Implicit rather than Explicit Threat predicts attentional bias towards Black but not Asian faces in White Undergraduate Population

Steve W. Kelly, Eimhear Finnegan & Katrin K. Kalla

University of Strathclyde, Glasgow, United Kingdom

Introduction

Attentional biases are driven by type of stimulus in our environment (faces capture our attention in preference to non face items, e.g. Ro, Russell & Lavie, 2001), and motivation to seek out specific stimuli (e.g. spider images will capture attention more readily in those with arachnophobia, e.g. Ohman, Flyn & Esteves, 2001). Hence, attentional biases have been used as a behavioural measure of positive or negative attitudes to stimuli in the environment. The finding that the faces of Black people capture attention in a sample of White U.S. participants (Trawalter, Todd, Baird & Richeson, 2008) has been interpreted as Black faces being a threat stimulus, which is an interpretation in line with other experimental evidence on the stigmatized representation of Black people as threatening (e.g. in a simulated first person shooter task. White participants shoot both armed and unarmed Black targets more frequently and more quickly than White targets, e.g. Correll, Uland and Ito, 2006).

Al-Janabi, MacLeod and Rhodes (2012) suggest that attentional bias to Black faces may not represent threat but rather novelty of the stimulus, supported by the finding that an attentional bias was found towards faces of Asian females, where these faces had not been rated as more threatening than White faces. However, as noted as a possibility by these authors and as demonstrated by Donde, Correll and Wittenbrink (2008), implicit measures of danger can predict attentional bias towards Black faces. Implicit attitudes are often poorly correlated with conscious attitudes and are thought to stem from simple exposure to stereotyped information in the environment without being necessarily consciously endorsed. Hence, there is still uncertainty as to whether implicit bias as opposed to explicit bias better underpins attentional bias to other race faces.

The current study examines attentional bias for Black and Asian faces in the dot probe task used by Al-Janabi et al. In addition, a measure of close contact with each racial type will be given as Dickter, Gagnon, Gyongyosi and Brewington (2015) found that close contact moderated attentional bias at long SOA and contact with other races is thought to reduce implicit bias. This study will examine whether this is the case at short SOA as Al-Janabi et al only found attentional capture rather than attentional holding. It is hypothesized that implicit measures of threat will better predict response times to the Black face stimuli than explicit measures, but close contact will be negatively associated with such biases in attention.

Materials and Procedure

85 greyscale faces (40 Black, 40 Asian, with equal male and female faces in each) were obtained from Shahd Al-Janabi and originally taken from the UWA Facebriel Perception Database and Penton Voak’s database at the University of Bristol. Additionally, 5 White faces were taken from the Glasgow Face Database. All faces were front-facing with direct eye-gaze and with neutral expression.

Two Implicit Association Tests were developed with identical structure, with one incorporating five Asian faces and the other, five Black faces (three males and two females in each). The IATs used a standard 7 block structure totaling 180 trials with the categories ‘White’, ‘Black/Asian’ and ‘threatening’, and non-threatening’. Participants were asked to categorise the faces and the words ‘dangerous, sinister, sinister, frightening, intimidating, distress, harmless, safe, innocent, reliable, trustworthy’ during the task. IATs with Black faces or with Asian faces were counterbalanced for order in addition to standard IAT block counterbalancing.

A modified dot-probe task, as used by Al-Janabi et al, requires a reaction-time response to determine whether the orientation of a target probe is the same or different to that of a preceding fixation cue (white cross) followed by a (~1cm red line oriented 45° to the left or to the right). The target probe appears immediately after presentation of a face (Black or Asian) either above or below a neutral white oval.

The 80 Black and Asian Faces were rated by participants on a 7-point Likert scale for threat.

Participants also completed a measure enquiring about contact with other races which involved writing the initials of up to 20 close friends and then afterwards, being given an instruction to refresh their memory of each friend, which were converted to a proportion of the total number of friends given.

Results

41 participants (26 female, 15 male), mean age = 22.4 years (sd = 3.4) were recruited via poster advertisement on the University campus and received course credit for participation.

All were of self-described White ethnic origin and reported normal or corrected to normal vision. Informed consent was obtained from all participants before beginning the experiment and the study approved by the School of Psychological Sciences and Health Research Ethics Committee.

Discussion

White undergraduate participants only found Black faces more threatening than Asian on implicit measures rather than explicit. However, while white and implicit measures were correlated for Asian faces, lack of a correlation for Black faces suggest that explicit bias may have been self-censored. Lack of an interaction effect for the dot probe task may support Al-Janabi et al in that no difference was found between attentional capture and threat for Asian faces. Though as noted above, the status of explicit threat for Black face is questionable. The regression analyses do suggest a difference in that RT responses to Black face trials are predicted by implicit threat and by close contact whereas responses to Asian faces are predicted by neither. Close contact seems to have little effect on explicit attitudes in the regression model but does render explicit attitudes non-significant in terms of prediction. This suggests that greater emphasis should be placed on interventions for negative implicit attitudes to race as they may contribute to threat evaluation.

References

We are grateful to Shahd Al-Janabi for making the original face stimuli available for use in this study.

Participants

41 participants (26 female, 15 male), mean age = 22.4 years (sd = 3.4) were recruited via poster advertisement on the University campus and received course credit for participation.

All were of self-described White ethnic origin and reported normal or corrected to normal vision. Informed consent was obtained from all participants before beginning the experiment and the study approved by the School of Psychological Sciences and Health Research Ethics Committee.

Materials and Procedure

85 greyscale faces (40 Black, 40 Asian, with equal male and female faces in each) were obtained from Shahd Al-Janabi and originally taken from the UWA Facebriel Perception Database and Penton Voak’s database at the University of Bristol. Additionally, 5 White faces were taken from the Glasgow Face Database. All faces were front-facing with direct eye-gaze and with neutral expression.

Two Implicit Association Tests were developed with identical structure, with one incorporating five Asian faces and the other, five Black faces (three males and two females in each). The IATs used a standard 7 block structure totaling 180 trials with the categories ‘White’, ‘Black/Asian’ and ‘threatening’, and non-threatening’. Participants were asked to categorise the faces and the words ‘dangerous, sinister, sinister, frightening, intimidating, distress, harmless, safe, innocent, reliable, trustworthy’ during the task. IATs with Black faces or with Asian faces were counterbalanced for order in addition to standard IAT block counterbalancing.

A modified dot-probe task, as used by Al-Janabi et al, requires a reaction-time response to determine whether the orientation of a target probe is the same or different to that of a preceding fixation cue (white cross) followed by a (~1cm red line oriented 45° to the left or to the right). The target probe appears immediately after presentation of a face (Black or Asian) either above or below a neutral white oval.

The 80 Black and Asian Faces were rated by participants on a 7-point Likert scale for threat.

Participants also completed a measure enquiring about contact with other races which involved writing the initials of up to 20 close friends and then afterwards, being given an instruction to refresh their memory of each friend, which were converted to a proportion of the total number of friends given.

Table 2: Regression for the Black face stimuli,(Mod 3 $R^2 = .55$, Adj $R^2 = .30$)

<table>
<thead>
<tr>
<th>Model</th>
<th>explicit threat</th>
<th>implicit threat</th>
<th>close contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: explicit threat</td>
<td>44.6</td>
<td>25.2</td>
<td>.27</td>
</tr>
<tr>
<td>Model 2: explicit threat</td>
<td>49.9</td>
<td>24.2</td>
<td>.30*</td>
</tr>
<tr>
<td>Model 3: implicit threat</td>
<td>-123.7</td>
<td>57.0</td>
<td>-32*</td>
</tr>
<tr>
<td>Model 3: explicit threat</td>
<td>-125.1</td>
<td>53.1</td>
<td>-33*</td>
</tr>
<tr>
<td>Model 3: close contact</td>
<td>-19.6</td>
<td>4.1</td>
<td>-36*</td>
</tr>
</tbody>
</table>

Table 1: Mean explicit and implicit threat scores for Black and Asian Faces

<table>
<thead>
<tr>
<th>Face</th>
<th>Explicit</th>
<th>IAT (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>1.71</td>
<td>-5.3*</td>
</tr>
<tr>
<td>Asian</td>
<td>.72</td>
<td>.31</td>
</tr>
</tbody>
</table>

*p < .05

No correlation between explicit and implicit threat scores for Black faces ($r = .091$, $p = .572$)

Significant correlation between explicit and implicit threat scores for Asian faces ($r = .367$, $p = .022$)