Fatigue crack growth rates for offshore wind monopile weldments in air and seawater: SLIC inter-laboratory test results

Ali Mehmanparast \(^*\), Feargal Brennan \(^a\), Isaac Tavares \(^b\)

\(^a\) Offshore Renewable Energy Engineering Centre, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
\(^b\) Centrica Renewable Energy Limited, Windsor, UK

HIGHLIGHTS
• Fatigue crack growth tests on BM and HAZ specimens have been conducted in air and free-corrosion seawater environments.
• A new shape function solution has been derived using Finite Element simulations and is presented in this paper.
• For both BM and HAZ materials, the FCG rate is on average around 2 times higher in seawater compared to air.
• In both air and seawater environments the mean curves for BM and HAZ fall close to each other.

GRAPHICAL ABSTRACT

The majority of fatigue crack growth (FCG) data sets available on steels in air and seawater environments are several decades old and may not be appropriate for structural integrity assessment of offshore wind turbine foundations, which are fabricated using contemporary materials and welding technologies. Therefore, the SLIC joint industry project was formed to investigate the fatigue crack initiation and growth behaviour in offshore wind welded steel foundations. The FCG test data from the SLIC inter-laboratory (round robin) test programme have been analysed using a new proposed shape function solution and the results are presented and discussed. The obtained FCG trends in air and seawater environments have been compared with the recommended trends available in standards. The Paris-law constants and \(\Delta K_{th}\) values obtained from this programme can be used for defect assessment and remaining life prediction of offshore monopile weldments in air and seawater environments. The results from the SLIC project show that for a given value of \(\Delta K\) the fatigue crack growth rate, \(da/dN\), is on average around 2 times higher in seawater compared to air for the base metal and weldments. This factor of 2 in the seawater environment is almost half of the crack acceleration factor recommended by standards.

© 2016 Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Oil, coal and natural gas have powered the world energy demand for many years. Since the U.N. Climate Change Conference, COP21-Paris, a landmark agreement has been established with the aim of maintaining temperature rises well below 2 °C, thus slowing climate change. The use of clean renewable energy is encouraged globally to meet the targets to reduce greenhouse gas emissions. An efficient source of clean energy, which is increasingly becoming one of the preferred solutions to realising short-term and long-term energy ambitions in the world, is offshore wind due to its potential for large scale deployment. One of
the key challenges in the offshore wind industry is the life-cycle struc-
tural integrity design and assessment of the offshore wind turbine foun-
dations, which are fabricated in much larger volumes, compared to
other offshore industries such as Oil & Gas [1]. The majority of existing
offshore wind turbine foundations are of thick-walled monopile type
structures installed in shallow water. These structures, which are fabri-
cated by welding relatively thick structural steel plates in longitudinal
and circumferential directions, are subjected to extreme conditions in
harsh offshore environments with the constant exertion of wave and
wind forces causing both fatigue and corrosion damage. Therefore, the
fatigue crack growth (FCG) behaviour of these offshore welded founda-
tions needs to be accurately characterised in air and seawater environ-
ments in order to provide accurate remaining lifetime predictions and
efficient inspection plans for offshore wind turbine structures. This can
be done by performing laboratory scale FCG tests on standard fracture
mechanics specimens made of parent material (also known as base
metal (BM)) and weldments.

The experimental characterisation of FCG behaviour for various steels
tested under different load ratios and frequencies in different en-
vironments can be found in [2–16]. Some more detailed studies on the
near threshold FCG behaviour of steels in air and the marine environ-
ment are available in [8,9,16–20]. Using the FCG compendia available
in the literature, empirical mean curves and conservative upper bound
curves have been recommended for various metallic materials
operating in different environments in BS7910 “British Standard Guide
on methods for assessing the acceptability of flaws in fusion welded
structures” [21]. The recommendations in BS7910 are for assessment of
different metallic materials welded joints and BM operating in air
and marine environments with and without cathodic protection.
Much of the original research works, the results of which have been im-
plemented in standards, are several decades old and were based on
characteristics that were representative of typical Oil & Gas offshore
structures [22]. In the intervening period, materials, fabrication tech-
ologies, inspection and design techniques have all evolved significantly.
Therefore, it is vital to obtain a new fatigue data set on contemporary
materials using representative manufacturing techniques employed in
the offshore wind industry, and exposed to representative environ-
ments and loading conditions. This would support informed decisions
concerning existing offshore wind structures and future developments
in terms of design savings, construction, and operation. In order to
achieve an improved understanding of fatigue in butt welded thick
steel plates used in fabrication of offshore wind turbine monopile foun-
dations, the SLIC (Structural Lifecycle Industry Collaboration) Joint
Industry Project (JIP) was created. SLIC is a consortium of ten of the larg-
est offshore wind operators (including Centrica, Dong Energy, EDF,
EnBW, E.On, RWE, SSE, Statkraft, Statoil, Vattenfall) and The Crown
Estate with the sponsorship of the UK’s Department of Energy and Cli-
mate Change.

An important focus in the SLIC project is to undertake a programme
of fatigue tests to establish the effects of offshore wind characteristics
in the fatigue performance of welded steel foundations. Preliminary anal-
ysis suggested current guidance with respect to fatigue under free cor-
rosion conditions is conservative, and significant design/operational
benefit could be obtained through further testing. Therefore, an inter-
laboratory (round robin) test programme was conducted to obtain
comprehensive FCG data sets in air and in seawater, which can be
used for defect assessment and remaining life prediction of thick-
walled offshore monopile weldments. Seawater tests in this programme
were carried out in a free-corrosion (i.e. no cathodic protection) envi-
ronment at a characteristic dominant cyclic frequency typical of that
experienced by offshore wind turbine structures. The details of these tests
and the fatigue crack growth test results in air and seawater environ-
ments are presented in this paper.

2. Specimen design and manufacture

The material used in the fatigue crack growth testing work package
in the SLIC project is EN-10225:01 S355G8 + M steel, which is widely
used in the fabrication of offshore wind monopile structures. Multi
pass butt-welding was conducted on double V-grooved plates with
90 mm thickness using the welding procedure employed to manufac-
ture offshore wind monopile structures. No post-weld heat treatment
(PWHT) was performed on the welded plates to replicate the real life
conditions in monopiles. Compact tension, C(T), specimens were ex-
tacted from the 90 mm thick welded plates with the notch tip located
in the BM and the heat affected zone (HAZ). C(T) specimens were ex-
tacted with crack planes perpendicular to the transverse axis and the
crack propagation direction parallel to the normal (i.e. through thick-
ness) axis, with respect to the welded plates. This orientation was se-
lected to examine the through thickness crack growth behaviour of the
circumferential weld regions in monopiles, where the cracks are
most likely to initiate and grow under service conditions.

In order to locate the crack tip at the right place, particularly for HAZ
specimens, reference sliced sections were extracted from the welded
plates to explore the variation of the HAZ region in the welded plates.
The reference sections were ground, polished and etched using 2%
HCl to examine the through thickness crack growth behaviour of
the circumferential weld regions in monopiles, where the cracks are
most likely to initiate and grow under service conditions.

The experimental characterisation of FCG behaviour for various steels
tested under different load ratios and frequencies in different en-
vironments can be found in [2–16]. Some more detailed studies on the
near threshold FCG behaviour of steels in air and the marine environ-
ment are available in [8,9,16–20]. Using the FCG compendia available
in the literature, empirical mean curves and conservative upper bound
curves have been recommended for various metallic materials
operating in different environments in BS7910 “British Standard Guide
on methods for assessing the acceptability of flaws in fusion welded
structures” [21]. The recommendations in BS7910 are for assessment of
different metallic materials welded joints and BM operating in air
and marine environments with and without cathodic protection.
Much of the original research works, the results of which have been im-
plemented in standards, are several decades old and were based on
characteristics that were representative of typical Oil & Gas offshore
structures [22]. In the intervening period, materials, fabrication tech-
ologies, inspection and design techniques have all evolved significantly.
Therefore, it is vital to obtain a new fatigue data set on contemporary
materials using representative manufacturing techniques employed in
the offshore wind industry, and exposed to representative environ-
ments and loading conditions. This would support informed decisions
concerning existing offshore wind structures and future developments
in terms of design savings, construction, and operation. In order to
achieve an improved understanding of fatigue in butt welded thick
steel plates used in fabrication of offshore wind turbine monopile foun-
dations, the SLIC (Structural Lifecycle Industry Collaboration) Joint
Industry Project (JIP) was created. SLIC is a consortium of ten of the larg-
est offshore wind operators (including Centrica, Dong Energy, EDF,
EnBW, E.On, RWE, SSE, Statkraft, Statoil, Vattenfall) and The Crown
Estate with the sponsorship of the UK’s Department of Energy and Cli-
mate Change.

An important focus in the SLIC project is to undertake a programme
of fatigue tests to establish the effects of offshore wind characteristics
in the fatigue performance of welded steel foundations. Preliminary anal-
ysis suggested current guidance with respect to fatigue under free cor-
rosion conditions is conservative, and significant design/operational
benefit could be obtained through further testing. Therefore, an inter-
laboratory (round robin) test programme was conducted to obtain
comprehensive FCG data sets in air and in seawater, which can be
used for defect assessment and remaining life prediction of thick-
walled offshore monopile weldments. Seawater tests in this programme
were carried out in a free-corrosion (i.e. no cathodic protection) envi-
ronment at a characteristic dominant cyclic frequency typical of that
experienced by offshore wind turbine structures. The details of these tests
and the fatigue crack growth test results in air and seawater environ-
ments are presented in this paper.

2. Specimen design and manufacture

The material used in the fatigue crack growth testing work package
in the SLIC project is EN-10225:01 S355G8 + M steel, which is widely
used in the fabrication of offshore wind monopile structures. Multi
pass butt-welding was conducted on double V-grooved plates with
90 mm thickness using the welding procedure employed to manufac-
ture offshore wind monopile structures. No post-weld heat treatment
(PWHT) was performed on the welded plates to replicate the real life
conditions in monopiles. Compact tension, C(T), specimens were ex-
tacted from the 90 mm thick welded plates with the notch tip located
in the BM and the heat affected zone (HAZ). C(T) specimens were ex-
tacted with crack planes perpendicular to the transverse axis and the
crack propagation direction parallel to the normal (i.e. through thick-
ness) axis, with respect to the welded plates. This orientation was se-
lected to examine the through thickness crack growth behaviour of the
circumferential weld regions in monopiles, where the cracks are
most likely to initiate and grow under service conditions.

In order to locate the crack tip at the right place, particularly for HAZ
specimens, reference sliced sections were extracted from the welded
plates to explore the variation of the HAZ region in the welded plates.
The reference sections were ground, polished and etched using 2%
HCl to examine the through thickness crack growth behaviour of
the circumferential weld regions in monopiles, where the cracks are
most likely to initiate and grow under service conditions.

The material used in the fatigue crack growth testing work package
in the SLIC project is EN-10225:01 S355G8 + M steel, which is widely
used in the fabrication of offshore wind monopile structures. Multi
pass butt-welding was conducted on double V-grooved plates with
90 mm thickness using the welding procedure employed to manufac-
ture offshore wind monopile structures. No post-weld heat treatment
(PWHT) was performed on the welded plates to replicate the real life
conditions in monopiles. Compact tension, C(T), specimens were ex-
tacted from the 90 mm thick welded plates with the notch tip located
in the BM and the heat affected zone (HAZ). C(T) specimens were ex-
tacted with crack planes perpendicular to the transverse axis and the
crack propagation direction parallel to the normal (i.e. through thick-
ness) axis, with respect to the welded plates. This orientation was se-
lected to examine the through thickness crack growth behaviour of the
circumferential weld regions in monopiles, where the cracks are
most likely to initiate and grow under service conditions.

In order to locate the crack tip at the right place, particularly for HAZ
specimens, reference sliced sections were extracted from the welded
plates to explore the variation of the HAZ region in the welded plates.
The reference sections were ground, polished and etched using 2%
Nital solution to reveal the material microstructure in the weld region.
An example of the etched surface of a weld section with the measured
dimensions of the weld and HAZ regions is shown in Fig. 1. After reveal-
ing the material microstructure in sliced sections and measuring the
dimensions of the weld region, specimens were extracted with the ini-
tial V-notch tip located at the centre of the HAZ region and within the
base metal. A schematic illustration of the HAZ specimen orientation
and the extraction location with respect to the weld region and also
an example of the V-notch tip location in an etched HAZ specimen is
shown in Fig. 2. Note that for the HAZ specimens, it was ensured that
a sufficiently long and relatively straight HAZ region was located
ahead of the V-notch tip to ensure that the crack growth occurred with-
in the HAZ material.

C(T) specimen dimensions were designed following BS ISO 12108:
2012 standard for “Metallic materials; Fatigue testing - Fatigue crack
growth method” [23]. The specimen dimensions for BM and HAZ
C(T) specimens are summarised in Table 1. As seen in this table, the
specimen width and thickness were approximately \(W = 50 \text{ mm} \) and
\(B = 16 \text{ mm} \) in all C(T) specimens. 24 tests were performed in three
Test Centres, which are referred to as A, B and C in this paper. The FCG
specimens are labelled based on the material microstructure (i.e. BM
and HAZ) and the Test Centre ID (i.e. A, B and C). For example, the BM
specimens tested in Test Centre A are denoted BM-A1, and BM-A2.
As noted in Table 1, 12 tests were performed on each material micro-
structure (i.e. BM and HAZ). Also shown in this table is that for each of
the materials examined in this round robin test programme, half of
the tests were performed in air whereas the other half were conducted
in the simulated seawater environment.

3. Test set up procedure

3.1. Test machine preparation

FCG tests were performed in three independent Test Centres to ex-
amine the repeatability of the results. All tests centres were provided
with the same test procedure and nominally identical specimens to
make the results comparable. The tests were conducted both in air
and free-corrosion seawater environments. It may be argued that the
free-corrosion condition is not an offshore wind ‘design condition’,
however there may be occasions where operators experience crack
growth in unprotected regions (e.g. uncoated inner surface in some of
the existing monopiles or where corrosion protection systems may
have become damaged). The test machines used by different Test Cen-
tres were servo-hydraulic, purpose designed fatigue test machines
with modern digital controllers and prepared following standards test
methods [24–26]. Tests were conducted under load control and the ma-
chines therefore had both displacement control for set up purposes and
load control for fatigue testing. Test Frame Rating was at least 100 kN to
ensure adequate stiffness, and actuator stroke to be at least 75 mm.
Checks were made to ensure adequate frame stiffness for the applica-
tion. Before the commencement of any testing, the machine load cells
were calibrated dynamically according to the relevant BS standard
[27] to a level of 1.5 times the maximum test load. Prior to the com-
 mencement of the test programme, the test machine was checked for

Fig. 1. (a) An example of a ground, polished and etched surface of the weld section (b) measured dimensions of the weld and HAZ regions.

Fig. 2. (a) A schematic illustration of the HAZ specimen orientation and extraction location with respect to the weld region (b) an example of the V-notch tip location in an etched HAZ specimen.
alignment using a double pin-clevis arrangement as recommended in [23,28].

The test specimens were set up under position control taking care not to overload the specimens. The digital controller was programmed to ramp to the mean test load under load control and then to apply a constant amplitude sinusoidal wave form gently increasing to the test load range over five full cycles. The test load range was then applied without interruption until the end of the test. All specimens were pre-cracked to approximately 4 mm from the machined V-notch using the K-decreasing technique. The specimen pre-cracking was started with 12 kN maximum load and 1.2 kN minimum load, and these load levels were continuously decreased as the crack propagated. It was ensured that the highest load level in the pre-cracking stage did not exceed the maximum allowable load limit specified in the standard test method [23] and also the final K_{max} at the end of pre-cracking did not exceed the initial K_{max} for the main FCG tests. All specimens were pre-fatigue cracked in air at 10 Hz frequency.

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Environment</th>
<th>W (mm)</th>
<th>B (mm)</th>
<th>a_0 (mm)</th>
<th>a_f (mm)</th>
<th>f (Hz)</th>
<th>R</th>
<th>P_{max} (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM-A1</td>
<td>Air</td>
<td>49.9</td>
<td>16.0</td>
<td>16.5</td>
<td>35.2</td>
<td>2.0</td>
<td>0.1</td>
<td>9.0</td>
</tr>
<tr>
<td>BM-A2</td>
<td>Air</td>
<td>49.9</td>
<td>16.0</td>
<td>14.8</td>
<td>28.8</td>
<td>2.0</td>
<td>0.1</td>
<td>6.7</td>
</tr>
<tr>
<td>BM-A3</td>
<td>Seawater</td>
<td>49.7</td>
<td>16.0</td>
<td>14.6</td>
<td>31.3</td>
<td>0.3</td>
<td>0.1</td>
<td>9.0</td>
</tr>
<tr>
<td>BM-A4</td>
<td>Seawater</td>
<td>49.7</td>
<td>16.0</td>
<td>14.3</td>
<td>31.5</td>
<td>0.3</td>
<td>0.1</td>
<td>9.0</td>
</tr>
<tr>
<td>BM-B1</td>
<td>Air</td>
<td>50.0</td>
<td>15.9</td>
<td>14.7</td>
<td>33.4</td>
<td>2.0</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>BM-B2</td>
<td>Air</td>
<td>50.0</td>
<td>15.9</td>
<td>14.5</td>
<td>35.0</td>
<td>2.0</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>BM-B3</td>
<td>Seawater</td>
<td>50.0</td>
<td>16.0</td>
<td>14.3</td>
<td>32.5</td>
<td>0.3</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>BM-B4</td>
<td>Seawater</td>
<td>50.1</td>
<td>15.9</td>
<td>14.0</td>
<td>31.0</td>
<td>0.3</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>BM-C1</td>
<td>Air</td>
<td>50.0</td>
<td>16.0</td>
<td>14.0</td>
<td>32.5</td>
<td>2.0</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>BM-C2</td>
<td>Air</td>
<td>50.0</td>
<td>16.0</td>
<td>14.0</td>
<td>32.5</td>
<td>2.0</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>BM-C3</td>
<td>Seawater</td>
<td>50.0</td>
<td>16.0</td>
<td>14.3</td>
<td>29.0</td>
<td>0.3</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>BM-C4</td>
<td>Seawater</td>
<td>50.0</td>
<td>16.0</td>
<td>14.3</td>
<td>30.1</td>
<td>0.3</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>HAZ-A1</td>
<td>Air</td>
<td>49.7</td>
<td>16.0</td>
<td>15.6</td>
<td>37.4</td>
<td>2.0</td>
<td>0.1</td>
<td>9.0</td>
</tr>
<tr>
<td>HAZ-A2</td>
<td>Air</td>
<td>49.6</td>
<td>16.0</td>
<td>15.1</td>
<td>31.5</td>
<td>2.0</td>
<td>0.1</td>
<td>9.0</td>
</tr>
<tr>
<td>HAZ-A3</td>
<td>Seawater</td>
<td>49.5</td>
<td>16.0</td>
<td>18.4</td>
<td>34.9</td>
<td>0.3</td>
<td>0.1</td>
<td>6.7</td>
</tr>
<tr>
<td>HAZ-A4</td>
<td>Seawater</td>
<td>49.8</td>
<td>16.0</td>
<td>16.0</td>
<td>31.5</td>
<td>0.3</td>
<td>0.1</td>
<td>9.0</td>
</tr>
<tr>
<td>HAZ-B1</td>
<td>Air</td>
<td>50.0</td>
<td>16.0</td>
<td>14.0</td>
<td>32.5</td>
<td>2.0</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>HAZ-B2</td>
<td>Air</td>
<td>50.0</td>
<td>16.0</td>
<td>14.3</td>
<td>32.0</td>
<td>2.0</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>HAZ-B3</td>
<td>Seawater</td>
<td>50.0</td>
<td>16.0</td>
<td>14.8</td>
<td>31.1</td>
<td>0.3</td>
<td>0.1</td>
<td>12.0</td>
</tr>
<tr>
<td>HAZ-B4</td>
<td>Seawater</td>
<td>50.1</td>
<td>16.0</td>
<td>14.0</td>
<td>30.5</td>
<td>0.3</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>HAZ-C1</td>
<td>Air</td>
<td>50.0</td>
<td>16.0</td>
<td>14.0</td>
<td>32.0</td>
<td>5.0</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>HAZ-C2</td>
<td>Air</td>
<td>50.0</td>
<td>16.0</td>
<td>14.0</td>
<td>32.0</td>
<td>5.0</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>HAZ-C3</td>
<td>Seawater</td>
<td>50.0</td>
<td>16.0</td>
<td>14.0</td>
<td>32.3</td>
<td>0.3</td>
<td>0.1</td>
<td>10.0</td>
</tr>
<tr>
<td>HAZ-C4</td>
<td>Seawater</td>
<td>50.0</td>
<td>16.0</td>
<td>14.0</td>
<td>32.3</td>
<td>0.3</td>
<td>0.1</td>
<td>10.0</td>
</tr>
</tbody>
</table>

3.2. Seawater Environmental Cell

For seawater tests, an artificial non-biological seawater was prepared according to ASTM D1141 [29] and circulated through an environmental chamber at a rate of approximately 5 L/Min, at a temperature of 8–10 °C and a pH of 7.8–8.2. The entire test specimen was fully immersed at all times, and care was taken to eliminate any galvanic reaction between the test specimen and loading assembly as detailed in [30]. The reservoir size was at least 70 L in capacity. All seawater test specimens were soaked in the seawater for at least 48 h prior to the main test (i.e. after pre-cracking). An example of a seawater test set up is shown in Fig. 3.

3.3. Crack Growth Monitoring

An optical crack growth monitoring technique was employed to record instantaneous crack lengths during the pre-fatigue cracking stage and in the main FCG tests performed in air. For these tests, the crack growth was monitored on one side of the specimen using a high-resolution camera and on the other side using a travelling microscope. The average of crack lengths measured on both sides of the specimen was taken into consideration as the mean crack length value. For seawater tests, due to the difficulty in taking optical crack growth measurements through the environmental test chamber, the Back Face Strain (BFS) compliance method was used to estimate the crack lengths [31].

Fig. 4. Illustration of crack growth monitoring using back face strain measurements.

Fig. 5. An example of crack length correlation with back face strain measurements for the maximum applied load of $P_{\text{max}} = 9$ kN.
In this technique, a Linear Electrical Resistance Strain Gauge was installed at the back face of each specimen (see Fig. 4) and the instantaneous crack lengths were calculated from the BFS measurements using a calibration function. An example of a calibration function, which correlates the crack length with BFS micro-strain values for a given loading condition, can be seen in Fig. 5. It should be noted that the BFS calibration function is dependent on the loading conditions and for FCG tests performed under varying load levels, different calibration functions must be developed and taken into consideration. For tests in seawater, to protect the strain gauge from the effect of corrosion, the strain gauge surfaces were coated with an appropriate coating material. The crack length measurements at the beginning (i.e. after pre-cracking), and end of FCG tests, for all specimens tested in this programme are summarised in Table 1.

3.4. Loading conditions

After pre-cracking, fatigue crack growth tests were performed at 0.3 Hz frequency for the tests in seawater and 2 and 5 Hz for the tests in air. A sinusoidal waveform with the load ratio of 0.1 was employed in all FCG tests in air and seawater. All air tests were performed at room temperature and seawater tests at 8–10 °C (typical of North Sea conditions). The cyclic frequency and loading conditions for each of the tests performed in this programme can be found in Table 1. Note that it has been shown by other researchers that the frequency has negligible effects on the FCG behaviour of steels in air [32,33]. However, FCG trends are known to be sensitive to cyclic frequency in a seawater environment [18]. It has been shown in the literature that offshore monopile wind turbine structures have a characteristic dominant cyclic structural response of around 0.3 Hz [34], therefore this frequency has been chosen for FCG tests in seawater.

3.5. Post-mortem analysis

Subsequent to test completion, the crack path in each specimen was observed under an optical microscope and the measured crack length on the outer surface of the specimen was compared to that measured on the fracture surface after specimen break open. Prior to specimen break open, the tested specimens were soaked in Liquid Nitrogen for a few minutes to minimise the sample deformation during the break open process. An example of the observed crack path in a FCG test on a HAZ specimen and a typical fracture surface observed subsequent to specimen break open are illustrated in Fig. 6.

3.6. Fatigue crack growth relations

Fatigue crack growth data are usually presented in the form of crack propagation rate (i.e. crack increment per cycle), da/dN, against the stress intensity factor range, ΔK, where K is the Linear Elastic Fracture Mechanics (LEFM) parameter, which can be defined as:

\[K = Y \sigma \sqrt{a} \]

where \(\sigma \) is the applied stress, \(a \) is the crack length and \(Y(a/W) \) is a dimensionless shape function. The solution of \(Y(a/W) \) for conventional fracture geometries can be found in fracture mechanics textbooks such as [35]. For a plane sided C(T) specimen the nominal stress can be defined as:

\[\sigma = \frac{P}{BW} \]

where \(P \) is the applied load, \(W \) is the specimen width and \(B \) is the specimen thickness. The solution of the shape function for a standard C(T) specimen is given in [23,36,37] as:

\[Y = \sqrt{\frac{2 + \alpha}{\alpha}} \left[\frac{0.886 + 4.64\alpha - 13.32\alpha^2 + 14.72\alpha^3 - 5.6\alpha^4}{(1-\alpha)^{3/2}} \right] \]

where \(\alpha = a/W \). Following the definition of \(K \) in Eq. (1), for a given crack length the change in stress intensity factor due to cyclic loading can be defined as:

\[\Delta K = K_{\text{max}} - K_{\text{min}} = \Delta \sigma Y \sqrt{a} \]

where the stress range \(\Delta \sigma = (\sigma_{\text{max}} - \sigma_{\text{min}}) \) is the difference between the stress corresponding to maximum load, \(P_{\text{max}} \), and minimum load, \(P_{\text{min}} \).

Table 2

<table>
<thead>
<tr>
<th>Material</th>
<th>Environment</th>
<th>C</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>Air</td>
<td>1.65 × 10^{-11}</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>[5.21 × 10^{-13}]</td>
<td>[3.0]</td>
<td></td>
</tr>
<tr>
<td>BM</td>
<td>Seawater (free-corrosion)</td>
<td>7.27 × 10^{-11}</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[2.30 × 10^{-12}]</td>
<td>[3.0]</td>
</tr>
<tr>
<td>Welded joints</td>
<td>Air</td>
<td>4.91 × 10^{-12}</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[1.10 × 10^{-13}]</td>
<td>[3.1]</td>
</tr>
<tr>
<td>Welded joints</td>
<td>Seawater (free-corrosion)</td>
<td>6.06 × 10^{-12}</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[3.41 × 10^{-14}]</td>
<td>[3.5]</td>
</tr>
</tbody>
</table>

Fig. 6

(a) The crack path in a FCG test performed on HAZ specimen (b) Picture of a fracture surface.
Table 3
Two stage Paris-law constants recommended by BS7910 for \(\frac{da}{dN} \) in m/cycle and \(\Delta K \) in MPa m\(^{1.5}\) (the corresponding values for \(\frac{da}{dN} \) in mm/cycle and \(\Delta K \) in N/mm\(^{1.5}\) are shown in square brackets).

<table>
<thead>
<tr>
<th>Material</th>
<th>Environment</th>
<th>C Stage A</th>
<th>m Stage A</th>
<th>C Stage B</th>
<th>m Stage B</th>
<th>(\Delta K) transition from stage A to B</th>
<th>(\Delta K_{th})</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>Air</td>
<td>(2.10 \times 10^{-17})</td>
<td>8.16</td>
<td>(8.32 \times 10^{-12})</td>
<td>2.88</td>
<td>11.5</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>Seawater (free-corrosion)</td>
<td>(4.05 \times 10^{-12})</td>
<td>3.42</td>
<td>(1.13 \times 10^{-8})</td>
<td>1.30</td>
<td>42.2</td>
<td>0</td>
</tr>
<tr>
<td>Welded joints</td>
<td>Air</td>
<td>(9.38 \times 10^{-13})</td>
<td>5.10</td>
<td>(2.70 \times 10^{-11})</td>
<td>2.88</td>
<td>4.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Welded joints</td>
<td>Seawater (free-corrosion)</td>
<td>(2.32 \times 10^{-11})</td>
<td>3.42</td>
<td>(3.46 \times 10^{-8})</td>
<td>1.11</td>
<td>23.6</td>
<td>0</td>
</tr>
</tbody>
</table>

which can be defined as:

\[
\sigma_{\text{mean}} = \frac{\sigma_{\text{max}} + \sigma_{\text{min}}}{2} \tag{5}
\]

\[
R = \frac{\sigma_{\text{min}}}{\sigma_{\text{max}}} \left(\frac{P_{\text{min}}}{P_{\text{max}}} \right) = \frac{K_{\text{min}}}{K_{\text{max}}} \tag{6}
\]

When \(\frac{da}{dN} \) is plotted against \(\Delta K \) in log-log axes, there are generally three regions observed in a fatigue crack growth trend: (i) Region I (threshold) where \(\Delta K_{th} \), a minimum value of \(\Delta K \) below which no fatigue crack propagation can be detected, is observed, (ii) Region II where a power-law relationship between \(\frac{da}{dN} \) and \(\Delta K \) can be inferred, and (iii) Region III where an accelerating trend in FCG behaviour can be observed. For a metallic material subjected to cyclic loading conditions, the crack growth rate \(\frac{da}{dN} \) in the second FCG region, Region II, can be correlated with \(\Delta K \) using the Paris-law equation \([38]\), as:

\[
\frac{da}{dN} = C\Delta K^m \tag{7}
\]

where \(C \) and \(m \) are empirical power-law constants which can be found by a regression fit to the test data.

According to BS7910 standard \([21]\), the FCG behaviour of a metallic material in Region II can be described using a simplified or 2-stage Paris-law. In simplified Paris-law relation a single fit is made to the data whereas in 2-stage Paris-law relation bi-linear fits, in log-log axes, are made to the data and two sets of Paris-law constants are reported for the earlier stage (i.e. Stage A) and the latter stage (i.e. Stage B). The simplified Paris-law constants for mean curves recommended by BS7910 \([21]\) for BM and welded joints in air and free-corrosion seawater environments are summarised in Table 2. In this table, the power-law constants are given for \(\frac{da}{dN} \) in m/cycle and \(\Delta K \) in MPa m\(^{1.5}\) and the corresponding values for \(\frac{da}{dN} \) in mm/cycle and \(\Delta K \) in N/mm\(^{1.5}\) are shown in square brackets.

The 2-stage Paris-law constants recommended by BS7910 \([21]\) for BM and welded joint mean curves in air and free-corrosion seawater environments are summarised in Table 3. The values given in this table are for \(\frac{da}{dN} \) in m/cycle and \(\Delta K \) in MPa m\(^{1.5}\) and the values for \(\frac{da}{dN} \) in mm/cycle and \(\Delta K \) in N/mm\(^{1.5}\) are shown in square brackets. Note that two sets of 2-stage Paris-law constants have been recommended by BS7910 for R-ratio of below and above 0.5. Having known that the applied R-ratio in the SLIC project was 0.1, the power-law constants for \(R < 0.5 \) from BS7910 have been extracted and tabulated in Table 3. Also included in this table are the \(\Delta K \) transition points from Stage A to Stage B and also \(\Delta K_{th} \) values recommended by BS7910 \([21]\). As seen in Table 3, BS7910 standard suggests taking \(\Delta K_{th} \) as zero for BM and HAZ in the free-corrosion seawater environment. For air conditions, this standard suggests taking \(\Delta K_{th} \) for welded joints as 2.0 MPa m\(^{1.5}\) (i.e. 63 N/mm\(^{1.5}\)) and using the following equation to calculate \(\Delta K_{th} \) for the BM.

\[
\Delta K_{th} = 170–214R \text{ N/mm}^{1.5} \text{ for } 0 \leq R < 0.5 \tag{8}
\]

4. Fatigue crack growth results

Fatigue crack growth tests were performed in air and free-corrosion seawater environments using the loading conditions specified in Table 1. The crack lengths were measured as a function of elapsed force cycles in all FCG tests in air and seawater. Using these raw data, the FCG rate, \(\frac{da}{dN} \), was calculated using a 7-point incremental polynomial technique as recommended by BS and ASTM standard tests method for fatigue crack growth testing and analysis \([23,37]\). In the process of \(\Delta K \) calculations for different FCG tests using the equations provided in standard test methods, it was noted that the initial normalised crack length, \(a_0/W \), for the majority of the tests performed in this project was \(<0.45 \) (see Table 1). BS ISO 12108: 2012 \([23]\) and ASTM E647 \([37]\) standards suggest that for C(T) specimens with \(0.2 \leq a/W \leq 1.0 \) the shape function solutions can be calculated using Eq. (3). Therefore, the shape function solutions for shallow cracks were evaluated in this work using numerical analyses and the new solutions were employed to analyse the FCG test data from the SLIC project. The new shape function solution and FCG trends obtained from tests performed on different material microstructures in air and seawater are presented and described next.
the domain-integral technique (see [41]) by Tada solution, is valid for 0.2 from the line of best 0.4. Therefore, a new shape function solution, which has been obtained and compared with the Tada solution in Fig. 7. As seen in this [41] and the stress intensity factor, finite Element (FE) simulations were carried out on a C(T) specimen geometry using elastic material properties in ABAQUS software package nity of the suggested solutions for a wide range of crack lengths. Fi-

\[\alpha = \text{fi} \]

It has been suggested in [23,37,40] that Eq. (3), which is also known as the Tada solution, is valid for 0.2 ≤ a/W ≤ 1.0 in C(T) specimens. In this work, numerical simulations have been performed to investigate the accuracy of the suggested solutions for a wide range of crack lengths. Finite Element (FE) simulations were carried out on a C(T) specimen geometry using elastic material properties in ABAQUS software package [41] and the stress intensity factor, \(K_{\text{eq}} \), was numerically evaluated using the domain-integral technique (see [41]) by defining 40 contours around the crack tip. A single-node crack tip, surrounded by a focused mesh, was designed for this purpose. The numerical values of the shape function for 0.2 ≤ a/W ≤ 1.0 have been calculated using Eq. (1) and compared with the Tada solution in Fig. 7. As seen in this figure, the percentage error encountered in the calculation of the shape function using the Tada solution rapidly increases as a/W decreases below 0.4. Therefore, a new shape function solution, which has been obtained from the line of best fit made to the numerical data points for the normalised crack length ranging from 0.2 to 0.7, is proposed for C(T) specimen geometry as:

\[
Y = (-372.12\alpha^6 + 1628.60\alpha^5 - 2107.46\alpha^4 + 1304.65\alpha^3 - 391.20\alpha^2 + 54.81\alpha + 7.57) \quad (9)
\]

4.1. Numerical shape function solutions for shallow cracks

4.2. Fatigue crack growth behaviour of the BM in air and seawater

The fatigue crack growth rate, \(da/dN \), obtained from the tests performed on the BM in air and seawater is correlated with the stress intensity factor range, \(\Delta K \), and the results are shown in log-log axes in Fig. 8 and Fig. 9, respectively. The FCG data on the BM are compared with the simplified and 2-stage Paris-law trends recommended by BS7910 [21] (see Table 2 and Table 3) in Fig. 8(a) and Fig. 9(a). The mean fits to the linear data points, in log-log axes, and the upper bound/lower bound trends, obtained by calculating ±2 standard deviation (2SD), are exhibited in Fig. 8(b) and Fig. 9(b).

It can be seen in Fig. 8(a) that the first half of FCG data points for BM in air fall upon or below the 2-stage trend recommended by BS7910, however the latter half of the data points fall in between the simplified and 2-stage trends recommended by BS7910, tending towards the simplified trend. This figure suggests that for the stress intensity factor range of 10 < \(\Delta K < 50 \text{ MPa} \sqrt{\text{m}} \), the simplified Paris-law recommended by BS7910 provides a conservative estimate of the BM FCG behaviour in air. Furthermore as seen in Fig. 8(a) some variation exists between the FCG behaviour of BM-A1 and BM-A2, obtained from Test Centre A, and also BM-B1 and BM-B2, obtained from Test Centre B, in the early stages of the FCG tests. This can be associated with material variability, which may influence the early stage FCG behaviour of the material. Although the obtained trends from BM-A1 and BM-B1 suggest that \(\Delta K_{\text{eq}} \) of the BM in air is approximately 15 MPa\(\sqrt{\text{m}} \), it is evident from higher
FGC trends obtained from other specimens that $\Delta K_{th} = 15 \, \text{MPa}\sqrt{\text{m}}$ cannot be taken as a conservative threshold value for BM in air. In order to work out the Paris-law constants for BM in air, the mean curve and the upper/lower bound trends (mean curve ± 2SD) were initially plotted based on those test data sets exhibiting predominantly linear behaviour, in log-log axes, for the range of ΔK examined (BM-A2, BM-B2, BM-C1 and BM-C2). Then the deviated data points from other test data sets (BM-A1 and BM-B1) which fell outside the upper and lower bound trends were removed. Finally, the remaining data points were re-analysed to work out the Paris-law and upper/lower bound trends that have been shown in Fig. 8(b). The Paris-law constants found from the “mean curve” and “mean curve ± 2SD” are summarised in Table 4. Moreover, the R^2 values for each trend line are reported in Table 4. Table 4 illustrates the accuracy of each trend suggested in this standard provides a good estimate of FCG behaviour for BM in air.

Table 4

Simplified Paris-law constants from SLIC test data (for da/dN in m/cycle and ΔK in MPa/m) using corrected shape function solutions.

<table>
<thead>
<tr>
<th>Material</th>
<th>Environment</th>
<th>Mean curve C</th>
<th>m</th>
<th>R^2</th>
<th>Mean + 2SD C</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>Air</td>
<td>2.25×10^{-12}</td>
<td>3.30</td>
<td>0.96</td>
<td>3.54×10^{-12}</td>
<td>3.30</td>
</tr>
<tr>
<td>BM</td>
<td>Seawater</td>
<td>6.25×10^{-13}</td>
<td>3.86</td>
<td>0.83</td>
<td>1.25×10^{-12}</td>
<td>3.86</td>
</tr>
<tr>
<td>HAZ</td>
<td>Air (free-corrosion)</td>
<td>2.16×10^{-12}</td>
<td>3.97</td>
<td>0.96</td>
<td>3.21×10^{-12}</td>
<td>3.97</td>
</tr>
<tr>
<td>HAZ</td>
<td>Seawater (free-corrosion)</td>
<td>4.67×10^{-12}</td>
<td>3.23</td>
<td>0.98</td>
<td>6.29×10^{-12}</td>
<td>3.23</td>
</tr>
</tbody>
</table>

4.3. Fatigue crack growth behaviour of the HAZ material in air and seawater

The FCG data obtained from the tests performed on HAZ specimens in air and seawater are shown in Fig. 10 and Fig. 11, respectively. It can be observed in Fig. 10(a) that the FCG data for HAZ specimens in air fall upon or below the simplified Paris-law trend recommended by BS7910 for the welded joints. Note that for the range of ΔK values examined in this project ($10 < \Delta K < 50 \, \text{MPa}\sqrt{\text{m}}$) the 2-stage trend recommended by BS7910 for the assessment of welded joints is significantly higher than the simplified Paris-law trend, meaning that the FCG rates estimated by the 2-stage Paris-law are too conservative for HAZ material in air. Also seen in Fig. 10(a) is that the FCG trend in HAZ-A1 and HAZ-A2 specimens suggest that the threshold stress intensity factor range for HAZ material in air is approximately $\Delta K_{th} \approx 13 \, \text{MPa}\sqrt{\text{m}}$. The near threshold data points for these two tests which exhibit non-linearity, in log-log axes, have been removed to identify the Paris-law constants for the HAZ material in air in Fig. 10(b). To remove the deviated data points, the mean curve and upper/lower bound trends were initially plotted for those data sets which show predominantly linear behaviour (HAZ-B1, HAZ-B2, HAZ-C1 and HAZ-C2). Then the deviated data points from HAZ-A1 and HAZ-A2 data sets, which fall outside the upper and lower bound regions, were eliminated. The remaining data points were re-analysed to work out the power-law coefficient and exponent for the mean curve and upper/lower bound trends, which have been shown in Fig. 10(b) and summarised in Table 4. It can be seen in Fig. 10(b) and Table 4 that assuming the same slope in the mean curve and upper/lower bound trends, the Paris-law coefficient and consequently the FCG rate obtained from the upper bound trend is 2.0 times higher than the mean curve for BM in seawater.

Fig. 11(a) shows that the FCG data for BM in seawater fall upon or below the 2-stage law recommended by BS7910, indicating that the trend suggested in this standard provides a good estimate of FCG behaviour for BM in free-corrosion conditions. Also seen in this figure is that the FCG trends obtained from BM-B3 and BM-B4 specimens exhibit a reduced slope towards the end of the test. This slope reduction at higher values of ΔK is consistent with the BS7910 2-stage Paris-law trend recommendation, although this change in slope has occurred at a lower ΔK value compared to that suggested by BS7910 (see Table 3). In addition, it can be seen in Fig. 9(a) that the FCG trends observed in BM-A3 and BM-A4 specimens suggest that the threshold stress intensity factor range for BM in seawater is approximately $\Delta K_{th} \approx 13 \, \text{MPa}\sqrt{\text{m}}$. The near threshold data points from these two tests have been removed to identify the Paris-law constants using a simplified fit made to the linear data points, in log-log axes, in Fig. 9(b). In order to remove the deviated data points, the mean curve and upper/lower bound trends were firstly plotted for those data sets which show predominantly linear behaviour (BM-B3, BM-B4, BM-C3 and BM-C4) and then the deviated data points from BM-A3 and BM-A4 data sets which fell outside the upper and lower bound regions were omitted. The remaining data points were re-analysed to work out the power-law coefficient, C, and exponent, m, for the mean curve and upper/lower bound trends, which have been shown in Fig. 9(b) and summarised in Table 4.
HAZ-B4 specimens reduces at higher values of ΔK. This figure additionally shows that the transition ΔK value at which the slope of the FCG trend changes is close to that recommended by BS7910 (see Table 3). The observed trends from all specimens apart from HAZ-A3 suggest that ΔK_{th} of the HAZ material in seawater is approximately 13 MPa$^{\frac{1}{2}}$, however it is evident from Fig. 11(a) that crack propagation was observed in the HAZ-A3 specimen at stress intensity factor ranges below 13 MPa$^{\frac{1}{2}}$. This means that 13 MPa$^{\frac{1}{2}}$ cannot be taken as a conservative ΔK_{th} value for the unprotected HAZ material in seawater. The non-linear FCG data points, in log-log axes, have been removed to specify the Paris-law constants for HAZ material in seawater. The power-law constants for these mean curves can be found in Table 4. As seen in Fig. 12(a) and Table 2, BS7910 suggests that for a given value of ΔK, in the range of 10 to 100 MPa$^{\frac{1}{2}}$, the FCG rates in the free-corrosion environment are on average around 4 times and 5 times higher than air for BM and welded joints, respectively. A comparison of Fig. 12(a) and Table 4 shows that depending on whether the simplified or 2-stage Paris-law recommended by BS7910 is considered in the analysis, the FCG trend in welded joints can be lower or higher than the BM for 10 < ΔK < 100 MPa$^{\frac{1}{2}}$.

The FCG mean curves for BM and HAZ obtained from the SLIC tests in air and seawater are presented and compared to each other in Fig. 13.
to air for both BM and HAZ material. Also shown in Fig. 13 is that the mean FCG curves for BM and HAZ exhibit a similar slope of, on average, around 3.6 in air and seawater. This average slope is in good agreement with the simplified Paris-law constant, \(m \), recommended in BS7910 for BM and welded joints in air and seawater (see Table 2). It is worth noting that although some material variability is expected within the HAZ region, it is evident that the global FCG behaviour of the HAZ material in both air and seawater environments is insensitive to the local material properties and the slope of the FCG curve is consistent with the BM. Further seen in Fig. 13 is that in both air and seawater environments the mean curves for BM and HAZ fall close to each other, particularly at higher values of \(\Delta K \).

5. Discussion

As explained earlier, the analysis of the FCG data presented above and the Paris-law constants summarised in Table 4, were based on the new shape function solution shown in Eq. (9). This equation eliminates the error encountered in shape function solutions recommended by BS ISO 12108: 2012 [23] and ASTM E647 [37] which are not accurate for the error encountered in shape function solutions recommended by BS new shape function solution shown in Eq.(9). This equation eliminates and the Paris-law constants summarised in Table 4, were based on the dimensions, specimen geometry and experimental data scatter [45].

Fig. 13. Comparison of FCG mean curves for BM and HAZ in air and seawater.

As previously discussed, the FCG data observed in Fig. 9 and Fig. 10 suggest that \(\Delta K_{th} \) for the BM in seawater and HAZ in air is approximately 13 MPa m\(^{-1/2}\) which is much greater than those values recommended by BS7910 in Table 3. No values of \(\Delta K_{th} \) could be inferred from other test data sets. According to BS ISO 12108: 2012 [23], \(da/dN = 10^{-11} \ m/cycle \) is the recommended value of the FCG rate at which \(\Delta K_{th} \) can be observed for most materials. For those data sets in this project that there are no experimental data available in the near threshold region, if the Paris-law trends (see Table 4) are extrapolated back to the lower \(\Delta K \) region, the \(\Delta K_{th} \) values corresponding to \(da/dN = 10^{-11} \ m/cycle \) can be estimated as \(\Delta K_{th} = 1.6 \ MPa \sqrt{m} \) for BM in air and \(\Delta K_{th} = 1.3 \ MPa \sqrt{m} \) for HAZ in seawater. The obtained results from this project suggest that the \(\Delta K_{th} \) values for BM and HAZ in seawater are non-zero, unlike the recommendation in BS7910 to take \(\Delta K_{th} = 0 \) for the free-corrosion seawater environment (see Table 3). It must be noted that the \(\Delta K_{th} \) value is dependent on material properties, R-ratio, variable amplitude loading, residual stresses, test environment, crack dimensions, specimen geometry and experimental data scatter [45]. Therefore, the threshold values derived from this study may not be generalised and applied to all offshore structures.

A positive R-ratio of 0.1 was applied in all FCG tests performed in this project, even though the applied load ratio experienced by offshore wind monopile foundations may be negative. The presence of tensile residual stresses generally means that whereas a negative R-ratio might be applied, the net local stress cycle is likely to have a positive R-ratio. A review of the R-ratio effects on the FCG behaviour of steels in air and seawater shows that the FCG rates at R-ratio of –1 can be similar or lower than \(R = 0.1 \) [146,47]. This suggests that the FCG trends presented in this paper can be used to characterise the FCG behaviour of the offshore monopiles conservatively, however additional tests may need to be performed in future work to study the FCG behaviour of structural steel weldments at an applied R < 0 in more detail.

6. Conclusions

Fatigue crack growth tests have been conducted on standard size BM and HAZ C(T) specimens in air, with 2 and 5 Hz cyclic frequency, and the free-corrosion seawater environment, with 0.3 Hz cyclic frequency. All air tests were performed at room temperature with the R-ratio of 0.1 and corrosion tests at 8–10 °C in standard artificial seawater. These tests were conducted at three different Test Centres as a part of the SLIC project. 24 tests were carried out in total and the following conclusions have been made from this study:

- The shape function solution recommended by standards have more pronounced effects at the near threshold behaviour of the material which corresponds to shallower cracks in C(T) specimens.

It must be noted that due to the lack of residual stress measurement data on the HAZ specimens, it has been assumed that most of the welding residual stresses were released during specimen extraction from the thick welded plates. Therefore, the FCG data on HAZ specimens have been analysed using the nominal loading conditions applied on the samples and the influence of residual stresses on crack growth behaviour in C(T) specimens tested in air and seawater is assumed to be negligible. Other researchers have found that although some reduction and redistribution in residual stresses will occur when laboratory scale specimens are extracted from the welded plates [42,43], the remaining residual stresses may influence the FCG behaviour of the material, particularly in the near threshold region [44]. Therefore, residual stress measurements will be conducted on nominally identical specimens extracted from similar welded plates in future work to examine the level of residual stresses in HAZ C(T) specimens.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Simplified Paris-law constants from SLIC test data (for (da/dN) in m/cycle and (\Delta K) in MPa m(^{1/2})) using shape function solutions available in BS ISO 12108: 2012 [23] and ASTM E647 [37].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Environment</td>
</tr>
<tr>
<td>BM</td>
<td>Air</td>
</tr>
<tr>
<td>BM</td>
<td>Seawater</td>
</tr>
<tr>
<td>BM</td>
<td>(free-corrosion)</td>
</tr>
<tr>
<td>HAZ</td>
<td>Air</td>
</tr>
<tr>
<td>HAZ</td>
<td>Seawater</td>
</tr>
<tr>
<td>HAZ</td>
<td>(free-corrosion)</td>
</tr>
</tbody>
</table>

The shape function solution recommended by standards have more pronounced effects at the near threshold behaviour of the material which corresponds to shallower cracks in C(T) specimens.
The mean curves obtained from fatigue crack growth test data show that for a given value of ΔK the FCG rate, da/dN, is on average around 2 times higher in seawater compared to air for both BM and HAZ material. This is less than the crack acceleration factor in seawater, compared to air, recommended by BS7910.

In both air and seawater environments the mean curves for BM and HAZ fall close to each other.

The mean fatigue crack growth curves for BM and HAZ exhibit similar slopes with an average value of 3.6, which is in good agreement with the simplified Paris-law exponents recommended in BS7910 for BM and welded joints in air and seawater.

The ΔK_{eq} value for fatigue crack growth tests on BM in seawater and HAZ in air were found to be approximately 13 MPa\textcdot m. Moreover, the test data suggest that ΔK_{eq} is a non-zero value in the free-corrosion seawater environment, as opposed to the recommendation in BS7910.

BS7910 2-stage Paris-law trends provide an acceptable estimate of fatigue crack growth behaviour for BM in air and seawater.

BS7910 simplified Paris-law trends provide a good estimate of fatigue crack growth behaviour for HAZ in air and seawater.

Acknowledgements
The authors would like to acknowledge the help and contribution of the SLIC steering committee, project technical support team, fabricators, specimen manufacturers, Test Centres and other members of the technical delivery team at Cranfield University. This work was supported by EPSRC under Grant EP/L016303/1 (Renewable Energy Marine Structural delivery team at Cranfield University). This work was supported by EPSRC under Grant EP/L016303/1 (Renewable Energy Marine Structural delivery team at Cranfield University). This work was supported by EPSRC under Grant EP/L016303/1 (Renewable Energy Marine Structural delivery team at Cranfield University).

References