident angle of 26 degrees
ExpVqt(29)= AvgExp_AT_1_3(12); % this gives VQT at incident angle of 28 degrees
ExpVqt(31)= AvgExp_AT_1_3(13); % this gives VQT at incident angle of 30 degrees
ExpVqt(33)= AvgExp_AT_1_3(14); % this gives VQT at incident angle of 32 degrees
ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes
ExpVl(1)= AvgExp_AL_1_3(1); % this gives VQT at incident angle of 0 degrees
ExpVl(3)= AvgExp_AL_1_3(2); % this gives VQT at incident angle of 2 degrees
ExpVl(4)= AvgExp_AL_1_3(3); % this gives VQT at incident angle of 3 degrees
ExpVl(5)= AvgExp_AL_1_3(4); % this gives VQT at incident angle of 4 degrees
ExpVl(6)= AvgExp_AL_1_3(5); % this gives VQT at incident angle of 5 degrees
figure (20)
scatter(NewIncident,ExpVqt,'filled') % data from experimental
hold on
scatter(NewIncident,ExpVl,'filled') % data from experimental
axis([0 45 50 2500]) % Sets the axis values for both x and y
grid on
xlabel('Incident Angle (deg)'); % labels the x axis
ylabel('mV'); % Labels the y axis
title('Amplitude against incident angle for plane 1-3 virgin CFRP average') % Labels the graphs
%%%%%%%%%%%% 1-3 plane virgin average %%%%%%%%%%%%%%%%%%%
% %===================================== AMPLITUDE GRAPHS ==================================