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Frequency selection by soliton excitation in nondegenerate intracavity downconversion
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We show that soliton excitation in intracavity downconversion naturally selects a strictly defined
frequency difference between the signal and idler fields. In particular, this phenomenon implies
that if the signal has smaller losses than the idler then its frequency is pulled away from the cavity
resonance and the idler frequency is pulled towards the resonance and vice versa. The frequency
selection is shown to be closely linked with the relative energy balance between the idler and signal
fields.

Exchange of ideas between nonlinear optics and non-
linear dynamics of spatially distributed systems has pro-
duced a series of interesting results over the last decade,
and has opened up one of the most active areas of current
research. In this particular work we will consider novel
phenomena associated with soliton excitation in the prac-
tically and fundamentally important area of nondegener-
ate intracavity down-conversion.

The essence of parametric down-conversion is virtual
absorption of a pump photon at frequency ωp with a sub-
sequent reemission of two photons with frequencies ωi
and ωs, where indices i and s stand, respectively, for the
idler and signal fields. Down-conversion can be realized
both in free propagation and in intracavity schemes. The
latter takes advantage of positive feedback provided by
the mirrors and thus transforms the passive free propaga-
tion scheme into an active generator or optical parametric
oscillator (OPO) [1,2].

Influence of the transverse degrees of freedom on the
quantum [3] and classical [3–11] aspects of the parametric
processes have recently become a subject of significant ac-
tivity. Among the main attraction points on the classical
side are localised structures [5–11]. Bright diffractionless
localised excitations inside an optical cavity supported
by different nonlinearities (cavity solitons) have been re-
cently observed experimentally [12] and suggested for
all-optical processing and storage of information [9,13],
see also recent reviews [14]. The large quadratic nonlin-
earities of artificially phase matched materials [2] make
parametric cavity solitons [5–11] particularly attractive
for practical application, especially where fast material
response is an issue.

Down-conversion processes can be divided into degen-
erate and nondegenerate. In the former case idler and
signal photons are identical while in the latter they differ
in frequencies and/or polarizations. It has been shown
that transverse patterns in nondegenerate OPO [4,5] and
soliton dynamics in nondegenerate free propagation [11]
have qualitative differences from their degenerate coun-
terparts. The difference can be formally identified as due
to an additional symmetry, in the differential phase of
signal and idler fields [11]. This symmetry is suppressed
in the degenerate case. As a result the frequency of the

signal component of any solution, including solitons, is
exactly half the pump frequency, ωs ≡ ωi = ωp/2. On
the other hand, in the nondegenerate case any arbitrary
frequency difference 2Ω between the idler and signal fields
still satisfies the condition ωp = ωs + ωi. This raises the
question of whether there are any physical constraints on
Ω.

While in free propagation the value of Ω is limited
only by phase matching conditions, this problem becomes
more subtle in the OPO because cavity effects come into
play. A review of early works on this issue, exploring
approaches based on the plane wave approximation, can
be found in [1]. More recently Longhi [4] has shown that
if diffraction is included then Ω becomes a function of
the magnitude of the transverse component of the signal
and idler wave vectors, ~ki⊥ = −~ks⊥, of the exact trav-
elling wave solution which exists in this system [4]. For
the fixed OPO parameters |ks,i⊥ | can take any values from
certain continuous bands and hence so can Ω.

The primary object of this Letter is to demonstrate
that Ω is constrained when a cavity soliton is excited in
the nondegenerate OPO. We show how this follows from
a general relation between the soliton energies and the
cavity losses. Existence of this relation, which has not
been previously identified in this context, seems to be
closely related to survival of differential phase symmetry
in the presence of cavity losses. We use this symmetry
to derive aproximate formulae for Ω in certain limits.
Understanding this problem is not only practically im-
portant, but also holds the key to construction of entire
families of cavity solitons.

Mean-field equations describing interaction of the sig-
nal, idler and pump waves in OPO [3,4,8] can be pre-
sented in the dimensionless quasi-Hamiltonian form

(∂t + γm)Em = i
δH

δE∗
m

, m = s, i, p (1)

where H is the following functional: H =
∫

dx[−αs|∂xEs|2 − αi|∂xEi|2 − αp|∂xEp|2 + δs|Es|2 +
δi|Ei|2 + δp|Ep|2 + (EpE

∗
i E

∗
s + µE∗

sE
∗
i + c.c.)]. t is

the time measured in the units of τcb, where τc is
the cavity round-trip time and b is an arbitrary scal-
ing constant. γm = Tmb/2, where Tm are the effec-
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tive mirror transmitivities. x = X [2ks/(bL)]1/2 and
αm = ks/km, where X is the transverse coordinate in
physical units, km are the longitudinal components of
the wave vectors and L is a cavity round-trip length.
δm = bτc(ωm − ωcavm ) are the detunings from the cavity
resonances ωcavm . Physically, validity of these equations
requires small losses and detunings: γm, δm << bπ. As-
suming, for simplicity, that ωs is close to ωi, we can
fix αs,i = 2αp = 1, but still allow differences in δs, δi
and γs, γi. Then the phase matching conditions imply
n(ωs) ≃ n(ωi) ≃ n(ωp), where n(ω) is the linear re-
fractive index and the following scalings can be derived
for the field variables. µ is proportional to the external

pump field Ep: Ep = µ
√

2(δ2p + γ2
p)/T̃ωp

/(bτcχωs), here

χ is the effective quadratic susceptibility. The physi-
cal fields Em are given by Es,i =

√
2Es,ie

iφ/2/(bτcχωs),

Ep = 2eiφ(Ep + µ
√

δ2p + γ2
p)/(bτcχωs), where φ =

−atan(γp/δp).
We seek localized solutions of Eqs. (1) in the form

Em(x, t) = Am(x,∆)eiΩmt, where Ωs,i = ±∆ ± (δs −
δi)/2, Ωp = 0. Then Am obey the set of differential
equations

−iγsAs = (∂2
x + δ − ∆)As + (Ap + µ)A∗

i ,

−iγiAi = (∂2
x + δ + ∆)Ai + (Ap + µ)A∗

s , (2)

−i2γpAp = (∂2
x + 2δp)Ap + 2AsAi,

where δ = (δs + δi)/2. The previously introduced
frequency difference 2Ω between the idler and signal
fields is linked with the parameter ∆ by the formula:
2Ω = (2∆ + δs − δi)/(bτc) We are interested in bright
single-hump solitons, implying Am(x = +∞) = 0 and
∂xAm(x = 0) = 0. Existence of such solitons in the
parameter region where the trivial zero solution bifur-
cates subcritically can be predicted for ∆ = 0, γs = γi
by analogy with the well studied degenerate case, where
this condition reads δδp > γsγp [6,9,10]. In the nondegen-
erate case solitons have been found as a result of direct
numerical simulations of Eqs. (1) starting from either
’random’ [5] or localized [8] initial conditions. Subcrit-
ical bifurcation and the related phenomenon of optical
bistability in the nondegenerate OPO have been demon-
strated experimentally in [15].

For fixed cavity parameters solitons can exist either for
∆ continuously varying in a certain range or for only a
discrete set of ∆ values. We will show that the latter situ-
ation is realised for γs,i 6= 0. We thus assert that the cav-
ity selects the frequency difference between the signal and
idler when a parametric soliton is excited. Note that the
related problem of frequency selection has been studied
in the general context of the complex Ginzburg-Landau
equation (CGLE) with subcritical bifurcation [16], which
also can be applied to describe laser with saturable ab-
sorber [12,17]. The possibility of the approximate re-
duction of Eqs. (1) to the CGLE in the different limits

has been demonstrated in [8]. However, the problem of
the frequency selection by solitons in OPO has not been
previously formulated even within the framework of the
CGLE approximation. This fact has in turn prevented
construction of the family of stationary soliton solutions
of Eqs. (2) and rigorous study of their stability.

To start our analysis of the frequency selection, prob-
lem, we define the energy parameters Qm =

∫

dx|Em|2
and the energy imbalance (Q− = Qs−Qi). Manipulation
of Eqs. (1) reveals that the rate of change of Q− is given
by

∂tQ− = −2γ+Q− − 2γ−Q+ = 2γiQi − 2γsQs, (3)

here γ± = (γs ± γi)/2 and Q+ = Qs +Qi. Thus for any
steady state solution, such as soliton solutions of Eqs.
(2), the condition

γsQs = γiQi, (4)

must be satisfied. Eq. (4) is consistent with the expec-
tation that the field with the smaller losses will have the
larger energy.

To further interpret relations (3), (4) let us recall
that in free propagation downconversion is a Hamilto-
nian process. Then by Noether’s theorem every con-
tinuous symmetry implies a corresponding conservation
law, see e.g. [11]. Cavity losses destroy the Hamiltonian
structure of the problem, see Eqs. (1), and the input
pump breaks the phase symmetry linked with conserva-
tion of the total energy (Qs +Qi + 2Qp). The symmetry
(Es, Ei) → (Ese

iψ , Eie
−iψ) in the differential phase ψ,

however, survives in the cavity configuration, so how do
the losses change the associated law ∂tQ− = 0? Self-
evidently the relation (3) becomes this conservation law
in the Hamiltonian limit, which suggests a more general
link between this energy relation and the symmetry in
the differential phase.

Now using cavity solitons as an example we will demon-
strate that condition (4) constrains the frequency differ-
ence of the signal and idler components of the intracavity
field. We consider signal and idler losses small compare
to the cavity detunings γs,i/|δ| ≪ 1 and set b = 1. Con-
servation of Q− is restored for γs,i = 0 and thus Eq. (4)
is satisfied automatically. A soliton family then exists
for δ < 0, with ∆ continuously varying in the interval
(δ,−δ). Outside this interval exponential localization of
As,i is not possible. Now suppose that for γs,i ∼ ǫ ≪ 1
∆ becomes a slow function of t, i.e. ∂t∆ ∼ ǫ, then Eq.
(3) immediately gives an equation for the adiabatic evo-
lution of ∆: ∂t∆ · ∂∆Q− = −γ+Q−(∆) − γ−Q+(∆).
For stationary soliton solutions ∂t∆ = 0 and intersec-
tions of the curve Qs/Qi as a function of ∆ with the line
Qs/Qi = γi/γs give selected values of ∆. We plot in Fig.
1(a) the existence curve corresponding to the numerically
built [18] single-hump soliton family in the plane (µ,∆)
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for δ = −1 and losses of the signal and idler of order sev-
eral percent. Dots in Fig. 1(a) correspond to values of
∆ obtained by the perturbative method. The agreement
is excellent, which also indicates that the limit of small
cavity losses is non-singular. The latter is a necessary
condition for a linkage between Eq. (3) and the differ-
ential phase symmetry. Typical transverse profiles of the
soliton components are presented in Fig. 1(b).

To study stability of the solitons we seek solu-
tions of Eqs. (1) in the form (Am(x) + ǫ(um(x, t) +
iwm(x, t)))eiΩmt. After standard linearization we derive

∂t~ξ = L̂~ξ, where ~ξ = (us, ui, up, ws, wi, wp)
T and L̂ is

the linear non-self-adjoint differential operator. The dis-
crete spectrum of L̂ has been found numerically using
second-order finite differences. Any discrete eigenvalue
of L̂ with positive real part makes the soliton unstable.
The new soliton family turns out to be stable over the
section (A,H) in Fig. 1(a). The Hopf instability of the
(H,B) branch, and the instability of the (O,A) branch
are similar to the case of the degenerate OPO [10]. At
the point B the single-hump branch bifurcates back in µ,
initiating a sequence of multi-hump solitons.

The above perturbation approach to find selected val-
ues of ∆ requires γs,i small, which is satisfied in most
practical situations, but we also assumed δ ∼ O(1). This
fails if γs,i/|δ| ∼ O(1) or ∼ ǫ−1, which physically means
that the cavity becomes tuned close to resonance with
the signal and idler fields. Then terms proportional to δ
in Eqs. (2) should also be considered as perturbations.
In this case Eqs. (2) simply do not have solitary solutions
in zero order and therefore Qs,i can’t be considered func-
tions of ∆. To overcome this difficulty we used another
perturbation approach, also based on the ψ-symmetry.
Note first that the cavity solitons become wider on ap-
proach to resonance [19], and so to avoid large compu-
tational windows it is convenient to take large b, e.g.
b = 2/Ts. Then γm ∼ 1 physically corresponds to small
losses. Now, observing that Ai = As is a solution of Eqs.
(2) for γs = γi and ∆ = 0, we assume γ−, |∆| ∼ ǫ. At
first order in ǫ

ǫ(L̂ − ∂t)~ξ = ∆~ξψ − γ− ~P , (5)

where ~ξψ = (−ImAs, ImAs, 0, ReAs,−ReAs, 0)T is the

neutral mode generated by the ψ-symmetry, i.e. L̂~ξψ = 0,

and ~P = (ReAs,−ReAs, 0, ImAs,−ImAs, 0)T . Eq. (5)
immediately yields

∆ = γ−
〈~P|~ζψ〉
〈~ξψ |~ζψ〉

, (6)

where the new vector ~ζψ is the neutral mode of L̂†, i.e.

L̂†~ζψ = 0, generated by the ψ-symmetry (which can be
found numerically). As usual, 〈..|..〉 defines inner product
in L2. We again find an excellent agreement between Eq.
(6) and numerical solutions of Eqs. (2), see Fig. 2(a).

In this case, stability analysis reveals that the solitons
are stable along the entire segment (A,B), with B again
marking the transition to multi-hump soliton solutions.
We also found that 〈~P|~ζψ〉/〈~ξψ|~ζψ〉 is positive throughout
a wide region of parameters. This implies that the sign of
γ− determines the sign of ∆, at least for parameter val-
ues where our perturbative approach is valid. Fig. 1(a)
and selective numerical checks in parameter regions far
outwith the validity of our perturbative methods sup-
port a conjecture that the relationship sgnγ− = sgn∆
has a general character. Note finally that any difference
in diffraction constants αs and αi will also affect the fre-
quency selection, but we leave this mechanism for future
analysis.

To assess possibilities of experimental observation of
these cavity solitons let us take as an example a 1cm long
monolithic planar waveguide cavity with χ(2) ≃ 20pm/V ,
typical for a noncritically phase matched potassium nio-
bate crystal. Suppose the waveguide to be ∼ 1mm wide
and ∼ 1µm thick, excited by an elliptical pump beam at
frequency ∼ 1015Hz. Other parameters as for Fig. 2(a)
then imply the following real world values: pump power
∼ µ2 × 1W , selected frequency difference ∼ Ω × 109 Hz
and cavity soliton width ∼ 30µm.

To excite cavity solitons one can apply spatially lo-
calised optical pulses at any of the three frequencies. Op-
timisation of the pulse parameters goes beyond of our
present scope. However, to demostrate how the selection
of the frequency difference happens, we show in Fig. 3
results of direct simulation of Eqs. (1) with, as initial
condition, a pulse at frequency ωs with duration around
0.1τc, intensity several times the peak soliton intensity,
and width of order the soliton width. Intensities of all
three components of the excited soliton become constant
after a transient period, see Fig. 3(a), while the real
parts of the signal and idler fields exhibit undamped os-
cillations, confirming selection of ∆ with the predicted
value, see Fig. 3(b).

The main physical conclusion which can be drawn from
the above results is that, if the signal has the smaller
losses its frequency is pulled away from the cavity res-
onance while the idler frequency is pulled towards reso-
nance and vice versa, see Figs. 1(a),2(a). If the signal
and idler losses are equal then the selected value of ∆
is zero, see Eq. (6), which implies that both the idler
and the signal are equally detuned from cavity resonance.
Thus the cavity structure balances the energies of the
idler and signal components during soliton excitation, in
accord with Eqs. (3), (4). The understanding of this
frequency selection mechanism has allowed us to recon-
struct an entire family of single-hump cavity solitons and
to study their stability. Our results are likely to find ap-
plications in interpretation of other spatio-temporal phe-
nomena in nondegenerate OPOs and also to be relevant
in other intracavity parametric processes with symmetry
in the differential phase, e.g., second harmonic generation
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with competing parametric process [20] and nondegener-
ate four-wave mixing [21].
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FIG. 1. (a) Existence curve in the (µ, ∆)-plane for the fam-
ily of single-hump cavity solitons, demonstrating selection of
∆. Full line corresponds to the results of numerical contin-
uation, dotted line was obtained using perturbative methods
(see text) in the limit γs,i/|δ| ≪ 1: δ = δp = −1, γs = 0.04,
γi = 0.05, γp = 0.1, b = 1. Solitons are stable only in the
small interval (A,H), see text for details. (b) Soliton trans-
verse profile for µ = 0.3, ∆ = −0.1255007. Full line: |As|,
dashed line: |Ai|, dotted line: |Ap|.
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FIG. 2. (a) Existence curve in the (µ, ∆)-plane for family
of single-hump cavity solitons, demonstrating selection of ∆.
Full line corresponds to the results of numerical continuation,
dotted line was obtained using Eq. (6): δ = −1.8, δp = −4,
γs = 1, γi = 0.95, γp = 2, b = 2/Ts. Solitons are stable only
in the interval (A, B). (b) Plots showing dependence of Qm

vs µ. Parameters as for (a). Full line: Qs, dashed line: Qi,
dotted line: Qp.
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FIG. 3. Soliton excitation by a localized signal-field pulse.
Temporal evolution of (a) |Em| and (b) ReEm at x = 0. Full
line: signal, dashed line: idler, dotted line: pump. Other pa-
rameters as for Fig. 1(b). Our predicted ∆ corresponds to a
period ∼ 50 time units.
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