Effect of wall temperature on the growth of Gortler vortices in high-speed boundary layers

Adrian Sescu1, Safae El Amrani1 and Mohammed Afsar2
1Mississippi State University, U.S.
2Strathclyde University, U.K.

APS Fluid Dynamics, November 2018
Background

Boundary layer streaks

Klebanoff modes in bypass transition

Turbulent boundary layers

Lee, Sung & Zaki (J. Fluid Mech., 2017)
Background

Gortler vortices?

- centrifugal instabilities in boundary layer flows over concave surfaces

-Swearenger and Blackwelder, 1997, JFM

-previus studies and results indicated that the streaky structures in boundary layers are responsible for variations in the frictional drag or heat transfer

-so control methods must focus on restricting the development of these streaks.

We study the effect of wall cooling/heating to Gortler vortices in supersonic and hypersonic boundary layers
Methodology

Scalings

We solve for the compressible Navier-Stokes equations (equations not included)

All dimensional spatial coordinates are normalized by the spanwise separation λ^* of the Görtler vortices, and the velocity is scaled by the freestream velocity magnitude V^*_∞

$$ (x, y, z) = \left(\frac{x^*, y^*, z^*}{\lambda^*} \right), \quad (u, v, w) = \left(\frac{u^*, v^*, w^*}{V^*_\infty} \right), $$ (1)

and pressure is scaled by $\rho^*_\infty V^*_\infty^2$, and temperature by the freestream temperature, T^*_∞. Reynolds number, Mach number and Prandtl number are defined as

$$ R_\lambda = \frac{\rho^*_\infty V^*_\infty \lambda^*}{\mu^*_\infty} , \quad M_\infty = \frac{V^*_\infty}{a^*_\infty} , \quad Pr = \frac{\mu^*_\infty C_p}{k^*_\infty} , $$ (2)

The Görtler number based on the boundary layer momentum thickness, θ^*, is defined as

$$ G_\theta = R_\theta \sqrt{\frac{\theta^*}{r^*}} , $$ (3)
Numerical method

- time integration: third order TVD Runge-Kutta method
- spatial derivatives: dispersion-relation-preserving schemes
- high-order filtering to remove high-wavenumber spurious waves
- inflow conditions from a precursor 2D simulation

- shocks are not taken into account (no leading edge)

Grid:

![Grid Image]
Results

Table: Flow parameters.

<table>
<thead>
<tr>
<th>Mach number, M</th>
<th>Unit Reynolds #</th>
<th>Görtler #, G_θ</th>
<th>Spanwise sep., Λ^* [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M = 1.5$</td>
<td>1.40E+6</td>
<td>22.00</td>
<td>0.0120</td>
</tr>
<tr>
<td>$M = 3.0$</td>
<td>2.81E+6</td>
<td>23.31</td>
<td>0.0057</td>
</tr>
<tr>
<td>$M = 4.5$</td>
<td>4.18E+6</td>
<td>28.28</td>
<td>0.0043</td>
</tr>
<tr>
<td>$M = 6.0$</td>
<td>5.55E+6</td>
<td>31.45</td>
<td>0.0036</td>
</tr>
<tr>
<td>$M = 7.5$</td>
<td>7.09E+6</td>
<td>34.57</td>
<td>0.0031</td>
</tr>
</tbody>
</table>

The way we impose wall cooling or heating:

![Diagram showing inflow at 300 K, ramp, and different wall temperatures: 150, 200, 400, or 500 K]
Results

Grid convergence study

Table: Number of points in different grids.

<table>
<thead>
<tr>
<th>Mach number</th>
<th>grid1</th>
<th>grid2</th>
<th>grid3</th>
<th>grid4</th>
<th>grid5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M = 1.5$</td>
<td>329,232</td>
<td>990,000</td>
<td>1,771,200</td>
<td>2,763,600</td>
<td>3,830,400</td>
</tr>
<tr>
<td>$M = 3.0$</td>
<td>329,232</td>
<td>930,000</td>
<td>1,684,800</td>
<td>2,646,000</td>
<td>3,696,000</td>
</tr>
<tr>
<td>$M = 4.5$</td>
<td>329,232</td>
<td>870,000</td>
<td>1,598,400</td>
<td>2,528,400</td>
<td>3,561,600</td>
</tr>
<tr>
<td>$M = 6.0$</td>
<td>329,232</td>
<td>810,000</td>
<td>1,512,000</td>
<td>2,410,800</td>
<td>3,427,200</td>
</tr>
<tr>
<td>$M = 7.5$</td>
<td>329,232</td>
<td>750,000</td>
<td>1,425,600</td>
<td>2,293,200</td>
<td>3,292,800</td>
</tr>
</tbody>
</table>

Figure: Vortex energy (left) and wall shear stress (right) for four grids of different resolutions.

Figure: Vortex energy (left) and wall shear stress (right) for four grids of different resolutions.
Results

Effect of wall heat transfer

Initially, we considered very low (unrealistic) wall temperatures: $T_w = 50$ K and $T_w = 100$ K

$T_w = 300$ K

$T_w = 50$ K
Initially, we considered very low (unrealistic) wall temperatures: $T_w = 50$ K and $T_w = 100$ K.
Results

Then, more realistic cooling/heating: $T_w = 150, 200, 400, 500$ K. Upstream: $T_w = 300$ K

Vortex energy

$M_\infty = 1.5$

$M_\infty = 3.0$

$M_\infty = 4.5$

$M_\infty = 6.0$

$M_\infty = 7.5$
Results

Realistic cooling - Wall shear stress

\[M_\infty = 1.5 \]

\[M_\infty = 3.0 \]

\[M_\infty = 4.5 \]

\[M_\infty = 6.0 \]

\[M_\infty = 7.5 \]
Results

Heating - Vortex energy

$M_\infty = 1.5$

$M_\infty = 3.0$

$M_\infty = 4.5$

$M_\infty = 6.0$

$M_\infty = 7.5$
Results

Heating - Wall shear stress

$M_\infty = 1.5$

$M_\infty = 3.0$

$M_\infty = 4.5$

$M_\infty = 6.0$

$M_\infty = 7.5$
Results

Wall shear stress integrated over the entire wall surface

Figure: Skin friction drag as a function of the wall temperature and for different Mach numbers.
Conclusions:

A numerical study of the effect of controlled cooling and heating on the development of Görtler vortices in high-speed boundary layers has been performed.

The wall cooling or heating was imposed in the downstream of a wall temperature of $T = 300$ imposed in the proximity to the inflow boundary.

Results indicated that wall cooling/heating just slightly modify the streamwise evolution of the Görtler vortices.

Both wall cooling and heating decreased the spanwise averaged wall shear stress.

Future work will consider the application of cooling and heating to unsteady boundary layer streaks.
Thank you!