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Interaction of cavity solitons in degenerate optical parametric oscillators.
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Numerical studies together with asymptotic and spectral analysis establish regimes where soliton
pairs in degenerate optical parametric oscillators fuse, repel, or form bound states. A novel bound
state stabilized by coupled internal oscillations is predicted.

Many nonlinear media can support soliton-like struc-
tures when contained in a driven optical cavity [1–4]. We
will refer to such structures as cavity solitons (CS). In
quadratic nonlinear media CS have recently been pre-
dicted in both optical parametric oscillator (OPO) [3]
and second harmonic generation [4] configurations. Al-
though experimental observation of χ(2)-CS remains a
challenge, impressive bistability results [5] demonstrate
the required level of nonlinearity and thus pave the way
towards this goal.

The large values of effective χ(2) accessible in artifi-
cially phase-matched materials in combination with their
practically instantaneous response are important advan-
tages of using quadratic nonlinearity for implementation
of CS for all-optical processing of information. They thus
represent an interesting alternative to the CS which can
be created in cavities with dispersive-absorptive [1],and
resonant electron-hole [2] types of nonlinearities. In all
such schemes high CS density is desirable and therefore
understanding of their interaction is a practically impor-
tant problem which is still largely open. In this Letter
we focus on the interactions of CS found in the below-
threshold regime of a degenerate doubly resonant OPO,
under conditions where the signal field has three coexis-
tent plane-wave states [3].

Assuming phase-matching, a plane-wave input field,
and ignoring walk-off, the mean-field OPO equations can
be presented in the following dimensionless form [3]

−i∂tE1 = (α1∂
2
x + δ1 + iγ1)E1 + (E2 + µ)E∗

1 , (1)

−i∂tE2 = (α2∂
2
x + δ2 + iγ2)E2 + E2

1/2,

Here E1 and (E2 + µ) are the signal and pump fields,
respectively, at frequencies ω and 2ω (we use µ as a mea-
sure of the pump strength). The slow time t is scaled so
that γm (proportional to the cavity damping rates) and
δm (to the detunings from its resonances) are of order
unity. Here and below m = 1, 2.

This system can describe either diffractive or dispersive
effects. We consider x a dimensionless transverse coor-
dinate, and so set αm = 1/m. For this case, existence
of CS for δm < 0 was numerically demonstrated [3] for

µL < µ < µR, where µL = |γ1δ2 + γ2δ1|/
√

δ2
2 + γ2

2 , and

µR =
√

δ2
1 + γ2

1 is the OPO threshold. Within this range
two different non-trivial homogeneous solutions (Em 6= 0,
∂xEm = 0) coexist with the trivial one (Em = 0), and the
CS are sech-like localized states on the zero background.

We start our analysis by applying a perturbative

method [6] to the problem of CS interaction. We seek
solutions of Eqs. (1) in the form

Em(x, t) = Am(x − xA) + Bm(x − xB) +

ǫ(am(x − xA, xB, t) + bm(x − xB, xA, t)) + O(ǫ2), (2)

where Am(x − xA) and Bm(x − xB) are CS centred on
xA,B. Note that Eqs. (1) are invariant with respect to a
π phase flip of the signal field, so that A and B can be ei-
ther in-phase or out-of-phase CS. We assume 0 < ǫ ≪ 1,
and that the perturbation functions am, bm are negligible
except close to xA, xB respectively. We further assume
that xA,B vary on the slow time scale τ = ǫt and that
d = |xA − xB | is large enough that the overlap functions
I1 = A2B

∗
1 + B2A

∗
1 and I2 = A1B1 are of order ǫ.

Substituting ansatz (2) into Eqs. (1) and truncating
O(ǫ2) terms we obtain two analogous systems of equa-
tions for am and bm, the former expressible in the form:

(L̂A − ∂t)~a = −(∂τxA)~ξA + ~I/ǫ, (3)

Here ~a = (Rea1, Rea2, Ima1, Ima2)
T ; operator L̂A is the

linearization of Eqs. (1) around the soliton Am; ~ξA =
∂x(ReA1, ReA2, ImA1, ImA2)

T is the neutral eigenmode

of L̂A associated with translational symmetry, L̂A
~ξA = 0;

and ~I = (−ImI1,−ImI2, ReI1, ReI2)
T controls the in-

teraction of the two CS.
The solution of Eq. (3) should in general be expressed

as a superposition of the eigenmodes ~ξn of L̂A, L̂A
~ξn =

λn
~ξn, with time dependent coefficients, because the CS

interaction will couple to them all. However, apart from
the above-mentioned neutral eigenmodes, the only ana-
lytic knowledge about the eigensystems of L̂A and L̂B

is that they have two bands of continuum modes with
eigenvalues λ lying on Reλ = −γm, i.e. that all extended
eigenmodes are damped. We have obtained their full
eigensystems numerically, using finite-differences, over
wide ranges of all relevant parameters. We find that for
sufficiently large dissipation all cavity solitons are stable
throughout the entire region of their existence. A Hopf
bifurcation can occur as photon lifetime is increased, but
we will not consider here any parameter regions where
isolated CS are unstable. With oscillatory eigenmodes
absent or well damped, only the neutral mode is easily
excited by external perturbations, and so we meantime
neglect all other modes. This enables us to obtain semi-
analytic results on CS interactions.
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To exclude secularly growing solutions the right-hand
side of Eq. (3) must be orthogonal to the neutral eigen-

mode of L̂†
A (which we calculated numerically). This

solvability condition, together with that for the B soli-
ton, defines a function f which governs the dynamical
evolution of the distance d between the soliton centers:

∂td = f(d). (4)

We computed f for both in-phase and out-of-phase inter-
acting CS, for many parameter values. Typical examples
are plotted in Fig. 1. Regions where f is negative (pos-
itive) correspond to CS attraction (repulsion). Zeros of
f(d) thus mark stationary bound states of CS pairs, which
are stable if ∂df < 0 where f = 0.

We find that this equation gives generally correct pre-
dictions of the inter-soliton forces, in particular that in-
phase CS attract and out-of-phase CS repel. Both re-
pulsion and attraction become stronger as µ increases,
presumably because the signal component (E1) of the
CS becomes less localized as µ approaches plane-wave
threshold at µR. A similar effect can be envisaged in
other CS models. For in-phase CS the function f can de-
velop pairs of zeros, see Fig. 1. This predicts birth of new
pairs of CS bound states, one stable and one unstable.

In Fig. 2 we present simulation results showing differ-
ent interaction scenarios for two CS initially separated by
about three soliton widths. First, we consider interaction
of in-phase solitons. For small µ mutual attraction results
in fusion of two solitons into one (Fig. 2(a)). Gradually
increasing µ we first observe formation of a stable oscilla-
tory bound state (Fig. 2(b)), then of a stationary bound
state (Fig. 2(c)) which is stable (the radiation visible
in Fig. 2(c) decays, albeit slowly). Note that the equi-
librium separation in Fig. 2(c) is predicted quite well
by the appropriate zero of f(d) in Fig. 1, even though
these CS are close enough to endanger the assumptions
of our perturbation method. Stationary two-hump soli-
tary states have been found previously [3] as solutions of
an approximate equation derived from Eqs. (1), but no
analysis of soliton interactions was performed. Note that
we have found not only two-hump but also multi-hump
solitary states. However the latter were usually dynam-
ically unstable. Further details on this issue will be re-
ported elsewhere. Close to the upper boundary of CS
existence the interaction of two solitons excites a global
pattern, see Fig. 2(d), via generation of a switching wave
from the stable trivial solution up into the modulation-
ally unstable nontrivial homogeneous state. As predicted
by Eq. (4), out-of-phase CS repel each other throughout
the entire region of their existence - contrast Fig. 2(e)
with Fig. 2(d), which corresponds to the same value of
µ.

Now we will describe numerical results of the inter-
action of CS where weakly-damped oscillatory modes
strongly influence the soliton interactions. Oscillat-
ing solitons generally radiate energy, which can become
trapped between neighbouring solitons, exerting a radia-

tion force which may lead to formation of a bound state.
An effect of this kind has been reported for solitons in
models with a weak global dissipation [7]. We investi-
gated a quite different situation, where linear waves es-
caping from the soliton are strongly damped. Here strong
interaction between the solitons is due, not to radiation
modes, but to proto-Hopf modes, and thus has novel as-
pects.

The effect is strong providing that two conditions are
satisfied. First, and crucially, the corresponding eigen-
modes must have tails with well pronounced and weakly
decaying oscillatory structure, see Fig. 3(a). Second,
as might be expected, the oscillatory mode should be
weakly damped (see Fig. 3(b)), i.e. the CS is close to
a Hopf instability. If both conditions hold, then, even if
the global damping due to the γm is strong, a CS acts as
a guide for waves weakly damped in both space and time.
If a second CS is close enough, these guided waves can
couple and reinforce each other. Fig. 3(c, d) illustrates
the dynamics of two interacting CS having eigenmodes
shown in Fig. 3(a). Note that the separation of the in-
teracting solitons in Fig. 3(c) is much greater than their
width. Comparison with Fig. 3(b) clearly indicates that
the undamped pulsations shown in Fig. 3(d) originate
from coupling and mutual reinforcement of the oscilla-
tory modes of the two solitons. A further interesting
point is that we find these dynamic bound states also for
out-of-phase solitons, balancing the repulsion induced by
their neutral mode interaction.

Quadratic nonlinearity is also known to support soli-
tons in free propagation geometry and in particularly in-
teraction of these solitons has recently been studied both
experimentally and theoretically [8,9]. Hamiltonian na-
ture of free propagating solitons results in their interac-
tion obeying the laws of Newtonian dynamics [9]. An-
other important difference is that the relative phase of
the interacting solitons can take only two discrete values
in a cavity while it is a continuous free parameter in a
propagation scheme. In spite of these differences fusion of
the in-phase solitons and repulsion of the out-phase are
common features in both schemes. However, existence
of the stationary and oscillatory bound states coupled
either via translational neutral modes or via internal os-
cillatory modes are novel important features arising due
to presence of the external pump and cavity losses. Bal-
ance between the pump and losses acts as an additional,
equally important with the balance between diffraction
and nonlinearity, mechanism of soliton formation inside
an optical cavity.

In summary, we have presented the analytical and nu-
merical study of the interaction of cavity solitons in a de-
generate OPO and identified distinct static and dynamic
binding mechanisms.
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FIG. 1. Plots of the CS velocity function f vs d. Full
(dashed) lines correspond to in-phase (out-of-phase) solitons
and thin (thick) lines correspond to µ = 1.6(1.9). Other pa-
rameters are δ2 = −4, δ1 = −1.8, γ1 = 1, γ2 = 0.8.
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FIG. 2. Interaction dynamics of χ(2) cavity solitons [9].
At different values of pump parameter µ, in-phase CS: (a)
merge, µ = 1.6; (b) form oscillatory bound state, µ = 1.8; (c)
form stable stationary bound state, µ = 1.9; (d) generate a
pattern via a switching wave, µ = 2. Out-of-phase solitons
repel, e.g. at µ = 2, (e). Other parameters as for Fig. 1.
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FIG. 3. Dynamic interaction of CS for µ = 2, δ1 = −3,
δ2 = −12, γ1 = 0.3, γ2 = 1, for which the CS has a mode
with eigenvalue pair λ ≃ −0.03 ± i4.14: (a) Spatial structure
of the eigenmode, Re(u1) - full lines, Re(u2) -dashed lines;
(b) Temporal evolution of signal energy Q =

∫

dx|E1|
2 for

slightly perturbed single soliton, showing damped oscillation;
(c) Spatio-temporal evolution [9] of |E1| (time window much
later than in (b)), showing dynamic bound state; (d) Tem-
poral evolution of signal energies of the two CS in (c), in the
same time window, showing rapid undamped oscillations and
slow energy exchange between the two solitons.
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