3D PRINTED MEMBRANE-TYPE ACOUSTIC METAMATERIALS FOR SMALL-SCALE APPLICATIONS

Cecilia Casarini, Ben Tiller, James F.C. Windmill and Joseph C. Jackson

Centre for Ultrasonic Engineering
Department of Electronic & Electrical Engineering
University of Strathclyde, Glasgow UK
OUTLINE

- Background and Motivations
- Acoustic metamaterials based on Helmholtz resonators
- 3D printing membranes
- Membranes-type metamaterials
- Conclusions and Future Work
BACKGROUND AND MOTIVATIONS

3D PRINTED MEMBRANE-TYPE ACOUSTIC METAMATERIALS FOR SMALL-SCALE APPLICATIONS
3D PRINTED MEMBRANE-TYPE ACOUSTIC METAMATERIALS FOR SMALL-SCALE APPLICATIONS

- Lightweight, small scale
- There is a large range of materials to choose from with different properties
- It is possible to change the resonance frequency by modifying the design (DMM, etc.)
BACKGROUND AND MOTIVATIONS

- The need for developing 3D printing techniques for membrane-type acoustic metamaterials has been highlighted in papers
- 3D printing gives a high degree of similarity among the samples, which is difficult to obtain in manually glued membranes

3D PRINTED MEMBRANE-TYPE ACOUSTIC METAMATERIALS FOR SMALL-SCALE APPLICATIONS

- Lightweight, small scale
- There is a large range of materials to choose from with different properties
- It is possible to change the resonance frequency by modifying the design (DMM, active membranes, etc.)
ACOUSTIC METAMATERIALS BASED ON HELMHOLTZ RESONATORS

3D PRINTING MEMBRANES

CAD Model

Upside-Down Stereolithography

https://www.asiga.com
3D PRINTING MEMBRANES

CAD Model

Upside-Down Stereolithography

https://www.asiga.com
3D PRINTING MEMBRANES

CAD Model

Upside-Down Stereolithography

https://www.asiga.com
3D PRINTING MEMBRANES

Materials Properties

<table>
<thead>
<tr>
<th></th>
<th>PMMA</th>
<th>PEGDA</th>
<th>BEMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young's Modulus (Pa)</td>
<td>1.8×10^9</td>
<td>50×10^6</td>
<td>3×10^6</td>
</tr>
<tr>
<td>Density (Kg/m3)</td>
<td>1180</td>
<td>1180</td>
<td>1099</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>0.33</td>
<td>0.35</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Trial and error process
- Increasing exposure time increases the thickness
- Increasing the quantity of absorber decreases the thickness
- Different materials need different exposure times and amount of absorber to obtain the same thickness
• Membranes increase and broaden the bandgap
• The resonance frequency is higher than expected due to stress added by the 3D printer
CONCLUSIONS

• We successfully 3D printed thin membranes.
• By printing the membranes on the bottom of Helmholtz resonators it was possible to achieve broader and deeper band gaps.
• However, the resonance frequency of the membranes was higher than the one predicted analytically.

FUTURE WORK

• To test the sound transmission loss through impedance tube or other measurement techniques.
• To design and print acoustic metamaterials based on different kind of membranes and materials.
• To finally build and test audio devices and conduct psychoacoustic evaluations.
CONCLUSIONS

• We successfully 3D printed thin membranes.
• By printing the membranes on the bottom of Helmholtz resonators it was possible to achieve broader and deeper band gaps.
• However, the resonance frequency of the membranes was higher than the one predicted analytically.

FUTURE WORK

• To test the sound transmission loss through impedance tube or other measurement techniques.
• To design and print acoustic metamaterials based on different kind of membranes and materials.
• To finally build and test audio devices and conduct psychoacoustic evaluations.
CONCLUSIONS

- We successfully 3D printed thin membranes.
- By printing the membranes on the bottom of Helmholtz resonators it was possible to achieve broader and deeper band gaps.
- However, the resonance frequency of the membranes was higher than the one predicted analytically.

FUTURE WORK

- To test the sound transmission loss through impedance tube or other measurement techniques.
- To design and print acoustic metamaterials based on different kind of membranes and materials.
- To finally build and test audio devices and conduct psychoacoustic evaluations.