% This programme will generate graphs for both the velocities and the % signal amplitudes for the virgin samples % Copyright David Paterson, University of Strathclyde, Glasgow, UK. % Reuse or reuse with editing is permitted but must cite the author of this work. % David A.P. Paterson, "Life Cycle and Ultrasonic Based Non-Destructive Analysis of Recycled and Remanufactured Carbon Fibre Reinforced Plastic Composite", % Doctoral Thesis, Univeristy of Strathclyde, Glasgow, 2018 %======================== Velocities ====================================================================================================== %This part of the programme documents the sample velocities %======================== Velocities ====================================================================================================== %This part of the programme will allow the user to select which sample velocities to use or even the average of all samples %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 1 %%%%%%%%%%%%%%% Sample1_1_2_VL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample1_1_2_VT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment %Incident Angle = [9,10,11,12,13,14,15,16 etc...] Sample1_1_3_VL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample1_1_3_VT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 1 %%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 2 %%%%%%%%%%%%%%% Sample2_1_2_VL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample2_1_2_VT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment %Incident Angle = [9,10,11,12,13,14,15,16 etc...] Sample2_1_3_VL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample2_1_3_VT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 2 %%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 3 %%%%%%%%%%%%%%% Sample3_1_2_VL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample3_1_2_VT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment %Incident Angle = [9,10,11,12,13,14,15,16 etc...] Sample3_1_3_VL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample3_1_3_VT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 3 %%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 4 %%%%%%%%%%%%%%% Sample4_1_2_VL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample4_1_2_VT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment %Incident Angle = [9,10,11,12,13,14,15,16 etc...] Sample4_1_3_VL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample4_1_3_VT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 4 %%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Average velocities %%%%%%%%%%% AvgExp_VL_1_2 = ((Sample1_1_2_VL + Sample2_1_2_VL + Sample3_1_2_VL + Sample4_1_2_VL)/4); %Average velocites from all sample measurements AvgExp_VT_1_2 = ((Sample1_1_2_VT + Sample2_1_2_VT + Sample3_1_2_VT + Sample4_1_2_VT)/4); %Average velocites from all sample measurements AvgExp_VL_1_3 = ((Sample1_1_3_VL + Sample2_1_3_VL + Sample3_1_3_VL + Sample4_1_3_VL)/4); %Average velocites from all sample measurements AvgExp_VT_1_3 = ((Sample1_1_3_VT + Sample2_1_3_VT + Sample3_1_3_VT + Sample4_1_3_VT)/4); %Average velocites from all sample measurements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Average velocities %%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Velocity graph %%%%%%%%%%%%%%%%%%%% % These graphs need to match the array sizes of the velocities recorded above in order for programme to execute correctly NewIncident = 0:45; %%%%%%%%%%%% 1-2 plane virgin sample 1 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(17)= Sample1_1_2_VT(1); % this gives VQT at incident angle of 16 degrees ExpVqt(18)= Sample1_1_2_VT(2); % this gives VQT at incident angle of 17 degrees ExpVqt(19)= Sample1_1_2_VT(3); % this gives VQT at incident angle of 18 degrees ExpVqt(20)= Sample1_1_2_VT(4); % this gives VQT at incident angle of 19 degrees ExpVqt(21)= Sample1_1_2_VT(5); % this gives VQT at incident angle of 20 degrees ExpVqt(22)= Sample1_1_2_VT(6); % this gives VQT at incident angle of 21 degrees ExpVqt(25)= Sample1_1_2_VT(7); % this gives VQT at incident angle of 24 degrees ExpVqt(28)= Sample1_1_2_VT(8); % this gives VQT at incident angle of 27 degrees ExpVqt(31)= Sample1_1_2_VT(9); % this gives VQT at incident angle of 30 degrees ExpVqt(34)= Sample1_1_2_VT(10); % this gives VQT at incident angle of 33 degrees ExpVqt(37)= Sample1_1_2_VT(11); % this gives VQT at incident angle of 36 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample1_1_2_VL(1); % this gives VQT at incident angle of 0 degrees ExpVl(4)= Sample1_1_2_VL(2); % this gives VQT at incident angle of 3 degrees ExpVl(7)= Sample1_1_2_VL(3); % this gives VQT at incident angle of 6 degrees ExpVl(10)= Sample1_1_2_VL(4); % this gives VQT at incident angle of 9 degrees ExpVl(13)= Sample1_1_2_VL(5); % this gives VQT at incident angle of 12 degrees ExpVl(15)= Sample1_1_2_VL(6); % this gives VQT at incident angle of 14 degrees ExpVl(16)= Sample1_1_2_VL(7); % this gives VQT at incident angle of 15 degrees figure (1) % graph of experimental transverse velocity scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 100 3500]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('Wave velocity'); % Labels the y axis title('Experimental velocity against incident angle for plane 1-2 virgin CFRP sample 1') % Labels the graph %%%%%%%%%%%% 1-2 plane virgin sample 1 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-3 plane virgin sample 1 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(6)= Sample1_1_3_VT(1); % this gives VQT at incident angle of 5 degrees ExpVqt(7)= Sample1_1_3_VT(2); % this gives VQT at incident angle of 6 degrees ExpVqt(9)= Sample1_1_3_VT(3); % this gives VQT at incident angle of 8 degrees ExpVqt(11)= Sample1_1_3_VT(4); % this gives VQT at incident angle of 10 degrees ExpVqt(13)= Sample1_1_3_VT(5); % this gives VQT at incident angle of 12 degrees ExpVqt(15)= Sample1_1_3_VT(6); % this gives VQT at incident angle of 14 degrees ExpVqt(17)= Sample1_1_3_VT(7); % this gives VQT at incident angle of 16 degrees ExpVqt(19)= Sample1_1_3_VT(8); % this gives VQT at incident angle of 18 degrees ExpVqt(21)= Sample1_1_3_VT(9); % this gives VQT at incident angle of 20 degrees ExpVqt(23)= Sample1_1_3_VT(10); % this gives VQT at incident angle of 22 degrees ExpVqt(25)= Sample1_1_3_VT(11); % this gives VQT at incident angle of 24 degrees ExpVqt(27)= Sample1_1_3_VT(12); % this gives VQT at incident angle of 26 degrees ExpVqt(29)= Sample1_1_3_VT(13); % this gives VQT at incident angle of 28 degrees ExpVqt(31)= Sample1_1_3_VT(14); % this gives VQT at incident angle of 30 degrees ExpVqt(33)= Sample1_1_3_VT(15); % this gives VQT at incident angle of 32 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample1_1_3_VL(1); % this gives VQT at incident angle of 0 degrees ExpVl(3)= Sample1_1_3_VL(2); % this gives VQT at incident angle of 2 degrees ExpVl(4)= Sample1_1_3_VL(3); % this gives VQT at incident angle of 3 degrees ExpVl(5)= Sample1_1_3_VL(4); % this gives VQT at incident angle of 4 degrees %ExpVl(6)= Sample1_1_3_VL(5); % this gives VQT at incident angle of 5 degrees figure (2) scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 100 3500]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('Wave velocity'); % Labels the y axis title('Experimental velocity against incident angle for plane 1-3 virgin CFRP sample 1') % Labels the graphs %%%%%%%%%%%% 1-3 plane virgin sample 1 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-2 plane virgin sample 2 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(17)= Sample2_1_2_VT(1); % this gives VQT at incident angle of 16 degrees ExpVqt(18)= Sample2_1_2_VT(2); % this gives VQT at incident angle of 17 degrees ExpVqt(19)= Sample2_1_2_VT(3); % this gives VQT at incident angle of 18 degrees ExpVqt(20)= Sample2_1_2_VT(4); % this gives VQT at incident angle of 19 degrees ExpVqt(21)= Sample2_1_2_VT(5); % this gives VQT at incident angle of 20 degrees ExpVqt(22)= Sample2_1_2_VT(6); % this gives VQT at incident angle of 21 degrees ExpVqt(25)= Sample2_1_2_VT(7); % this gives VQT at incident angle of 24 degrees ExpVqt(28)= Sample2_1_2_VT(8); % this gives VQT at incident angle of 27 degrees ExpVqt(31)= Sample2_1_2_VT(9); % this gives VQT at incident angle of 30 degrees ExpVqt(34)= Sample2_1_2_VT(10); % this gives VQT at incident angle of 33 degrees ExpVqt(37)= Sample2_1_2_VT(11); % this gives VQT at incident angle of 36 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample2_1_2_VL(1); % this gives VQT at incident angle of 0 degrees ExpVl(4)= Sample2_1_2_VL(2); % this gives VQT at incident angle of 3 degrees ExpVl(7)= Sample2_1_2_VL(3); % this gives VQT at incident angle of 6 degrees ExpVl(10)= Sample2_1_2_VL(4); % this gives VQT at incident angle of 9 degrees ExpVl(13)= Sample2_1_2_VL(5); % this gives VQT at incident angle of 12 degrees ExpVl(15)= Sample2_1_2_VL(6); % this gives VQT at incident angle of 14 degrees ExpVl(16)= Sample2_1_2_VL(7); % this gives VQT at incident angle of 15 degrees figure (3) % graph of experimental transverse velocity scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 100 3500]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('Wave velocity'); % Labels the y axis title('Experimental velocity against incident angle for plane 1-2 virgin CFRP sample 2') % Labels the graph %%%%%%%%%%%% 1-2 plane virgin sample 2 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-3 plane virgin sample 2 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(6)= Sample2_1_3_VT(1); % this gives VQT at incident angle of 5 degrees ExpVqt(7)= Sample2_1_3_VT(2); % this gives VQT at incident angle of 6 degrees ExpVqt(9)= Sample2_1_3_VT(3); % this gives VQT at incident angle of 8 degrees ExpVqt(11)= Sample2_1_3_VT(4); % this gives VQT at incident angle of 10 degrees ExpVqt(13)= Sample2_1_3_VT(5); % this gives VQT at incident angle of 12 degrees ExpVqt(15)= Sample2_1_3_VT(6); % this gives VQT at incident angle of 14 degrees ExpVqt(17)= Sample2_1_3_VT(7); % this gives VQT at incident angle of 16 degrees ExpVqt(19)= Sample2_1_3_VT(8); % this gives VQT at incident angle of 18 degrees ExpVqt(21)= Sample2_1_3_VT(9); % this gives VQT at incident angle of 20 degrees ExpVqt(23)= Sample2_1_3_VT(10); % this gives VQT at incident angle of 22 degrees ExpVqt(25)= Sample2_1_3_VT(11); % this gives VQT at incident angle of 24 degrees ExpVqt(27)= Sample2_1_3_VT(12); % this gives VQT at incident angle of 26 degrees ExpVqt(29)= Sample2_1_3_VT(13); % this gives VQT at incident angle of 28 degrees ExpVqt(31)= Sample2_1_3_VT(14); % this gives VQT at incident angle of 30 degrees ExpVqt(33)= Sample2_1_3_VT(15); % this gives VQT at incident angle of 32 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample2_1_3_VL(1); % this gives VQT at incident angle of 0 degrees ExpVl(3)= Sample2_1_3_VL(2); % this gives VQT at incident angle of 2 degrees ExpVl(4)= Sample2_1_3_VL(3); % this gives VQT at incident angle of 3 degrees ExpVl(5)= Sample2_1_3_VL(4); % this gives VQT at incident angle of 4 degrees %ExpVl(6)= Sample2_1_3_VL(5); % this gives VQT at incident angle of 5 degrees figure (4) scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 100 3500]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('Wave velocity'); % Labels the y axis title('Experimental velocity against incident angle for plane 1-3 virgin CFRP sample 2') % Labels the graphs %%%%%%%%%%%% 1-3 plane virgin sample 2 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-2 plane virgin sample 3 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(17)= Sample3_1_2_VT(1); % this gives VQT at incident angle of 16 degrees ExpVqt(18)= Sample3_1_2_VT(2); % this gives VQT at incident angle of 17 degrees ExpVqt(19)= Sample3_1_2_VT(3); % this gives VQT at incident angle of 18 degrees ExpVqt(20)= Sample3_1_2_VT(4); % this gives VQT at incident angle of 19 degrees ExpVqt(21)= Sample3_1_2_VT(5); % this gives VQT at incident angle of 20 degrees ExpVqt(22)= Sample3_1_2_VT(6); % this gives VQT at incident angle of 21 degrees ExpVqt(25)= Sample3_1_2_VT(7); % this gives VQT at incident angle of 24 degrees ExpVqt(28)= Sample3_1_2_VT(8); % this gives VQT at incident angle of 27 degrees ExpVqt(31)= Sample3_1_2_VT(9); % this gives VQT at incident angle of 30 degrees ExpVqt(34)= Sample3_1_2_VT(10); % this gives VQT at incident angle of 33 degrees ExpVqt(37)= Sample3_1_2_VT(11); % this gives VQT at incident angle of 36 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample3_1_2_VL(1); % this gives VQT at incident angle of 0 degrees ExpVl(4)= Sample3_1_2_VL(2); % this gives VQT at incident angle of 3 degrees ExpVl(7)= Sample3_1_2_VL(3); % this gives VQT at incident angle of 6 degrees ExpVl(10)= Sample3_1_2_VL(4); % this gives VQT at incident angle of 9 degrees ExpVl(13)= Sample3_1_2_VL(5); % this gives VQT at incident angle of 12 degrees ExpVl(15)= Sample3_1_2_VL(6); % this gives VQT at incident angle of 14 degrees ExpVl(16)= Sample3_1_2_VL(7); % this gives VQT at incident angle of 15 degrees figure (5) % graph of experimental transverse velocity scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 100 3500]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('Wave velocity'); % Labels the y axis title('Experimental velocity against incident angle for plane 1-2 virgin CFRP sample 3') % Labels the graph %%%%%%%%%%%% 1-2 plane virgin sample 3 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-3 plane virgin sample 3 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(6)= Sample3_1_3_VT(1); % this gives VQT at incident angle of 6 degrees ExpVqt(7)= Sample3_1_3_VT(2); % this gives VQT at incident angle of 6 degrees ExpVqt(9)= Sample3_1_3_VT(3); % this gives VQT at incident angle of 8 degrees ExpVqt(11)= Sample3_1_3_VT(4); % this gives VQT at incident angle of 10 degrees ExpVqt(13)= Sample3_1_3_VT(5); % this gives VQT at incident angle of 12 degrees ExpVqt(15)= Sample3_1_3_VT(6); % this gives VQT at incident angle of 14 degrees ExpVqt(17)= Sample3_1_3_VT(7); % this gives VQT at incident angle of 16 degrees ExpVqt(19)= Sample3_1_3_VT(8); % this gives VQT at incident angle of 18 degrees ExpVqt(21)= Sample3_1_3_VT(9); % this gives VQT at incident angle of 20 degrees ExpVqt(23)= Sample3_1_3_VT(10); % this gives VQT at incident angle of 22 degrees ExpVqt(25)= Sample3_1_3_VT(11); % this gives VQT at incident angle of 24 degrees ExpVqt(27)= Sample3_1_3_VT(12); % this gives VQT at incident angle of 26 degrees ExpVqt(29)= Sample3_1_3_VT(13); % this gives VQT at incident angle of 28 degrees ExpVqt(31)= Sample3_1_3_VT(14); % this gives VQT at incident angle of 30 degrees ExpVqt(33)= Sample3_1_3_VT(15); % this gives VQT at incident angle of 32 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample3_1_3_VL(1); % this gives VQT at incident angle of 0 degrees ExpVl(3)= Sample3_1_3_VL(2); % this gives VQT at incident angle of 2 degrees ExpVl(4)= Sample3_1_3_VL(3); % this gives VQT at incident angle of 3 degrees ExpVl(5)= Sample3_1_3_VL(4); % this gives VQT at incident angle of 4 degrees %ExpVl(6)= Sample3_1_3_VL(5); % this gives VQT at incident angle of 5 degrees figure (6) scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 100 3500]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('Wave velocity'); % Labels the y axis title('Experimental velocity against incident angle for plane 1-3 virgin CFRP sample 3') % Labels the graphs %%%%%%%%%%%% 1-3 plane virgin sample 3 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-2 plane virgin sample 4 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(17)= Sample4_1_2_VT(1); % this gives VQT at incident angle of 16 degrees ExpVqt(18)= Sample4_1_2_VT(2); % this gives VQT at incident angle of 17 degrees ExpVqt(19)= Sample4_1_2_VT(3); % this gives VQT at incident angle of 18 degrees ExpVqt(20)= Sample4_1_2_VT(4); % this gives VQT at incident angle of 19 degrees ExpVqt(21)= Sample4_1_2_VT(5); % this gives VQT at incident angle of 20 degrees ExpVqt(22)= Sample4_1_2_VT(6); % this gives VQT at incident angle of 21 degrees ExpVqt(25)= Sample4_1_2_VT(7); % this gives VQT at incident angle of 24 degrees ExpVqt(28)= Sample4_1_2_VT(8); % this gives VQT at incident angle of 27 degrees ExpVqt(31)= Sample4_1_2_VT(9); % this gives VQT at incident angle of 30 degrees ExpVqt(34)= Sample4_1_2_VT(10); % this gives VQT at incident angle of 33 degrees ExpVqt(37)= Sample4_1_2_VT(11); % this gives VQT at incident angle of 36 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample4_1_2_VL(1); % this gives VQT at incident angle of 0 degrees ExpVl(4)= Sample4_1_2_VL(2); % this gives VQT at incident angle of 3 degrees ExpVl(7)= Sample4_1_2_VL(3); % this gives VQT at incident angle of 6 degrees ExpVl(10)= Sample4_1_2_VL(4); % this gives VQT at incident angle of 9 degrees ExpVl(13)= Sample4_1_2_VL(5); % this gives VQT at incident angle of 12 degrees ExpVl(15)= Sample4_1_2_VL(6); % this gives VQT at incident angle of 14 degrees ExpVl(16)= Sample4_1_2_VL(7); % this gives VQT at incident angle of 15 degrees figure (7) % graph of experimental transverse velocity scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 100 3500]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('Wave velocity'); % Labels the y axis title('Experimental velocity against incident angle for plane 1-2 virgin CFRP sample 4') % Labels the graph %%%%%%%%%%%% 1-2 plane virgin sample 4 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-3 plane virgin sample 4 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(6)= Sample4_1_3_VT(1); % this gives VQT at incident angle of 6 degrees ExpVqt(7)= Sample4_1_3_VT(2); % this gives VQT at incident angle of 6 degrees ExpVqt(9)= Sample4_1_3_VT(3); % this gives VQT at incident angle of 8 degrees ExpVqt(11)= Sample4_1_3_VT(4); % this gives VQT at incident angle of 10 degrees ExpVqt(13)= Sample4_1_3_VT(5); % this gives VQT at incident angle of 12 degrees ExpVqt(15)= Sample4_1_3_VT(6); % this gives VQT at incident angle of 14 degrees ExpVqt(17)= Sample4_1_3_VT(7); % this gives VQT at incident angle of 16 degrees ExpVqt(19)= Sample4_1_3_VT(8); % this gives VQT at incident angle of 18 degrees ExpVqt(21)= Sample4_1_3_VT(9); % this gives VQT at incident angle of 20 degrees ExpVqt(23)= Sample4_1_3_VT(10); % this gives VQT at incident angle of 22 degrees ExpVqt(25)= Sample4_1_3_VT(11); % this gives VQT at incident angle of 24 degrees ExpVqt(27)= Sample4_1_3_VT(12); % this gives VQT at incident angle of 26 degrees ExpVqt(29)= Sample4_1_3_VT(13); % this gives VQT at incident angle of 28 degrees ExpVqt(31)= Sample4_1_3_VT(14); % this gives VQT at incident angle of 30 degrees ExpVqt(33)= Sample4_1_3_VT(15); % this gives VQT at incident angle of 32 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample4_1_3_VL(1); % this gives VQT at incident angle of 0 degrees ExpVl(3)= Sample4_1_3_VL(2); % this gives VQT at incident angle of 2 degrees ExpVl(4)= Sample4_1_3_VL(3); % this gives VQT at incident angle of 3 degrees ExpVl(5)= Sample4_1_3_VL(4); % this gives VQT at incident angle of 4 degrees %ExpVl(6)= Sample4_1_3_VL(5); % this gives VQT at incident angle of 5 degrees figure (8) scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 100 3500]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('Wave velocity'); % Labels the y axis title('Experimental velocity against incident angle for plane 1-3 virgin CFRP sample 4') % Labels the graphs %%%%%%%%%%%% 1-3 plane virgin sample 4 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-2 plane virgin average %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(17)= AvgExp_VT_1_2(1); % this gives VQT at incident angle of 16 degrees ExpVqt(18)= AvgExp_VT_1_2(2); % this gives VQT at incident angle of 17 degrees ExpVqt(19)= AvgExp_VT_1_2(3); % this gives VQT at incident angle of 18 degrees ExpVqt(20)= AvgExp_VT_1_2(4); % this gives VQT at incident angle of 19 degrees ExpVqt(21)= AvgExp_VT_1_2(5); % this gives VQT at incident angle of 20 degrees ExpVqt(22)= AvgExp_VT_1_2(6); % this gives VQT at incident angle of 21 degrees ExpVqt(25)= AvgExp_VT_1_2(7); % this gives VQT at incident angle of 24 degrees ExpVqt(28)= AvgExp_VT_1_2(8); % this gives VQT at incident angle of 27 degrees ExpVqt(31)= AvgExp_VT_1_2(9); % this gives VQT at incident angle of 30 degrees ExpVqt(34)= AvgExp_VT_1_2(10); % this gives VQT at incident angle of 33 degrees ExpVqt(37)= AvgExp_VT_1_2(11); % this gives VQT at incident angle of 36 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= AvgExp_VL_1_2(1); % this gives VQT at incident angle of 0 degrees ExpVl(4)= AvgExp_VL_1_2(2); % this gives VQT at incident angle of 3 degrees ExpVl(7)= AvgExp_VL_1_2(3); % this gives VQT at incident angle of 6 degrees ExpVl(10)= AvgExp_VL_1_2(4); % this gives VQT at incident angle of 9 degrees ExpVl(13)= AvgExp_VL_1_2(5); % this gives VQT at incident angle of 12 degrees ExpVl(15)= AvgExp_VL_1_2(6); % this gives VQT at incident angle of 14 degrees ExpVl(16)= AvgExp_VL_1_2(7); % this gives VQT at incident angle of 15 degrees figure (9) % graph of experimental transverse velocity scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 500 3500]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('Wave velocity'); % Labels the y axis title('Experimental velocity against incident angle for plane 1-2 virgin CFRP average') % Labels the graph %%%%%%%%%%%% 1-2 plane virgin average %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-3 plane virgin average %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(6)= AvgExp_VT_1_3(1); % this gives VQT at incident angle of 6 degrees ExpVqt(7)= AvgExp_VT_1_3(2); % this gives VQT at incident angle of 6 degrees ExpVqt(9)= AvgExp_VT_1_3(3); % this gives VQT at incident angle of 8 degrees ExpVqt(11)= AvgExp_VT_1_3(4); % this gives VQT at incident angle of 10 degrees ExpVqt(13)= AvgExp_VT_1_3(5); % this gives VQT at incident angle of 12 degrees ExpVqt(15)= AvgExp_VT_1_3(6); % this gives VQT at incident angle of 14 degrees ExpVqt(17)= AvgExp_VT_1_3(7); % this gives VQT at incident angle of 16 degrees ExpVqt(19)= AvgExp_VT_1_3(8); % this gives VQT at incident angle of 18 degrees ExpVqt(21)= AvgExp_VT_1_3(9); % this gives VQT at incident angle of 20 degrees ExpVqt(23)= AvgExp_VT_1_3(10); % this gives VQT at incident angle of 22 degrees ExpVqt(25)= AvgExp_VT_1_3(11); % this gives VQT at incident angle of 24 degrees ExpVqt(27)= AvgExp_VT_1_3(12); % this gives VQT at incident angle of 26 degrees ExpVqt(29)= AvgExp_VT_1_3(13); % this gives VQT at incident angle of 28 degrees ExpVqt(31)= AvgExp_VT_1_3(14); % this gives VQT at incident angle of 30 degrees ExpVqt(33)= AvgExp_VT_1_3(15); % this gives VQT at incident angle of 32 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= AvgExp_VL_1_3(1); % this gives VQT at incident angle of 0 degrees ExpVl(3)= AvgExp_VL_1_3(2); % this gives VQT at incident angle of 2 degrees ExpVl(4)= AvgExp_VL_1_3(3); % this gives VQT at incident angle of 3 degrees ExpVl(5)= AvgExp_VL_1_3(4); % this gives VQT at incident angle of 4 degrees %ExpVl(6)= AvgExp_VL_1_3(5); % this gives VQT at incident angle of 5 degrees figure (10) scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 500 3500]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('Wave velocity'); % Labels the y axis title('Experimental velocity against incident angle for plane 1-3 virgin CFRP average') % Labels the graphs %%%%%%%%%%%% 1-3 plane virgin average %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Velocity graph %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Amplitude graph %%%%%%%%%%%%%%%%%%%% %This part of the programme will allow the user to select which sample velocities to use or even the average of all samples%This part of the programme documents the sample velocities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 1 %%%%%%%%%%%%%%% Sample1_1_2_AL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample1_1_2_AT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment %Incident Angle = [9,10,11,12,13,14,15,16 etc...] Sample1_1_3_AL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample1_1_3_AT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 1 %%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 2 %%%%%%%%%%%%%%% Sample2_1_2_AL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample2_1_2_AT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment %Incident Angle = [9,10,11,12,13,14,15,16 etc...] Sample2_1_3_AL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample2_1_3_AT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 2 %%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 3 %%%%%%%%%%%%%%% Sample3_1_2_AL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample3_1_2_AT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment %Incident Angle = [9,10,11,12,13,14,15,16 etc...] Sample3_1_3_AL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample3_1_3_AT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 3 %%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 4 %%%%%%%%%%%%%%% Sample4_1_2_AL = [A B C D E F G H etc]; % 1-2 plane for sample 1 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample4_1_2_AT = [I J K L M N O P etc]; % 1-2 plane for sample 1 and transverse velocities from experiment %Incident Angle = [9,10,11,12,13,14,15,16 etc...] Sample4_1_3_AL = [A B C D E F G H etc]; % 1-3 plane for sample 3 and longitudinal velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] Sample4_1_3_AT = [I J K L M N O P etc]; % 1-3 plane for sample 3 and and transverse velocities from experiment %Incident Angle = [0,1,2,3,4,5,6,7,8 etc...] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% sample 4 %%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Average velocities %%%%%%%%%%% AvgExp_AL_1_2 = ((Sample1_1_2_VL + Sample2_1_2_VL + Sample3_1_2_VL + Sample4_1_2_VL)/4); %Average velocites from all sample measurements AvgExp_AT_1_2 = ((Sample1_1_2_VT + Sample2_1_2_VT + Sample3_1_2_VT + Sample4_1_2_VT)/4); %Average velocites from all sample measurements AvgExp_AL_1_3 = ((Sample1_1_3_VL + Sample2_1_3_VL + Sample3_1_3_VL + Sample4_1_3_VL)/4); %Average velocites from all sample measurements AvgExp_AT_1_3 = ((Sample1_1_3_VT + Sample2_1_3_VT + Sample3_1_3_VT + Sample4_1_3_VT)/4); %Average velocites from all sample measurements %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Average velocities %%%%%%%%%%%% % %===================================== AMPLITUDE GRAPHS ================================== % These graphs need to match the array sizes of the amplitudes recorded above in order for programme to execute correctly %%%%%%%%%%%% 1-2 plane virgin sample 1 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(17)= Sample1_1_2_AT(1); % this gives VQT at incident angle of 16 degrees ExpVqt(18)= Sample1_1_2_AT(2); % this gives VQT at incident angle of 17 degrees ExpVqt(19)= Sample1_1_2_AT(3); % this gives VQT at incident angle of 18 degrees ExpVqt(20)= Sample1_1_2_AT(4); % this gives VQT at incident angle of 19 degrees ExpVqt(21)= Sample1_1_2_AT(5); % this gives VQT at incident angle of 20 degrees ExpVqt(22)= Sample1_1_2_AT(6); % this gives VQT at incident angle of 21 degrees ExpVqt(25)= Sample1_1_2_AT(7); % this gives VQT at incident angle of 24 degrees ExpVqt(28)= Sample1_1_2_AT(8); % this gives VQT at incident angle of 27 degrees ExpVqt(31)= Sample1_1_2_AT(9); % this gives VQT at incident angle of 30 degrees ExpVqt(34)= Sample1_1_2_AT(10); % this gives VQT at incident angle of 33 degrees ExpVqt(37)= Sample1_1_2_AT(11); % this gives VQT at incident angle of 36 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample1_1_2_AL(1); % this gives VQT at incident angle of 0 degrees ExpVl(4)= Sample1_1_2_AL(2); % this gives VQT at incident angle of 3 degrees ExpVl(7)= Sample1_1_2_AL(3); % this gives VQT at incident angle of 6 degrees ExpVl(10)= Sample1_1_2_AL(4); % this gives VQT at incident angle of 9 degrees ExpVl(13)= Sample1_1_2_AL(5); % this gives VQT at incident angle of 12 degrees ExpVl(15)= Sample1_1_2_AL(6); % this gives VQT at incident angle of 14 degrees ExpVl(16)= Sample1_1_2_AL(7); % this gives VQT at incident angle of 15 degrees figure (11) % graph of experimental transverse velocity scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 50 2000]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('mV'); % Labels the y axis title('Amplitude against incident angle for plane 1-2 virgin CFRP sample 1') % Labels the graph %%%%%%%%%%%% 1-2 plane virgin sample 1 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-3 plane virgin sample 1 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(7)= Sample1_1_3_AT(1); % this gives VQT at incident angle of 6 degrees ExpVqt(9)= Sample1_1_3_AT(2); % this gives VQT at incident angle of 8 degrees ExpVqt(11)= Sample1_1_3_AT(3); % this gives VQT at incident angle of 10 degrees ExpVqt(13)= Sample1_1_3_AT(4); % this gives VQT at incident angle of 12 degrees ExpVqt(15)= Sample1_1_3_AT(5); % this gives VQT at incident angle of 14 degrees ExpVqt(17)= Sample1_1_3_AT(6); % this gives VQT at incident angle of 16 degrees ExpVqt(19)= Sample1_1_3_AT(7); % this gives VQT at incident angle of 18 degrees ExpVqt(21)= Sample1_1_3_AT(8); % this gives VQT at incident angle of 20 degrees ExpVqt(23)= Sample1_1_3_AT(9); % this gives VQT at incident angle of 22 degrees ExpVqt(25)= Sample1_1_3_AT(10); % this gives VQT at incident angle of 24 degrees ExpVqt(27)= Sample1_1_3_AT(11); % this gives VQT at incident angle of 26 degrees ExpVqt(29)= Sample1_1_3_AT(12); % this gives VQT at incident angle of 28 degrees ExpVqt(31)= Sample1_1_3_AT(13); % this gives VQT at incident angle of 30 degrees ExpVqt(33)= Sample1_1_3_AT(14); % this gives VQT at incident angle of 32 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample1_1_3_AL(1); % this gives VQT at incident angle of 0 degrees ExpVl(3)= Sample1_1_3_AL(2); % this gives VQT at incident angle of 2 degrees ExpVl(4)= Sample1_1_3_AL(3); % this gives VQT at incident angle of 3 degrees ExpVl(5)= Sample1_1_3_AL(4); % this gives VQT at incident angle of 4 degrees ExpVl(6)= Sample1_1_3_AL(5); % this gives VQT at incident angle of 5 degrees figure (12) scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 50 2000]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('mV'); % Labels the y axis title('Amplitude against incident angle for plane 1-3 virgin CFRP sample 1') % Labels the graphs %%%%%%%%%%%% 1-3 plane virgin sample 1 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-2 plane virgin sample 2 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(17)= Sample2_1_2_AT(1); % this gives VQT at incident angle of 16 degrees ExpVqt(18)= Sample2_1_2_AT(2); % this gives VQT at incident angle of 17 degrees ExpVqt(19)= Sample2_1_2_AT(3); % this gives VQT at incident angle of 18 degrees ExpVqt(20)= Sample2_1_2_AT(4); % this gives VQT at incident angle of 19 degrees ExpVqt(21)= Sample2_1_2_AT(5); % this gives VQT at incident angle of 20 degrees ExpVqt(22)= Sample2_1_2_AT(6); % this gives VQT at incident angle of 21 degrees ExpVqt(25)= Sample2_1_2_AT(7); % this gives VQT at incident angle of 24 degrees ExpVqt(28)= Sample2_1_2_AT(8); % this gives VQT at incident angle of 27 degrees ExpVqt(31)= Sample2_1_2_AT(9); % this gives VQT at incident angle of 30 degrees ExpVqt(34)= Sample2_1_2_AT(10); % this gives VQT at incident angle of 33 degrees ExpVqt(37)= Sample2_1_2_AT(11); % this gives VQT at incident angle of 36 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample2_1_2_AL(1); % this gives VQT at incident angle of 0 degrees ExpVl(4)= Sample2_1_2_AL(2); % this gives VQT at incident angle of 3 degrees ExpVl(7)= Sample2_1_2_AL(3); % this gives VQT at incident angle of 6 degrees ExpVl(10)= Sample2_1_2_AL(4); % this gives VQT at incident angle of 9 degrees ExpVl(13)= Sample2_1_2_AL(5); % this gives VQT at incident angle of 12 degrees ExpVl(15)= Sample2_1_2_AL(6); % this gives VQT at incident angle of 14 degrees ExpVl(16)= Sample2_1_2_AL(7); % this gives VQT at incident angle of 15 degrees figure (13) % graph of experimental transverse velocity scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 50 2000]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('mV'); % Labels the y axis title('Amplitude against incident angle for plane 1-2 virgin CFRP sample 2') % Labels the graph %%%%%%%%%%%% 1-2 plane virgin sample 2 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-3 plane virgin sample 2 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(7)= Sample2_1_3_AT(1); % this gives VQT at incident angle of 6 degrees ExpVqt(9)= Sample2_1_3_AT(2); % this gives VQT at incident angle of 8 degrees ExpVqt(11)= Sample2_1_3_AT(3); % this gives VQT at incident angle of 10 degrees ExpVqt(13)= Sample2_1_3_AT(4); % this gives VQT at incident angle of 12 degrees ExpVqt(15)= Sample2_1_3_AT(5); % this gives VQT at incident angle of 14 degrees ExpVqt(17)= Sample2_1_3_AT(6); % this gives VQT at incident angle of 16 degrees ExpVqt(19)= Sample2_1_3_AT(7); % this gives VQT at incident angle of 18 degrees ExpVqt(21)= Sample2_1_3_AT(8); % this gives VQT at incident angle of 20 degrees ExpVqt(23)= Sample2_1_3_AT(9); % this gives VQT at incident angle of 22 degrees ExpVqt(25)= Sample2_1_3_AT(10); % this gives VQT at incident angle of 24 degrees ExpVqt(27)= Sample2_1_3_AT(11); % this gives VQT at incident angle of 26 degrees ExpVqt(29)= Sample2_1_3_AT(12); % this gives VQT at incident angle of 28 degrees ExpVqt(31)= Sample2_1_3_AT(13); % this gives VQT at incident angle of 30 degrees ExpVqt(33)= Sample2_1_3_AT(14); % this gives VQT at incident angle of 32 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample2_1_3_AL(1); % this gives VQT at incident angle of 0 degrees ExpVl(3)= Sample2_1_3_AL(2); % this gives VQT at incident angle of 2 degrees ExpVl(4)= Sample2_1_3_AL(3); % this gives VQT at incident angle of 3 degrees ExpVl(5)= Sample2_1_3_AL(4); % this gives VQT at incident angle of 4 degrees ExpVl(6)= Sample2_1_3_AL(5); % this gives VQT at incident angle of 5 degrees figure (14) scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 50 2000]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('mV'); % Labels the y axis title('Amplitude against incident angle for plane 1-3 virgin CFRP sample 2') % Labels the graphs %%%%%%%%%%%% 1-3 plane virgin sample 2 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-2 plane virgin sample 3 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(17)= Sample3_1_2_AT(1); % this gives VQT at incident angle of 16 degrees ExpVqt(18)= Sample3_1_2_AT(2); % this gives VQT at incident angle of 17 degrees ExpVqt(19)= Sample3_1_2_AT(3); % this gives VQT at incident angle of 18 degrees ExpVqt(20)= Sample3_1_2_AT(4); % this gives VQT at incident angle of 19 degrees ExpVqt(21)= Sample3_1_2_AT(5); % this gives VQT at incident angle of 20 degrees ExpVqt(22)= Sample3_1_2_AT(6); % this gives VQT at incident angle of 21 degrees ExpVqt(25)= Sample3_1_2_AT(7); % this gives VQT at incident angle of 24 degrees ExpVqt(28)= Sample3_1_2_AT(8); % this gives VQT at incident angle of 27 degrees ExpVqt(31)= Sample3_1_2_AT(9); % this gives VQT at incident angle of 30 degrees ExpVqt(34)= Sample3_1_2_AT(10); % this gives VQT at incident angle of 33 degrees ExpVqt(37)= Sample3_1_2_AT(11); % this gives VQT at incident angle of 36 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample3_1_2_AL(1); % this gives VQT at incident angle of 0 degrees ExpVl(4)= Sample3_1_2_AL(2); % this gives VQT at incident angle of 3 degrees ExpVl(7)= Sample3_1_2_AL(3); % this gives VQT at incident angle of 6 degrees ExpVl(10)= Sample3_1_2_AL(4); % this gives VQT at incident angle of 9 degrees ExpVl(13)= Sample3_1_2_AL(5); % this gives VQT at incident angle of 12 degrees ExpVl(15)= Sample3_1_2_AL(6); % this gives VQT at incident angle of 14 degrees ExpVl(16)= Sample3_1_2_AL(7); % this gives VQT at incident angle of 15 degrees figure (15) % graph of experimental transverse velocity scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 50 2000]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('mV'); % Labels the y axis title('Amplitude against incident angle for plane 1-2 virgin CFRP sample 3') % Labels the graph %%%%%%%%%%%% 1-2 plane virgin sample 3 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-3 plane virgin sample 3 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(7)= Sample3_1_3_AT(1); % this gives VQT at incident angle of 6 degrees ExpVqt(9)= Sample3_1_3_AT(2); % this gives VQT at incident angle of 8 degrees ExpVqt(11)= Sample3_1_3_AT(3); % this gives VQT at incident angle of 10 degrees ExpVqt(13)= Sample3_1_3_AT(4); % this gives VQT at incident angle of 12 degrees ExpVqt(15)= Sample3_1_3_AT(5); % this gives VQT at incident angle of 14 degrees ExpVqt(17)= Sample3_1_3_AT(6); % this gives VQT at incident angle of 16 degrees ExpVqt(19)= Sample3_1_3_AT(7); % this gives VQT at incident angle of 18 degrees ExpVqt(21)= Sample3_1_3_AT(8); % this gives VQT at incident angle of 20 degrees ExpVqt(23)= Sample3_1_3_AT(9); % this gives VQT at incident angle of 22 degrees ExpVqt(25)= Sample3_1_3_AT(10); % this gives VQT at incident angle of 24 degrees ExpVqt(27)= Sample3_1_3_AT(11); % this gives VQT at incident angle of 26 degrees ExpVqt(29)= Sample3_1_3_AT(12); % this gives VQT at incident angle of 28 degrees ExpVqt(31)= Sample3_1_3_AT(13); % this gives VQT at incident angle of 30 degrees ExpVqt(33)= Sample3_1_3_AT(14); % this gives VQT at incident angle of 32 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample3_1_3_AL(1); % this gives VQT at incident angle of 0 degrees ExpVl(3)= Sample3_1_3_AL(2); % this gives VQT at incident angle of 2 degrees ExpVl(4)= Sample3_1_3_AL(3); % this gives VQT at incident angle of 3 degrees ExpVl(5)= Sample3_1_3_AL(4); % this gives VQT at incident angle of 4 degrees ExpVl(6)= Sample3_1_3_AL(5); % this gives VQT at incident angle of 5 degrees figure (16) scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 50 2000]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('mV'); % Labels the y axis title('Amplitude against incident angle for plane 1-3 virgin CFRP sample 3') % Labels the graphs %%%%%%%%%%%% 1-3 plane virgin sample 3 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-2 plane virgin sample 4 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(17)= Sample4_1_2_AT(1); % this gives VQT at incident angle of 16 degrees ExpVqt(18)= Sample4_1_2_AT(2); % this gives VQT at incident angle of 17 degrees ExpVqt(19)= Sample4_1_2_AT(3); % this gives VQT at incident angle of 18 degrees ExpVqt(20)= Sample4_1_2_AT(4); % this gives VQT at incident angle of 19 degrees ExpVqt(21)= Sample4_1_2_AT(5); % this gives VQT at incident angle of 20 degrees ExpVqt(22)= Sample4_1_2_AT(6); % this gives VQT at incident angle of 21 degrees ExpVqt(25)= Sample4_1_2_AT(7); % this gives VQT at incident angle of 24 degrees ExpVqt(28)= Sample4_1_2_AT(8); % this gives VQT at incident angle of 27 degrees ExpVqt(31)= Sample4_1_2_AT(9); % this gives VQT at incident angle of 30 degrees ExpVqt(34)= Sample4_1_2_AT(10); % this gives VQT at incident angle of 33 degrees ExpVqt(37)= Sample4_1_2_AT(11); % this gives VQT at incident angle of 36 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample4_1_2_AL(1); % this gives VQT at incident angle of 0 degrees ExpVl(4)= Sample4_1_2_AL(2); % this gives VQT at incident angle of 3 degrees ExpVl(7)= Sample4_1_2_AL(3); % this gives VQT at incident angle of 6 degrees ExpVl(10)= Sample4_1_2_AL(4); % this gives VQT at incident angle of 9 degrees ExpVl(13)= Sample4_1_2_AL(5); % this gives VQT at incident angle of 12 degrees ExpVl(15)= Sample4_1_2_AL(6); % this gives VQT at incident angle of 14 degrees ExpVl(16)= Sample4_1_2_AL(7); % this gives VQT at incident angle of 15 degrees figure (17) % graph of experimental transverse velocity scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 50 2000]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('mV'); % Labels the y axis title('Amplitude against incident angle for plane 1-2 virgin CFRP sample 4') % Labels the graph %%%%%%%%%%%% 1-2 plane virgin sample 4 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-3 plane virgin sample 4 %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(7)= Sample4_1_3_AT(1); % this gives VQT at incident angle of 6 degrees ExpVqt(9)= Sample4_1_3_AT(2); % this gives VQT at incident angle of 8 degrees ExpVqt(11)= Sample4_1_3_AT(3); % this gives VQT at incident angle of 10 degrees ExpVqt(13)= Sample4_1_3_AT(4); % this gives VQT at incident angle of 12 degrees ExpVqt(15)= Sample4_1_3_AT(5); % this gives VQT at incident angle of 14 degrees ExpVqt(17)= Sample4_1_3_AT(6); % this gives VQT at incident angle of 16 degrees ExpVqt(19)= Sample4_1_3_AT(7); % this gives VQT at incident angle of 18 degrees ExpVqt(21)= Sample4_1_3_AT(8); % this gives VQT at incident angle of 20 degrees ExpVqt(23)= Sample4_1_3_AT(9); % this gives VQT at incident angle of 22 degrees ExpVqt(25)= Sample4_1_3_AT(10); % this gives VQT at incident angle of 24 degrees ExpVqt(27)= Sample4_1_3_AT(11); % this gives VQT at incident angle of 26 degrees ExpVqt(29)= Sample4_1_3_AT(12); % this gives VQT at incident angle of 28 degrees ExpVqt(31)= Sample4_1_3_AT(13); % this gives VQT at incident angle of 30 degrees ExpVqt(33)= Sample4_1_3_AT(14); % this gives VQT at incident angle of 32 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= Sample4_1_3_AL(1); % this gives VQT at incident angle of 0 degrees ExpVl(3)= Sample4_1_3_AL(2); % this gives VQT at incident angle of 2 degrees ExpVl(4)= Sample4_1_3_AL(3); % this gives VQT at incident angle of 3 degrees ExpVl(5)= Sample4_1_3_AL(4); % this gives VQT at incident angle of 4 degrees ExpVl(6)= Sample4_1_3_AL(5); % this gives VQT at incident angle of 5 degrees figure (18) scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 50 2000]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('mV'); % Labels the y axis title('Amplitude against incident angle for plane 1-3 virgin CFRP sample 4') % Labels the graphs %%%%%%%%%%%% 1-3 plane virgin sample 4 %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-2 plane virgin average %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(17)= AvgExp_AT_1_2(1); % this gives VQT at incident angle of 16 degrees ExpVqt(18)= AvgExp_AT_1_2(2); % this gives VQT at incident angle of 17 degrees ExpVqt(19)= AvgExp_AT_1_2(3); % this gives VQT at incident angle of 18 degrees ExpVqt(20)= AvgExp_AT_1_2(4); % this gives VQT at incident angle of 19 degrees ExpVqt(21)= AvgExp_AT_1_2(5); % this gives VQT at incident angle of 20 degrees ExpVqt(22)= AvgExp_AT_1_2(6); % this gives VQT at incident angle of 21 degrees ExpVqt(25)= AvgExp_AT_1_2(7); % this gives VQT at incident angle of 24 degrees ExpVqt(28)= AvgExp_AT_1_2(8); % this gives VQT at incident angle of 27 degrees ExpVqt(31)= AvgExp_AT_1_2(9); % this gives VQT at incident angle of 30 degrees ExpVqt(34)= AvgExp_AT_1_2(10); % this gives VQT at incident angle of 33 degrees ExpVqt(37)= AvgExp_AT_1_2(11); % this gives VQT at incident angle of 36 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= AvgExp_AL_1_2(1); % this gives VQT at incident angle of 0 degrees ExpVl(4)= AvgExp_AL_1_2(2); % this gives VQT at incident angle of 3 degrees ExpVl(7)= AvgExp_AL_1_2(3); % this gives VQT at incident angle of 6 degrees ExpVl(10)= AvgExp_AL_1_2(4); % this gives VQT at incident angle of 9 degrees ExpVl(13)= AvgExp_AL_1_2(5); % this gives VQT at incident angle of 12 degrees ExpVl(15)= AvgExp_AL_1_2(6); % this gives VQT at incident angle of 14 degrees ExpVl(16)= AvgExp_AL_1_2(7); % this gives VQT at incident angle of 15 degrees figure (19) % graph of experimental transverse velocity scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 50 2500]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('mV'); % Labels the y axis title('Amplitude against incident angle for plane 1-2 virgin CFRP average') % Labels the graph %%%%%%%%%%%% 1-2 plane virgin average %%%%%%%%%%%%%%%%%%% %%%%%%%%%%%% 1-3 plane virgin average %%%%%%%%%%%%%%%%%%% ExpVqt = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVqt(7)= AvgExp_AT_1_3(1); % this gives VQT at incident angle of 6 degrees ExpVqt(9)= AvgExp_AT_1_3(2); % this gives VQT at incident angle of 8 degrees ExpVqt(11)= AvgExp_AT_1_3(3); % this gives VQT at incident angle of 10 degrees ExpVqt(13)= AvgExp_AT_1_3(4); % this gives VQT at incident angle of 12 degrees ExpVqt(15)= AvgExp_AT_1_3(5); % this gives VQT at incident angle of 14 degrees ExpVqt(17)= AvgExp_AT_1_3(6); % this gives VQT at incident angle of 16 degrees ExpVqt(19)= AvgExp_AT_1_3(7); % this gives VQT at incident angle of 18 degrees ExpVqt(21)= AvgExp_AT_1_3(8); % this gives VQT at incident angle of 20 degrees ExpVqt(23)= AvgExp_AT_1_3(9); % this gives VQT at incident angle of 22 degrees ExpVqt(25)= AvgExp_AT_1_3(10); % this gives VQT at incident angle of 24 degrees ExpVqt(27)= AvgExp_AT_1_3(11); % this gives VQT at incident angle of 26 degrees ExpVqt(29)= AvgExp_AT_1_3(12); % this gives VQT at incident angle of 28 degrees ExpVqt(31)= AvgExp_AT_1_3(13); % this gives VQT at incident angle of 30 degrees ExpVqt(33)= AvgExp_AT_1_3(14); % this gives VQT at incident angle of 32 degrees ExpVl = zeros(1,46); % sets up the average velocites into an array for graphing purposes ExpVl(1)= AvgExp_AL_1_3(1); % this gives VQT at incident angle of 0 degrees ExpVl(3)= AvgExp_AL_1_3(2); % this gives VQT at incident angle of 2 degrees ExpVl(4)= AvgExp_AL_1_3(3); % this gives VQT at incident angle of 3 degrees ExpVl(5)= AvgExp_AL_1_3(4); % this gives VQT at incident angle of 4 degrees ExpVl(6)= AvgExp_AL_1_3(5); % this gives VQT at incident angle of 5 degrees figure (20) scatter(NewIncident,ExpVqt,'filled') % data from experimental hold on scatter(NewIncident,ExpVl,'filled') % data from experimental axis([0 45 50 2500]) % Sets the axis values for both x and y grid on xlabel('Incident Angle (deg)'); % labels the x axis ylabel('mV'); % Labels the y axis title('Amplitude against incident angle for plane 1-3 virgin CFRP average') % Labels the graphs %%%%%%%%%%%% 1-3 plane virgin average %%%%%%%%%%%%%%%%%%% % %===================================== AMPLITUDE GRAPHS ==================================