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Abstract—This paper is motivated by the growing demand
of disaggregating electricity consumption measured by smart
meters, down to appliance level. The very low 15-min to 60-
min granularity of energy measurements available for analysis,
as is standard by the majority of nationwide smart metering
programmes, is posing serious challenges. The non-intrusive
load monitoring (NILM) solutions for these very low data rates
cannot leverage on low (1-60sec) to high rates (in the order of
kHz to MHz) NILM approaches, and so far have not received
much attention in the literature. In this paper, we propose a
novel electricity profile hourly disaggregation of energy consumed
(kWh) based on K-nearest neighbours (K-NN), that relies on
features such as statistical measures of the energy signal, time
usage profile of appliances and reactive power consumption (if
available). We propose relative standard deviation as a metric to
assess the quality of each feature per appliance. For validation,
three publicly accessible real-world datasets are used, namely the
REDD, REFIT and AMPds (Version 2), for up to 3 months.

I. INTRODUCTION

Non-intrusive load monitoring (NILM) is defined as esti-
mating individual appliance energy usage from smart meter
readings (e.g., voltage, current, power) of a whole household
using purely software tools [1]. Though various machine
learning methods including Hidden Markov Model (HMM)
and its variants, Dynamic Time Warping (DTW) [2], K-nearest
neighbours (K-NN) [3]-[5], sparse coding [6], Neural Network
[7] and Graph Signal Processing [8] have been applied to
the NILM problem, most approaches focus on either high
sampling rates in the order of kHz or MHz or sampling
rates between 1sec and 1min. Disaggregation in these cases
is usually performed via feature extraction and state transition
modelling on active and/or reactive power data. Very low-rate
(10-60 mins) NILM is slowly gaining interest [3]-[6], [9], [10]
since electricity meters deployed at scale in most countries
tend to provide extremely low-rate measurements, at 15, 30
minutes or hourly granularity. Compared with power measure-
ments of higher granularity, the energy consumption signal at
very low granularity features limited state transitions, fewer
low-consuming appliances’ feature patterns and much higher
probability of multiple appliances running simultaneously.
Thus, lack of well-known features and increased appliance
noise make very low NILM a challenging problem [4], which
can be looked at as electricity usage profile disaggregation,
since the input is the total energy use within fixed time
intervals (e.g., in kiloWatt-hour), instead of active/reactive

power readings collected at relatively high frequency in Watts
or VArs.

Sparse coding is proposed for hourly measurements in [6],
where appliance models built from weekly typical training
sets are used to predict appliance-level power consumption
for unseen houses. Plug-level disaggregation results for hourly
power consumption data is shown in [6] but the aggregate
power consumption used is artificially obtained as the sum
of sub-metered components disregarding measurement noise
and noise due to unknown appliances, typically present in
aggregate smart meter data. In [9], piecewise functions of
power consumption versus external temperature per house are
modelled for hourly disaggregation of base-load, heating and
cooling consumption but not specific to any appliances. Sim-
ilarly, appliance-level disaggregation results are not demon-
strated in [10], where contextual supervision is applied to the
single-channel source separation problem for overall heating,
cooling and base load.

K-NN, as a low-complexity time-series
classification/clustering approach, has been attempted
for electricity usage profile classification in [3], [5] and [4].
In [3], K-NN is applied as a tool to find houses most similar
to the test house and then estimate appliance-level monthly
energy consumption, using as features house size, occupancy
and room number but not weather; monthly consumption
is then estimated based on a very large training dataset.
Our proposed method is not limited by training on a large
dataset. In [5], Principal component analysis (PCA) is used
for determining suitable houses for transfer learning, and
K-NN is used as a time-series classifier for electricity usage
profile classification with granularity of 10 min, but without
exploiting time information as feature. The features utilised
in [4] are derived from both magnitude and time, as in our
proposed algorithm. However, unlike our proposed algorithm,
daily total consumption for each appliance is not considered
in [4]. We also add an additional feature for representing
correlation between active and reactive power. Moreover, in
our proposed algorithm, feature selection for each appliance
is determined by our proposed metric for feature quality
evaluation. Classification results in terms of classification
accuracy are presented in [4] but not disaggregation results,
e.g., estimated load-specific consumption.

In this paper, we propose a supervised K-NN based elec-
tricity usage profile disaggregation of energy measurements



at 15 and 60 min granularity to identify a range of appli-
ances. Relative standard deviation is proposed as a metric to
determine which features are most useful for disaggregating
particular appliances. Unlike [3], [4] and [5], we validate
the disaggregation results using three open access datasets of
true power measurements: REDD [11] (US houses), REFIT
[12] (UK houses) and AMPds [13] (a Canadian house). For
all datasets, we calculate the electricity energy profile of the
aggregate load for 15-min and 1 hour in Watt-hour (Wh).

II. ELECTRICITY USAGE PROFILE DISAGGREGATION:
NOTATION AND PROBLEM STATEMENT

We denote by P and Q active and reactive power signal, re-
spectively. Let Pt be the active power collected at time instant t
and WPi

be the total household’s electric energy consumption
measurement within the i-th time interval. Namely,

WPi =

∫
Ti

Ptdt, (1)

where Ti is the duration of the time interval i. Then the
electricity usage profile disaggregation task is, ∀i, to estimate
energy contributed by each individual appliance m, WPmi

,
towards the total energy WPi . That is,

WPi
=

∑
m∈M

WPmi
+ ni, (2)

where M is set of appliances or loads contributing towards the
aggregate load, and ni refers to noise due to measurement error
and unknown appliances. WQi

is calculated as in Eq. (1) by
replacing Pt with Qt, only as a feature category but contains
no practical meaning.

III. METHODOLOGY

In this section we describe our proposed algorithm. We start
with a brief background of K-NN and then move on to defining
feature categories used in the proposed algorithm.

K-NN is a time-series classification method where test sam-
ples are classified by a majority vote of neighbours via distance
calculation between samples’ attributes and corresponding
features of instances in the training database using a distance
metric [5]. Popular distance metrics include Euclidean, Man-
hattan, Hamming, DTW, etc. Let y be a test sample. Then, we
calculate distances between y and all samples in the training
dataset x1, . . . , xK , and find the minimum distance:

dy = min {d(y, x1); d(y, x2); ...; d(y, xK)} , (3)

where d(·, ·) is a distance measure.

A. Feature extraction

We assume, as in [3], that Individual appliance monitoring
(IAM) measurements of individual loads are available for
training. Note that if sub-metering data is not available, as
it is the case for smart metering nationwide rollouts, we can
use time-wise features extracted from a time-of-use diary to
estimate magnitude-wise features from the aggregate load like
in [4] and [5].

In many countries, including Spain and Italy, smart meter
measurements are collected every 24 hours. Therefore, we
perform daily disaggregation on 24-hour long windows, where
for hourly readings, each window contains n = 24 energy
samples. Within each time sample, an appliance can be in
either OFF state, if it was not running at all during that hour, or
in the ON state, otherwise. Thus, for a duration of one window,
there are 2n possible daily combinations of ON and OFF
states. To reduce complexity, we limit the number of candidate
ON-OFF state patterns by filtering out invalid combinations
based on appliance time usage profile, e.g., refrigerators are
always ON, which is not the case with electric heater.

Features are extracted as apriori inputs to K-NN, as in
previous works [3], [4] and [5], depending on the datasets
and algorithms used. From WP, using the training dataset,
we intuitively design the categories of features as follows: 1.
Average daily ON duration; 2. Maximum daily ON duration;
3. Minimum daily ON duration; 4. Average daily switched-
ON time; 5. Average daily switched-OFF time; 6. Median
time of day for daily running; 7. Average consumed energy
per day; 8. Maximum consumed energy per day; 9. Minimum
consumed energy per day; 10. Variance of consumed energy
per day; 11. Average daily total energy consumed. When
both energy and reactive power consumption measurements
are available, for each appliance, an additional feature can be
used − the average ratio between active and reactive measure-
ments used in the ON state. Since only a subset of features
are useful for disaggregating individual loads, an adaptive
feature refining step is proposed based on the assumption
that the subset of useful features should be extracted from
attributes with high precision and low variability. We use
relative standard deviation (RSD), as in [8], to represent the
quality of each feature, where features are selected based on
constant threshold G for evaluating RSD values. Note that
additional features extracted from other attributes, such as
weather and occupancy information used in [3], are available
in our proposed algorithm, only if they result in small RSD.

Table I lists the selected features for several appliances from
the AMPds dataset using G = 0.5. The abbreviations used for
domestic loads considered in this paper are as follows: HWU
is hot water unit; CW is clothes washer; DW is dishwasher;
SNE is security/network equipment; HP is heat pump; UT is
utility room; EWB is electronics workbench; GR is garage; FZ
is freezer; KO is kitchen outlet; F is fridge and EH is electrical
heater. From Table I, the majority of features extracted from
WP for most appliances are of high quality, e.g., they have
low RSD. On the other hand, the features extracted from
WQ for HWU and UT have low precision and high RSD, so
are not used. Apart from daily total consumption, no feature
can be extracted from WP or WQ for SNE due to its low-
consumption, which is attributed to the base-load.

B. Feature matching

Fig. 1 illustrates how dy in Eq.(3) is calculated for the pro-
posed K-NN based electricity profile disaggregation algorithm.
During training, we obtained a set of aforementioned daily



TABLE I
FEATURES CONSIDERED FOR APPLIANCES FROM THE AMPDS DATASET.

Features HWU CW DW SNE HVAC HP UT EWB GR

WP

Average daily ON duration
√ √ √ √ √ √ √

Maximum daily ON duration
√ √ √ √ √ √ √

Minimum daily ON duration
√ √ √ √ √ √ √

Average daily switched-ON time
√ √

Average daily switched-OFF time
√ √ √ √

Median time of day for daily running
√ √ √

Average consumed energy per day
√ √ √ √ √ √ √ √

Maximum consumed energy per day
√ √ √ √ √ √ √

Minimum consumed energy per day
√ √ √ √ √ √ √ √

Variance of consumed energy per day
√ √ √ √ √ √

Average daily total consumption
√ √ √ √ √ √ √ √ √

WQ

Average daily ON duration
√ √ √

Maximum daily ON duration
√ √ √

Minimum daily ON duration
√ √ √

Average daily switched-ON time
√

Average daily switched-OFF time
√ √ √

Median time of day for daily running
√ √ √

Average consumed energy per day
√ √ √ √ √ √

Maximum consumed energy per day
√ √ √ √ √

Minimum consumed energy per day
√ √ √ √ √ √

Variance of consumed energy per day
√ √

Average daily total consumption
√ √ √ √ √ √ √

WP & WQ Average ON state magnitude ratio between WQi
and WPi

√ √ √ √ √ √ √ √
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Fig. 1. Flow chart of the proposed algorithm.

features extracted and shortlisted (after RSD evaluation) for
Appliance m, as discussed in Subsection III-A - left of Fig. 1.
During testing (right of Fig. 1), we extract the same features
as those in the qualified feature database. Then K nearest
neighbours are defined as K daily readings, x1, . . . , xK , from
the training dataset, whose features have the shortest distances
(calculated using Eq.(3)) to the testing candidate ON-OFF state
pattern y for Appliance m. For daily disaggregation and hourly
sampling rates, y and xi’s are all n = 24-length vectors. The
resulting minimum distance dy among all possible candidates
y and selected neighbours x classifies appliances as per the
training set.

IV. EXPERIMENTAL VALIDATION AND DISCUSSION

We demonstrate the performance of the proposed approach
using (1) P of the US REDD dataset, (2) P of the UK
REFIT dataset (Cleaned) [12] and (3) both P and Q
of Canadian AMPds dataset (Version 2) [13]. The three
datasets can be accessed via http://redd.csail.mit.edu/,
DOI:10.15129/9ab14b0e-19ac-4279-938f-27f643078cec and
DOI:10.7910/DVN/FIE0S4, respectively. REDD dataset
offers the best sub-metering coverage but provides the fewest
measurements. REFIT houses include fewer submetered
loads than AMPds and aggregate load measurements
are considerably noisier than in the other two datasets,
due to unknown appliances. Since the datasets’ original
measurements’ sampling rates are 1sec, 8sec, and 1min,
we calculate the 15-min or hourly energy WP via Eq.(1).
As time of day is a key feature in our algorithm, only
whole-day available measurements are used, e.g., if there are
measurement samples missing within a 24-hour window of
a day, that day is not included in our experiments. Based
on the aforementioned data selection rules and individual
appliance usage frequency, the following portions of data
are empirically selected: 19/04/2013–01/05/2013 (13 days
in total, 7 days for training and 6 days for testing) for
REDD House 2; 28/10/2013–02/06/2014 (90 days in total,
30 days for training and 60 days for testing) for REFIT
House 1; 28/10/2012–27/04/2013 (180 days in total, 90 days
for training and 90 days for testing) for the AMPds house.
Fridge and freezer measurements in REFIT House 1 are
merged. Aggregate measurements from the AMPds dataset
includes main house, garage and rental suite. As is common
practice by utilities for summarising energy use, we use kWh
to present our results. In all experiments, G for evaluating
RSD is empirically set to 0.5.

Tables II and III show the disaggregation results for 15-min
and 1-hour electricity usage profile, respectively, for REDD



TABLE II
PERFORMANCE OF THE PROPOSED METHOD FOR 15-MINUTE DATA.

REDD House 2 REFIT House 1
Appliance FZ KO BL F+FZ EH BL
Est. (kWh) 11.6 1.47 3.08 61.67 209.16 151.98
IAM (kWh) 12.32 1.47 2.88 63.08 253.71 101.96

Est./Total 36.68% 4.65% 9.74% 7.18% 24.34% 17.69%

House 2 Freezer (FZ), Kitchen Outlet (KO) and Base-load
(BL), and REFIT House 1 Fridge&Freezers (F+FZ), Electrical
Heater (EH) and BL. IAM row, used as ground truth, shows
the actual submetered energy in kWh. Est./Total shows the
percentage contribution of the estimated energy consumed by
an individual load towards the aggregate (measured) load.

We can disaggregate 51% and 62.5%, for 15-min and 1-
hour granularity, respectively, of REDD House 2 total load
and about 49% and 54%, for 15-min and 1-hour granularity,
respectively, of REFIT House 1 total load. The amount of
energy consumed that can be accounted for due to individual
loads is slightly lower for hourly granularity measurements.
As the Est. and IAM rows for each appliance show, our
disaggregated energy for each of the selected appliances is
close to the actual energy consumed. The disaggregated energy
for KO and BL for REDD House 2 is overestimated, which is
inline with very low rate disaggregation results based on sparse
coding [6] where performance of Fridge/Freezer is generally
good but the overestimation problem generally exists for short-
duration and low-energy loads.

TABLE III
PERFORMANCE OF THE PROPOSED METHOD FOR HOURLY DATA.

REDD House 2 REFIT House 1
Appliance FZ KO BL FZ EH BL
Est. (kWh) 9.52 1.6 8.67 43.53 235.62 197.42
IAM (kWh) 12.32 1.47 7.11 45.49 255.97 205.56

Est./Total 30.1% 5.07% 27.41% 4.96% 26.85% 22.5%

TABLE IV
PERFORMANCE OF THE PROPOSED METHOD FOR THE AMPDS DATASET

FOR HOURLY DATA.

HWU CW DW SNE HVAC

Est. (kWh) WP 11.61 11.62 45.77 78.46 224.2
+WQ 11.71 14.02 45.24 78.57 222.89

IAM (kWh) 16.85 10.23 36.78 86.97 252.11

Est./Total WP 0.41% 0.41% 1.63% 2.79% 7.98%
+WQ 0.42% 0.50% 1.61% 2.80% 7.94%

HP UT EWB GR BL

Est. (kWh) WP 456.77 108.95 57.34 3.29 212.74
+WQ 477.74 108.95 57.34 3.29 212.74

IAM (kWh) 552.44 111.04 56.6 3.54 179.36

Est./Total WP 16.26% 3.88% 2.04% 0.12% 7.58%
+WQ 17.01% 3.88% 2.04% 0.12% 7.58%

Table IV shows the disaggregation results for hourly elec-
tricity usage profile for the AMPds house, where +WQ refers
to disaggregation with WQ available as a feature. When
considering both WP and WQ instead of WP only, the
algorithm performs worse for CW and better for HP. The
features derived from WQ of CW have low RSD resulting in
overestimation. The proposed approach can disaggregate 43%
of AMPds house total electricity consumption given WP and

44% given both WP and WQ. Overall, with hourly NILM,
the inclusion of WQ as a feature does not seem to improve
results significantly.

V. CONCLUSION

In this paper, we propose a supervised K-NN based electric-
ity usage profile disaggregation solution for daily appliance-
level energy feedback. Unlike K-NN classifiers of [4], [5],
appliance time usage profile is considered in our method to
extract useful features. Furthermore, RSD is used to evaluate
the quality of each feature and customise feature selection
per appliance. After validation on three datasets for up to
3 months, we show that the proposed algorithm successfully
disaggregates appliance energy consumption when compared
to the individual, appliance-specific, energy measurements and
can disaggregate up to 62% of the daily energy consumption
from the total noisy electricity usage profile with 15-min and
60-min granularity. Future work includes weighting features
based on RSD or other metrics; validation enhancement by
adding state-of-the-art benchmarks, including sparse coding
[6]; improvement of ON-OFF states prediction rules to trade-
off efficiency; widening the set of loads that can be estimated
reliably; transfer learning from similar houses and appliance
ownership and usage profile.
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